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Attraction between quarks is a fundamental aspect of QCD. It is plausible that several

of the most profound aspects of low-energy QCD dynamics are connected to diquark

correlations, including: paucity of exotics (which is the foundation of the quark model

and of traditional nuclear physics), similarity of mesons and baryons, color superconduc-

tivity at high density, hyperfine splittings, ∆I = 1/2 rule, and some striking features of

structure and fragmentation functions. After a brief overview of these issues, I discuss

how diquarks can be studied in isolation, both phenomenologically and numerically, and

present approximate mass differences for diquarks with different quantum numbers. The

mass-loaded generalization of the Chew–Frautschi formula provides an essential tool.
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1. Diquarks as Inspiration

1.1. Diquarks in Microscopic QCD

In electrodynamics the basic interaction between like-charged particles is

repulsive. In QCD, however, the primary interaction between two quarks

can be attractive. At the most heuristic level, this comes about as follows.

Each quark is in the 3 representation, so that the two-quark color state 3⊗3

can be either the symmetric 6 or the antisymmetric 3̄. Antisymmetry, of

course, is not possible with just 1 color! Two widely separated quarks each

generate the color flux associated with the fundamental representation; if

they are brought together in the 3̄, they will generate the flux associated

with a single anti-fundamental, which is just half as much. Thus by bringing

the quarks together we lower the gluon field energy: there is attraction in the

3̄ channel. We might expect this attraction to be roughly half as powerful as

the quark-antiquark 3⊗ 3̄→ 1. Since quark-antiquark attraction drives the

energy in the attractive channel below zero, triggering condensation 〈q̄q〉 6= 0

of qq̄ pairs and chiral symmetry breaking, an attraction even half as powerful

would appear to be potentially quite important for understanding low-energy

QCD dynamics.

One can calculate the quark-quark interaction due to single gluon ex-

change, and of course one does find that the color 3̄ channel for quarks is

attractive. Going a step further, one can consider magnetic forces, and dis-

tinguish the favored spin configuration. One finds that the favorable spin

configuration is likewise the antisymmetric one, i.e. 1
2 ⊗ 1

2 → 0. With an-

tisymmetry in color and spin, and a common spatial configuration, Fermi

statistics requires that the favorable diquark configuration is also antisym-

metric in flavor. For non-strange diquarks, this means isosinglet, in the

context of flavor SU(3) it means flavor 3̄. We shall denote the favorable

diquark configuration as [qq′], and speak of “good” diquark. We shall also

have occasion to consider the spin triplet flavor symmetric configuration

(still color 3̄ !), which we will denote this as (qq ′) and speak of the “bad”

diquark. Since the spin-spin interaction is a relativistic effect, we might ex-

pect it to be strongest for the lightest quarks; that is, we expect the splitting

(ud)− [ud] > (us)− [us] > (uc)− [uc] ≈ 0.

One can also calculate forces between quarks due to instantons. The

same channel emerges as the most favorable, with attraction.

At asymptotically high densities in QCD one can justify the use of weak

coupling to analyze quark interactions near the Fermi surface. The attrac-

tive quark-quark interaction in the good diquark channel is responsible for

color superconductivity, and more particularly color-flavor locking. In that
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context it triggers condensation of diquarks, with color symmetry breaking.

This leads to a rich theory, including calculable – weak coupling, but non-

perturbative – mechanisms for confinement and chiral symmetry breaking.

In vacuum we do not have color breaking, of course, or (therefore) diquark

condensation; but the dominant role of good diquarks at high density is

definitely another motivation for studying their properties in general. As a

practical matter, it might help us understand the parameters governing the

approach to asymptopia, which is important for constructing models of the

internal structure of neutron stars, and assessing the possibility the matter

in their cores is in a distinct (quark) phase.

As a corollary to the fact that quark attraction that favors good di-

quark formation, we might expect repulsion between good diquarks. Indeed,

when two good diquarks overlap the cross-channels, involving one quark

from each diquark, will have unfavorable correlations. The repulsion might

be manifested in the form of a force or, in response to attempts at fusion,

re-arrangement into baryon plus single quark.

1.2. Phenomenological Indications

These heuristic, perturbative, and quasi-perturbative considerations sug-

gest several “applications” of diquark ideas within strong interaction phe-

nomenology. Since the relevant calculations are not performed in a well-

controlled approximation, we should regard this as an exploratory activity.

To the extent that we discover interesting things in this way – and we do!

– it poses the challenge of making firmer, more quantitative connections to

fundamental theory.

A classic manifestation of energetics that depends on diquark correlations

is the Σ−Λ mass difference. The Λ is isosinglet, so it features [ud]; while Σ,

being isotriplet, features (ud). The Σ is indeed heavier, by about 80 MeV.

Of course, this comparison of diquarks is not ideal, since the spectator s

quark also has significant spin-dependent interactions. A cleaner compar-

ison involves the charm analogues, where Σc − Λc = 215 MeV. (Actually

this comparison is not so clean either, as we’ll discuss later. One sign of

uncleanliness is that there either Σc(2520)
3
2

+
or Σc(2455)

1
2

+
might be used

for comparison; here I’ve taken the weighted average.)

One of the oldest observations in deep inelastic scattering is that the ratio

of neutron to proton structure functions approaches 1
4 in the limit x→ 1

lim
x→1

F n
2 (x)

F p
2 (x)

→ 1

4
. (1)
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In terms of the twist-two operator matrix elements used in the formal anal-

ysis of deep inelastic scattering, this translates into the statement

lim
n→∞

〈p|d̄γµ1

←→∇ µ2
· · ·←→∇ µn

d|p〉
〈p|ūγµ1

←→∇ µ2
· · ·←→∇ µn

u|p〉
→ 0 (2)

where spin averaging of forward matrix elements, symmetrization over the

µs, and removal of traces is implicit, and a common tensorial form is factored

out, together with similar equations where operators with strange quarks,

gluons, etc. appear in the numerator. Equation (2) states that in the valence

regime x→ 1, where the struck parton carries all the longitudinal momentum

of the proton, that struck parton must be a u quark. It implies, by isospin

symmetry, the corresponding relation for the neutron, namely that in the

valence regime within a neutron the parton must be a d quark. Then the

ratio of neutron to proton matrix elements will be governed by the ratio of the

squares of quark charges, namely
(− 1

3
)2

( 2

3
)2

= 1
4 . Any (isosinglet) contamination

from other sources will contribute equally to numerator and denominator,

thereby increasing this ratio. Equation (2) is, from the point of view of

symmetry, a peculiar relation: it requires an emergent conspiracy between

isosinglet and isotriplet operators. It is, from a general physical point of

view, most remarkable: it is one of the most direct manifestations of the

fractional charge on quarks; and it is a sort of hadron = quark identity,

closely related to the quark-hadron continuity conjectured to arise in high

density QCD. It is an interesting challenge to derive (2) from microscopic

QCD, and to estimate the rate of approach to 0.

A more adventurous application is to fragmentation. One might guess

that the formation of baryons in fragmentation of an energetic quark or gluon

jet could proceed stepwise, through the formation of diquarks which then fuse

with quarks. To the extent this is a tunneling-type process, analogous to

pair creation in an electric field, induced by the decay of color flux tubes, one

might expect that the good diquark would be significantly more likely to be

produced than the bad diquark. This would reflect itself in a large Λ/Σ ratio.

And indeed, data from LEP indicates that the value of this ratio is about 10

at large z. In the Particle Data Book one also finds an encouraging ratio for

total multiplicities in e+e− annihilation: Λc : Σc = .100 ± .03 : .014 ± .007;

in this case the c quarks are produced by the initiating current, and we have

a pure measure of diquarks.

There are also several indications that diquark correlations have other im-

portant dynamical implications. The ∆I = 1
2 rule in strangeness-changing

nonleptonic decays has also been ascribed to attraction in the diquark chan-
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nel. The basic operator ūγµ(1− γ5)ds̄γµ(1− γ5)u arising from W boson ex-

change can be analyzed into ¯[us][ud], ¯(us)(ud), and related color-6 diquark

types. Diquark attraction in ¯[us][ud] means that there is a larger chance

for quarks in this channel to tap into short-distance components of hadronic

wavefunctions. This effect is reflected in enhancement of this component

of the basic operator as it is renormalized toward small momenta. Such an

enhancement is well-known to occur at one-loop order (one gluon exchange).

Stech and Neubert have advanced this line of thought significantly [1].

1.3. Correlations and the Main Problem of Exotics

Our present understanding of the strong interaction is disturbingly

schizophrenic. On the one hand we have an algorithmically definite and very

tight relativistic quantum field theory, quantum chromodynamics (QCD),

which we can use to do accurate quantitative calculations in special circum-

stances. Many hard (i.e., large momentum-transfer) processes and processes

involving heavy quarks can be treated using the techniques of perturbative

QCD. The spectroscopy of low-lying states, and a few interesting matrix ele-

ments of operators (currents, twist-two operators, weak Hamiltonian matrix

elements) can be calculated by direct numerical solution of the fundamental

equations, using the techniques of lattice gauge theory. These quantita-

tive calculations are famously successful, with accuracies approaching 1%

in favorable cases, and amply justify faith in the theory. The basic de-

grees of freedom in QCD include massless gluons and almost-massless u, d

quarks, and the interaction strength, though it “runs” to small coupling

at large momentum transfer, is not uniformly small. We might therefore

anticipate, heuristically, that low-energy gluons and quark-antiquark pairs

are omnipresent, and in particular that the eigenstates of the Hamiltonian –

hadrons – will be complicated composites, containing an indefinite number of

particles. And indeed, according to the strictest experimental measure of in-

ternal structure available, the structure functions of deep inelastic scattering,

nucleons do contain an infinite number of soft gluons and quark-antiquark

pairs (parton distributions ∼ dx
x as x→ 0).

The quark model has been used with considerable success to organize

a lush jungle of observations that would otherwise appear bewildering. It

is built upon degrees of freedom whose properties are closely modeled on

those of the fundamental theory; nevertheless, its success raises challenging

conceptual questions. For the main working assumption of the quark model

is that hadrons are constructed according to two body plans: mesons, con-

sisting of a quark and an antiquark; and baryons, consisting of three quarks.
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This seems out of step with the heuristic expectations we mentioned earlier.

And, lest we forget, the most developed and useful model in strong inter-

action physics is traditional nuclear physics, based on nucleons as degrees of

freedom. In this model the effective residual interactions are feeble compared

to the interactions responsible for constructing the nucleons from massless

ingredients in the first place; this allows us to we employ essentially non-

relativistic dynamics, and we don’t consider particle production. Further-

more, and not unrelated: the nuclear forces have a “hard core” repulsion,

and saturate.

The puzzles posed by the success of the quark model and traditional

nuclear physics are sharply posed in the question of exotics. Are there ad-

ditional body plans in the hadron spectrum, beyond qqq baryons and q̄q

mesons (and loose composites thereof)? If not, why not; if so, where are

they? As a special case: why don’t multi-nucleons merge into single bags,

e.g. qqqqqq – or can they?

The tension between a priori expectations of complex bound states and

successful use of simple models, defines the main problem of exotics: Why

aren’t there more of them? A heuristic explanation can begin along the fol-

lowing lines. Low-energy quark-antiquark pairs are indeed abundant inside

hadrons, as are low-energy gluons, but they have (almost) vacuum quantum

numbers: they are arranged in flavor and spin singlets. (The “almost” refers

to chiral symmetry breaking.) Deviations from the “good” quark-antiquark

or gluon-gluon channels, which are color and spin singlets, cost significant

energy. States which contains such excitations, above the minimum consis-

tent with their quantum numbers, will tend to be highly unstable. They

might be hard to observe as resonances, or become unbound altogether.

The next-best way for extraneous quarks to organize themselves appears,

according to the preceding considerations, to be in “good” diquark pairs.

Thus a threatening – or promising – strategy for constructing low-energy

exotics apparently could be based on using these objects as building-blocks.

There are two reasons “good” diquark correlations help explain the paucity

of exotics: because of their antisymmetry, they lock up spin and flavor;

and because of their repulsion, they forbid mergers. These two aspects are

exemplified in the next two paragraphs.

Tetraquarks play an important role in modeling the observed low-lying

nonet of scalar 0+ mesons including f0(600) = σ, κ(900), f0(980), a0(980).

It appears perverse to model these as conventional qq̄ mesons, since the

isotriplet a0(980) is the heaviest component, but would (on this assignment)

contain no strange quarks. A serious and extensive case has been made
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that an adequate model of these mesons must include a major admixture

of qqq̄q̄. Then both f0(980), a0(980) are accommodated as [ls] ¯[ls], with l =

u or d. For our purposes, the most important observation is that if the quarks

(antiquarks) are correlated into good diquarks (antidiquarks), as we expect

they will be for the lowest-lying states, then the non-exotic flavor structure

of the nonet is explained; indeed, for the flavor one obtains 3̄⊗3 = 8⊕1 with

the same charges as for qq̄. For this reason they are called cryptoexotics. qqq̄q̄

can organize alternatively into two color singlet qq̄ mesons, of course, and

sophisticated modeling includes both channels (with diquarks dominating at

short distances, mesons at larger distances).

The non-existence of low-lying dibaryons is related to the (or at least,

a) foundational problem of nuclear physics: Why do protons and neutrons

in close contact retain their integrity? Essentially the same question arises

in a sharp form for the H particle studied by Jaffe [2]. It has the config-

uration uuddss. In the bag model it appears that a single bag containing

these quarks supports a spin-0 state that is quite favorable energetically. A

calculation based on quasi-free quarks residing in a common bag, allowing

for one-gluon exchange, indicates that H might well be near or even below

ΛΛ threshold, and thus strongly stable; or perhaps even below Λn thresh-

old, and therefore stable even against lowest-order weak interactions. These

possibilities appear to be ruled out both experimentally and by numerical

solution of QCD, though possibly neither case is airtight. Good diquark

correlations, together with repulsion between diquarks, suggests a reason

why the almost-independent-particle approach fails in this case. Note that

for this mechanism to work requires that essentially nonperturbative quark

interaction effects, beyond one gluon exchange, must be in play.

2. Diquarks as Objects

From all this it appears that diquarks may be very useful degrees of freedom

to focus on in QCD. If we’re going to do that, the first step should be to study

them in a pure and isolated form, and determine their parameters. This is

not straightforward, due to confinement, since the diquarks are colored. But

I believe there are attractive ways to do something approaching isolating

them, both physically and numerically.

Of course, the same problem arises for quarks. Our considerations will

apply to them in a non-trivial way, as well.

In rapidly spinning baryons centrifugal forces lead to a geometry where a

quark at one end of a line of color flux is joined to two quarks at the other.

The two-quark end then makes a little laboratory where one can compare
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good and bad diquark configurations with each other, assess the effects of

strangeness, and (comparing with mesons) normalize them relative to single

quarks.

Famously, the Chew–Frautschi formula

M2 = a + σL (3)

organizes trajectories of resonances (Chew–Frautschi formula) with the same

internal quantum numbers but different values of JP ; here σ is a universal

constant ∼ 1.1 GeV2 while a depends on the quantum numbers, and L is an

orbital angular momentum, quantized in integers. Recently Alex Selem and

I have used this formula, together with some refinements and extensions, to

do extensive and I think quite successful hadron systematics. My main point

below, extracted from that work, will take off from one such refinement.

The formula M 2 = σL arises from solving the equations for a spinning

relativistic string with tension σ/(2π), terminated by the boundary condition

that both ends move transversely at the speed of light. We might expect

it to hold asymptotically for large L in QCD, when an elongated flux tube

appears string-like, the rotation is rapid, quark masses are negligible, and

semiclassical quantization of its rotation becomes appropriate. The primeval

CF formula M 2 = a+σL, with simple non-zero values of a (e.g., a = 1
2σ) can

result from quantization of an elementary non-interacting string, including

zero-point energy for string vibrations.

In the following section we (that is, Alex and I) generalize the classical

formula to the form appropriate for string termination on massive objects.

There will be corrections that depend on the masses of the objects at the end.

Using these corrected formulas, we are able to identify (over-determined)

values of the masses of various kinds of quasi-isolated quarks and diquarks,

directly from spectroscopic data.

2.1. Generalization of the Chew–Frautschi Formula

We can generalize the Chew–Frautschi formula by considering two masses

m1, m2 connected by a relativistic string with constant tension, T , rotating

with angular momentum L. Our general solution naturally arises in a pa-

rameterized form in which the energy,E, and L are both expressed in terms

of the angular velocity, ω, of the rotating system. In the limit that m1, m2

→ 0, the usual Chew–Frautschi relationship E2 ∝ L appears.

Considering masses m1 and m2 at distances r1 and r2 away from the

center of rotation respectively. The whole system spins with angular velocity
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ω. It is also useful to define

γi =
1

√

1− (ωri)2
(4)

where the subscript i can be 1 or 2 (for the mentioned masses). It is straight-

forward to write the energy of the system,

E = m1γ1 + m2γ2 +
T

ω

∫ ωr1

0

1√
1− u2

du +
T

ω

∫ ωr2

0

1√
1− u2

du . (5)

The last two terms are associated with the energy of the string. Similarly,

the angular momentum can be written as

L = m1ωr2
1γ1+m2ωr2

2γ2+
T

ω2

∫ ωr1

0

u2

√
1− u2

du +
T

ω2

∫ ωr2

0

u2

√
1− u2

du . (6)

Carrying out the integrals gives:

E = m1γ1 + m2γ2 +
T

ω
(arcsin[ωr1] + arcsin[ωr2]), (7a)

L = m1ωr2
1γ1+m2ωr2

2γ2+
T

ω2

1

2

(

− ωr1

√

1− (ωr1)2+arcsin[ωr1]
)

+
T

ω2

1

2

(

− ωr2

√

1− (ωr2)2 + arcsin[ωr2]
)

. (7b)

Furthermore, the following relationship between the tension and angular

acceleration holds for each mass:

miω
2ri =

T

γ2
i

. (8)

We can use this to eliminate the distances r1 and r2 and express everything

in terms of ω. Specifically we note that in our expressions for E and L, the

quantities that contain ri, are γi and also ωri. From equation (8) we can

ultimately solve for γi,

γi =

√

1

2
+

√

1 + 4(T/(miω))2

2
. (9)

From equation (8) we also know that ωri is just T/(miγ
2
i ω).

We are now in a position to replace these terms in equation (7) and write

E and L in terms of the parameter ω and other quantities assumed known,

namely the masses and the string tension T . The resulting expressions are

a bit opaque, but we can make good use of them either by plotting E2 vs L

parametrically, or by making appropriate expansions, for the cases of either

very light or very heavy masses, to obtain analytic expressions for E2 vs L.
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The terms associated with each mass decouple from one another, so we

may construct expansions for each separately. We adopt the convention that

the contribution from one mass is preceded with a δ, as in δE. It is useful

to define another variable xi ≡ miω
T , If we expand in xi, then, we find the

contribution to the energy, δE, and angular momentum, δL, due to one light

mass is

δElight =
πT

2ω
+

1

3
m

1/2
i x

1/2
i +

1

20
m

1/2
i x

3/2
i + O

(

m
1/2
i x

5/2
i

)

, (10a)

δLlight =
πT

4ω2
− 1

3

mi

ω
x

1/2
i +

3

20

mi

ω
x

3/2
i + O

(mi

ω
x

5/2
i

)

(10b)

to order x
3/2
i . For a system with two light and equal masses, we would of

course just multiply the right hand side of these expressions by two to obtain

the total energy and angular momentum. Note that for a very light mass it

appears that ω →∞ as L→ 0, so this is a singular limit.

If we let both masses go to zero, and therefore take only the first term for

each mass from the light-mass expansion (equation (10)), then we recover

the familiar Chew–Frautschi relationship for the string with massless ends,

E2 = (2πT )L . (11)

For the first corrections at small m1,m2 (and L 6= 0) we find, after some

algebra,

E ≈
√

σL + κL− 1

4 µ
3

2 (12)

with

κ ≡ 2

3

π
1

2

σ
1

4

(13)

and

µ
3

2 ≡ m
3

2

1 + m
3

2

2 . (14)

This is a useful expression, since it allows us to extract expressions for quark

and diquark mass differences from the observed values of baryon and meson

mass differences. Numerically, κ ≈ 1.15 GeV− 1

2 for σ ≈ 1.1 GeV2.

For heavy-light systems the corresponding formula is

E −M =

√

σL

2
+ 2

1

4 κL− 1

4 µ
3

2 (15)

where M is the heavy quark mass and µ is the light quark mass.
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Note that the usual correction due to a zero-point vibrations, i.e. a

classic intercept of the type E2 = a +(2πT )L, yields corrections of the form

E →
√

σL + a
2
√

σL
. It becomes subdominant to mass corrections at large L.

2.2. Nucleon-Delta Complex

As a small taste of the much more extensive analysis presented in [3], our fit

to the bulk of non-strange light baryons is presented in Table 1. The entries

contain central values of masses as quoted in the Particle Data Tables, to-

gether with spin-parity assignments. By definition nucleons have isospin 1
2 ,

deltas have isospin 3
2 . We have included only resonances rated 2∗ or better.

The first series assumes maximal alignment between orbital and spin angu-

lar momentum. For L = 0 there is a unique nucleon state, since (assuming

spatial symmetry) spin symmetry and color antisymmetry imply flavor sym-

metry. For larger values of L there is both a good diquark and a bad diquark

nucleon state. The latter is made by assembling the I = 1 bad diquark with

the I = 1
2 quark to make 1⊗ 1

2 → 1
2 . Anticipating dynamical independence

of the two ends, we should expect to have approximately degenerate bad

diquark nucleons and deltas. There are many examples of this phenomenon,

as we shall see shortly, but only two appear in the first series (and one of

those is corrupted). The existence of a second nucleon series is a profound

fact: it means that there really is a “2 against 1” structure for the quarks, as

opposed to a common spatial wave function for all 3, which we encountered

for L = 0. In the language of chemistry, we might say it is evidence for a

valence-bond, as opposed to a molecular orbital, organization.

A clear distinction between the masses of good versus bad diquark states

is visible, upon comparing the first column to the second and third. The

splitting between these states is about 200 MeV.

There are gaps in the table for a spin-parity 5
2

−
delta around 1700 MeV, a

spin-parity 7
2

+
nucleon around 2000 MeV, and possibly for high-spin nucleons

to continue the third column. The ∆(2400) would be more comfortable if it

were lighter by ∼ 100 MeV. These may be taken as predictions.

In fitting the good nucleon series even roughly to a formula of the CF

form M2 = a + σL we discover that it is necessary to separate even and

odd L. We will discuss a possible microphysical origin for this separation

momentarily below, in a separate subsection.

We will give less textual detail in describing the remaining series, since

most of the required explanation is so similar.
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I. Maximal spin alignment for “good” and “bad” diquarks

Angular A. [ud]—l B. (ud)—l

Momentum (L) −—↑ ⇑—↑
0 N(939) 1/2+ ∆(1232) 3/2+

1 N(1520) 3/2− N(1675) 5/2−

2 N(1680) 5/2+ ∆(1950) 7/2+ N(1990) 7/2+

3 ∆(2400) 9/2− N(2250) 11/2−

4 N(2220) 9/2+ ∆(2420) 11/2+

5 N(2600) 11/2− ∆(2750) 13/2−

6 N(2700) 13/2+ ∆(2950) 15/2+

II. “Bad” diquark with net spin 1/2 aligned and

“good” diquark with net spin 1/2 anti-aligned

Angular A. [ud]—l B. (ud)—l

Momentum (L) −—↓ ⇑—↓ or ⇔—↑
1 N(1535) 1/2− ∆(1700) 3/2− N(1700) 3/2−

2 N(1720) 3/2+ ∆(1905) 5/2+ N(2000) 5/2+

∆(2000) 5/2+

3 N(2190) 7/2+

4 ∆(2300) 9/2+

III. “Bad” diquark with net spin 1/2 anti-aligned

Angular A. (ud)—l

Momentum (L) ⇓—↑ or ⇔—↓
1 ∆(1620) 1/2− N(1650) 1/2−

2 ∆(1920) 3/2+ N(1900) 3/2+

3 N(2200) 5/2−

IV. “Bad” diquark with net spin 1/2 anti-aligned

Angular A. (ud)—l

Momentum (L) ⇓—↓
2 ∆(1910) 1/2+

3 N(2080) 3/2−

Table 1. Fit to nucleon and delta resonances, based on the standard baryon body plan.

The second series includes cases where the spin and orbital angular mo-

menta sum up to one less than the maximum possible J . It starts at L = 1.

There is a unique good diquark nucleon series, corresponding to the second
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term in

L⊗ 1

2
=

(

L +
1

2

)

⊕
(

L− 1

2

)

(16)

but two bad diquark series, corresponding to the second and third terms in

L⊗ 1⊗ 1

2
=

(

L+
3

2

)

⊕
(

L+
1

2

)

⊕
(

L+
1

2

)

⊕
(

L−1

2

)

⊕
(

L−1

2

)

⊕
(

L−3

2

)

. (17)

(with of course the understanding that negative values are to be dropped,

and that for L = 0 L+ 1
2 occurs only once). For L = 0 there is no clean sep-

aration of two ends, and hence no effective approximate isospin conservation

to stabilize the bad diquark; so the absence of those states is not surprising.

The only case where a doubling is apparent is for the 5
2
+

∆(1905),∆(2000);

we predict that there are many additional doublets yet to be resolved. (In

our fit to the meson sector, several doublets of this kind appear.)

Beginning with the third series we should not, and do not, find a good-

diquark nucleon column.

The fourth series is very poorly represented; this is not wholly unex-

pected, since it is predicted to start at L = 2.

The surprising feebleness of spin-orbit forces manifests itself most abun-

dantly for L = 2. We find two nearly degenerate good-diquark nucle-

ons N(1680), N(1720) with JP = 5
2
+
, 3

2
+
; and a host of nearly degener-

ate bad-diquark nucleons and deltas: N(1990) 7
2

+
, N(2000) 5

2
+
, N(1900) 3

2
+
,

∆(1950) 5
2

+
, ∆(1905) 5

2

+
, ∆(2000) 5

2

+
, ∆(1920) 3

2

+
, ∆(1910) 1

2

+
!

2.2.1. Even-Odd Effect and Tunneling

We have mentioned that the even and odd L members of a sequence rep-

resenting different rotational states of a bone with given internal quark-

structure can lie on different trajectories. A possible microphysical explana-

tion for this is connected with the possibility of quark tunneling from one

bone-end to the other. Imagining the bone in a fixed position, such tunnel-

ing produces the same effect as rotation through π. We should construct

internal spatial wave-functions which are symmetric or antisymmetric under

this interchange. The former will be nodeless, and lower in energy than the

latter, which have a node. The symmetric states will allow only even L, the

antisymmetric states will allow only odd L. Thus if tunneling of this kind is

significant we should expect an even-odd splitting the trajectory, with the

odd component elevated. This is what we observe in the nucleon and delta

trajectories. (For this and the subsequent related assertions, see Figure (1)).
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A larger effect might be expected for the trajectories with bad diquarks,

since the ends won’t be sticky. This too is what is is observed.
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Regge Trajectory for even−L Nucleons (series IA).

Nucleons
Fitted line (E2=1.07*L + .781)
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Regge Trajectory for even−L Deltas (series IB).

Deltas
Fitted line (E2=1.18*L + 1.429)
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(d)

Figure 1. Various E2 vs L plots. (a) is a plot of all Nucleons of series IA, showing “even-odd

effect”. (b-d) are plots of the most prominent regge trajectories.

In the Λ trajectory the dominant quark configuration has [ud] on one end

and s on the other. It requires triple tunneling to mimic the effect of a π

rotation. Thus we do not expect an even-odd effect here, and none is evident

in the data, which has entries for L = 0 through 5.
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2.3. Results and Conclusion

By comparing good nucleons with the corresponding bad nucleons and

deltas, using Equations (12, 13, 14) we can get a more quantitative han-

dle on the diquark mass differences. They begin as equations for differences

between the three-halves power of the masses. From the mass difference

between N(1680) and ∆(1950) we find

(ud)3/2 − [ud]3/2 =
21/4

κ
(1.950 − 1.680) = 0.28 GeV3/2 . (18)

From this, we see that (ud)− [ud] itself ranges from 360 to 240 MeV as [ud]

ranges from 100 to 500 MeV. This constitutes a powerful indication of the

importance of these diquark correlations, since such energies are quite large

in the context of hadron physics.

A similar comparison among hyperons involves Σ(2030) and Σ(1915) and

leads to

(us)3/2 − [us]3/2 =
21/4

κ
(2.030 − 1.915) = 0.12 GeV3/2 . (19)

From this, we see that (us)− [us] itself ranges from 150 to 100 MeV as [us]

ranges from 200 to 600 MeV. This is smaller than (ud) − [ud], as expected,

but still a very significant energy.

A more adventurous comparison is to mesons. Since the same sort of

picture, with flux tubes joining weakly coupled ends and feeble spin-orbit

forces, works very well for them too, we are encouraged by the data to

compare diquark-quark to antiquark-quark configurations. (By the way,

this baryon-meson parallelism poses a challenge for Skyrme model or large

N approaches to modelling hadrons, since these approaches treat mesons

and baryons on vastly different footings.) To be concrete, let us continue

to consider orbital angular momentum L = 2 states with maximal spin and

orbital alignment. They are as follows:

• [ud]− u : N(1680)

• (ud)− u : ∆(1950), N(1990)

• [ud]− s : Λ(1820)

• [us]− u : Σ(1915)

• (us)− u : Σ(2030)

• s̄− u : K∗
3 (1780)

• d̄− u : ρ(1690), ω(1670)

• s̄− s : φ(1850)

Now a remarkable thing that appears here, upon comparing the first line
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with the seventh, or the third with the sixth, is that the mass of the good

diquark [ud] is roughly the same as that of u itself! This comparison is

somewhat contaminated by tunneling and mixing effects (e.g., tunneling

induces between of [ud] − s and [us] − d), but it’s a striking – and by no

means isolated – phenomenon that at large L, there is a marked convergence

between mesons and baryons. Another interesting qualitative pattern is

(ud) > [us] > s > [ud].

The near-equality between effective [ud] and u effective masses, inferred

in this way, contrasts with what appears at low L, even for heavy quark

systems, e.g. Λc(2625) versus D(2460) at L = 1 are split substantially. On

the other hand, this difference of 165 MeV is far less than the conventional

“constituent quark” mass ∼ 300 MeV, and also far less than the 275 MeV

difference between Λc(2285) and D∗(2010) at L = 0. (Note that heavy-

quark hadrons are only half as stretched as their light-quark analogues, for

the same L, so L = 1 is ultra-minimal.) Part of the reason, I suspect, is that

the stretched flux tubes we encounter at larger L can be terminated more

smoothly on diquarks, which are extended objects, than on single quarks;

this gives the diquarks an additional energetic advantage. Another part is

simply that the c spin somewhat interferes with the [ud] correlation, and

spatial separation lessens this effect.

Altogether, the concept of diquarks as objects appears to emerge quite

naturally and inescapably as an organizing principle for hadron spectroscopy.

As we examine it more carefully, we find that the energies in play are very

significant quantitatively, and that several qualitative refinements with in-

teresting physical interpretations suggest themselves. It would be wonderful

to illuminate these effects further by numerical experiments in lattice gauge

theory. The simplest way to see diquark dynamics is just to look at two

quarks coupled to a static color source, and in this way to compare the en-

ergy of different spin configurations. It would be very desirable to verify the

strong dependence of the splitting on the quarks’ masses. One could also

study the diquark repulsion, by bringing together the static sources of two

such source-diquark systems. Although it seems very difficult to simulate

spinning systems using known techniques of lattice gauge theory, one could

study quark and diquark systems “in isolation” (attached to a flux tube) by

artificially introducing a position-dependent mass for the light quarks, that

becomes large outside a pocket wherein it vanishes. This would, by pushing

the quarks away from the source, mimic the effect of a centrifugal force.

With insight gained from such studies, we would be empowered not only to

connect the spectroscopic regularities to foundational QCD, but also to do
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better justice to the other fundamental dynamical questions that this circle

of ideas wants to encompass.
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