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We review the free-field formalism for boundary states. The multi-component free-field

formalism is then used to study the boundary states of (p′, p) rational conformal field

theories having a W symmetry of the type Ar. We show how the classification of

primary fields for these models is obtained by demanding modular covariance of cylinder

amplitudes and that the resulting modular S matrix satisfies all the necessary conditions.

Basis states satisfying the boundary conditions are found in the form of coherent states

and as expected we find that W violating states can be found for all these models. We

construct consistent physical boundary states for all the rank 2 (p + 1, p) models (of

which the already known case of the 3-state Potts model is the simplest example) and

find that the W violating sector possesses a direct analogue of the Verlinde formula.
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1. Introduction

The Coulomb gas formalism [1, 2] provides a powerful method for calculat-
ing correlation functions and conformal blocks in minimal rational confor-
mal field theories (CFTs) and boundary CFTs have been of great interest
since Cardy’s famous paper [3]. Recently it has been shown that free-field
representations may be extended from bulk CFTs to systems with bound-
ary(ies) [4, 5] in the case of the Virasoro diagonal minimal models and for
the simplest non-diagonal case, the three state Potts model, where a multi-
component Coulomb Gas formalism is required [6]. The boundary states
appear as coherent states in the free-field formalism.

The three state Potts model is of particular interest because the conformal
field theory describing its critical point is the simplest in which there is
a higher dimensional chiral operator W (3) of dimension 3 [7]. There are
six boundary states originally found by Cardy in which the W (3) current
is conserved at the boundary [8] but in addition there are known to be
two more states in which the W current is not conserved. Affleck et al [9]
used fusion methods to establish these states while recently in [6] it was
shown that precisely these states, and no others, appear also in the free-field
formulation. This is all consistent with the general arguments given in [10]
that there should be precisely eight conformally invariant boundary states
in this model.

The free field formulation for the Potts model is just the simplest case
of a whole family of W minimal models whose r component free-field repre-
sentations are built on the Lie algebra Ar and are further characterized by
two relatively prime integers p′ and p. These models, denoted Wr+1(p′, p),
have higher dimensional chiral operators W (K), K = 3, . . . r+1 and thus an
extended symmetry algebra of which the Virasoro algebra is a sub-algebra.
The Potts model corresponds to W3(5, 4) and is the only member of the
family which is also a Virasoro minimal model. It is to be expected that all
the models will have boundary states which violate the higher symmetry as
well as those that conserve it. Our aim here is to extend [6] and to study
these boundary states. For general reviews of CFTs with W algebras the
reader should consult [11–13].

This paper is organized as follows. We start in Section 2 with a collection
of definitions and some results from the standard Coulomb Gas formalism
that we need. In Section 3 we describe the classification of fields and the
Felder complex for W minimal models and in Section 4 explain how to
construct coherent state representations satisfying the Virasoro boundary
conditions. Section 5 deals with the calculation of cylinder amplitudes and
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establishing which of the coherent states found previously are coupled to the
bulk physics. The classification of primary fields in the Wr+1(p′, p) models is
quite subtle [14] and we devote Section 6 to explaining how to use modular
covariance of the cylinder amplitudes to do this. In Section 7 we consider
the physical boundary states and annulus partition functions. The conser-
vation or otherwise of W currents by the different possible boundary states
is considered in Section 8 and, finally, in Section 9 we discuss some open
issues.

2. Preliminaries

The usual Coulomb gas formalism [1, 2] can be extended to CFTs with a
larger symmetry than the Virasoro algebra by introducing a multiple com-
ponent scalar field [7] Φj(z, z̄), j = 1 . . . r, which is a vector in the root space
of a finite dimensional Lie Algebra A of rank r. In this paper we will be
mainly concerned with the algebra Ar and so will specialize to it straight
away. Let us first fix some notation. The simple roots will be denoted
ej , j = 1 . . . r, and the corresponding dual weights ωj , j = 1 . . . r. We will
use “·” to denote multiplication of vectors and matrices in the root space.
So the scalar product of two vectors u and v in the root space will be written
u · v, the product of two matrices m1 ·m2 and so on. The simple roots and
dual weights then satisfy

ej · ej = 2, ej · ej+1 = −1, ej · ωi = δi,j . (2.1)

The positive roots are given by

ejk = ej + . . .+ ek, 1 ≤ j < k ≤ r. (2.2)

The Weyl vector ρ is defined as

ρ =
r∑
j=1

ωj , (2.3)

its square is

ρ2 =
1
12
r(r + 1)(r + 2), (2.4)

and the fundamental weights hK , K = 1 . . . r + 1, satisfy

h1 = ω1,

hK − hK+1 = eK . (2.5)
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We denote the Weyl group of A by W, an element of it by w, and let
εw = detw. The longest element of the Weyl group, w0 is the unique element
of W that maps the positive roots onto the negative roots. On the simple
roots, dual weights and fundamental weights w0 has the action

w0 ei = −er−i+1,

w0 ωi = −ωr−i+1,

w0 hK = hN+1−K , (2.6)

and we define its matrix representation in the root basis, S, by

Sij = −δi+j,r+1. (2.7)

Finally I denotes the identity matrix.
The action for Φ takes the usual form

S[Φ] =
1
8π

∫
d2z

√
g (∂µΦ · ∂µΦ + 4iα0ρ · ΦR) , (2.8)

where R is the scalar curvature, g the metric, and α0 a constant. We now
split Φ into a holomorphic component φ(z) and an anti-holomorphic com-
ponent φ̄(z̄). The field φ has mode expansion

φj(z) = φj0 − iaj0 ln z + i
∑
n6=0

ajn
n
z−n, (2.9)

and similarly for φ̄. Canonical quantization gives the usual commutation
relations

[ajm, a
l
n] = mδjlδm+n,0,

[φj0, a
l
0] = iδjl. (2.10)

Variation of the action with respect to the metric yields the energy-
momentum tensor

T (z) = −2πTzz = −1
2

: ∂φ · ∂φ : +2 i α0 ρ · ∂2φ, (2.11)

which has the usual expansion

T (z) =
∑
n∈Z

Lnz
−n−2, (2.12)

where the operators

Ln =
1
2

∑
m∈Z

: am · an−m : −2α0(n+ 1)ρ · an (2.13)



September 1, 2004 6:52 WSPC/Trim Size: 9.75in x 6.5in for Proceedings wheater˙con

1446 Alexandre F. Caldeira and J. F. Wheater

obey the Virasoro algebra with central charge

c = r − 48 α2
0ρ

2. (2.14)

Fock spaces Fα are labeled by a vacuum |α〉, which is an eigenvector of
the aj0 operator, and annihilated by the positive modes

aj0|α〉 = αj |α〉,

ajn|α〉 = 0 , n > 0. (2.15)

The Fock space is formed by applying the creation operators to the vacuum,

aj1−n1
aj2−n2

...a
jp
−np

|α〉, (2.16)

and different Fock spaces are related by

eiβ·φ0 |α〉 = |β + α〉. (2.17)

The chiral vertex operators Vα(z) are defined by

Vα(z) = :eiα·φ(z) : , (2.18)

and have conformal dimension given by

h(α) =
1
2
α · (α− 4α0ρ). (2.19)

3. W minimal models

The WN (p′, p) minimal models are defined for relatively prime integers p′

and p such that p′ > p > N by

2α0 =
p′ − p√
pp′

, α+ =
p′√
pp′

, α− = − p√
pp′

(3.1)

and have central charge

c = r

(
1− (p′ − p)2

pp′
(r + 1)(r + 2)

)
. (3.2)

Considerations requiring a consistent fusion algebra lead to the allowed val-
ues of α [11]

α = 2α0ρ−
1√
pp′

λ(m,n),

λ(m,n) = −pmiωi + p′niωi, (3.3)
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where summation over repeated i is implied and the mi and ni are positive
integers satisfying ∑

i

mi < p′,
∑
i

ni < p . (3.4)

So miωi and niωi are dominant weights and λ(m,n) is a non-zero weight,
although not necessarily dominant. The reader should note that there is
not a primary field corresponding to each α given by this prescription. As
we discuss directly below there is considerable degeneracy in this set-up and
the appearance of copies related by Weyl transformation is to be expected.
For example in W3(5, 4), which is the critical three state Potts model and
should have 6 primary fields, there are 18 λs satisfying these constraints; but
|W| = 6 and so we get three copies for each primary a (although there are
six elements in the Weyl group). That something is amiss is even clearer if
we look at W4(6, 5) for which there are 40 λs satisfying (3.4) yet |W| = 24.
Actually these puzzles are resolved by considering the modular properties of
the theory [14] which we will do in Section 6. For the moment it is sufficient
that the λs certainly can be written in the form (3.3).

As mentioned above there is some degeneracy in the αs. Defining

α∗ = 4α0ρ− α ,

αw = 2α0ρ−
1√
pp′

wλ(m,n), w ∈ W (3.5)

it follows that

h(α) = h(α∗) = h(αw). (3.6)

There are then two types of representation

(1) α∗ ∈ {αw}. This implies that

λ(m,n) = −wλ(m,n) (3.7)

for some w ∈ W. Since λ(m,n) is a weight we can use the property
that only for self-conjugate representations of SU(N)is the weight λ
in the Weyl orbit of −λ. In this case there is just one self-conjugate

a This ambiguity resulted in the authors of [6] having to take an apparently arbitrary choice of λs

on which to build the boundary states in this model. The choice that was made there is properly

justified by the discussion in this paper.
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primary field of conformal weight h(α). The highest weight in a self-
conjugate representation is given by

λ(m,n) = λiωi , λi = λN−i. (3.8)

It is clear that for λ(m,n) to be self-conjugate either both or neither
of miωi and niωi must be so. In fact the later case is excluded; (3.8)
leads to the condition

p′(ni − nN−i) = p(mi −mN−i) (3.9)

but there are no solutions to this for m, n in the range (3.4) if p′, p
are relatively prime.

(2) α∗ /∈ {αw}. This implies that λ(m,n) cannot be the weight of a self
conjugate representation. There are thus two primary fields which are
conjugates of each other, one built on λ(m,n) and one on −λ(m,n).

The vertex operators Vα operating on the SL(2,C) invariant vacuum gen-
erate states in a Fock space F(λ(m,n)) (where α and λ are related as in in
(3.3)), rather than the Verma module of the Virasoro primary field. This
physical Hilbert space has to be constructed by a BRST procedure that was
first described by Felder [15] and extended to the W3 case in [16]. First
define the set of operators

Q
(j)
k = Bj

k

(∮
dzVα+ej (z)

)k
, j = 1 . . . r , k < p , (3.10)

where the Bj
k are non-zero constants (note that h(α±ei) = 1). The Q(j)

k

commute with the Virasoro algebra by construction and map

Q
(j)
k F(λ) → F(λ− kp′ej). (3.11)

It is simple to check that if

k = nj mod p (3.12)

then the conformal dimensions of these two Fock spaces differ by an integer.
The action on λ then amounts to

Q(j) : λ(m,n) → −pmiωi + p′wej n
iωi −Npp′ej (3.13)

where N ∈ Z is introduced to enforce the mod p condition in (3.12). Now
Q(j) and Q(j+1) do not commute so we have to introduce further operators
Q(j,j+1) such that

Q
(j)

nj Q
(j+1)

nj+1 = Q
(j,j+1)

nj+nj+1Q
(j)

nj (3.14)
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and with action on λ,

Q(j,j+1) : λ(m,n) → −pmiωi + p′wejj+1 n
iωi −Npp′ejj+1 . (3.15)

This operator in turn does not commute with (eg) Q(j+2) and so we iterate
this process ending up with a set of operators Q(j,k) with action on λ given
by

Q(j,k) : λ(m,n) → −pmiωi + p′wejk
niωi −Npp′ejk . (3.16)

Starting from a given Fock space chosen according to the rules (3.3) one
can now convince oneself that the action of the Qj,k generates an infinite
complex of Fock spaces b

C(λ) =
⊕
w∈W
N∈Zr

F(−pmiωi + p′wniωi − pp′N iei) . (3.17)

It is possible to assemble from the Qj,k a nil-potent operator QB on C(λ)
whose cohomology is the physical Hilbert space c

H =
KernelQB
ImageQB

. (3.18)

Expectation values are then calculated from alternating sums over the com-
plex so for example the character of the Verma module is given by

χλ(m,n)(q) = Tr qL0−c/24

=
1

η(τ)r
∑
w∈W
N∈Zr

εwq
|p′wniωi−pmiωi+pp

′N iei|2/2pp′ . (3.19)

4. Coherent boundary states

Coherent boundary states may be defined in a straightforward generalization
of the procedure for the one component Coulomb gas [4, 6]. First we intro-
duce the states |α, ᾱ〉 which are constructed by applying the vertex operator
Vα(z) and its antiholomorphic counterpart, V ᾱ(z) to the SL(2, C)-invariant
vacuum |0, 0〉,

|α, ᾱ〉 = lim
z,z→0

V ᾱ(z)Vα(z)|0, 0〉 = eiα·φ0eiα·φ0 |0, 0〉 . (4.1)

b This is hard to draw unless r = 2 for which case it is described in detail in [6, 16].
c This was proved by Felder for the r = 1 case; there seems to be no direct proof given in the

literature of the general case, but there is also no evidence to the contrary and see [17] for a review.
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These states satisfy

ai0|α, ᾱ〉 = αi|α, ᾱ〉,

āi0|α, ᾱ〉 = ᾱi|α, ᾱ〉. (4.2)

The corresponding bra states are given by

〈α, ᾱ| = 〈0, 0|e−iα·φ0e−iα·φ0 . (4.3)

The coherent state ansatz is given by

|B(α, ᾱ; Λ)〉 = CΛ |α, ᾱ〉, (4.4)

CΛ =
∏
k>0

exp
(

1
k
a−k · Λ · ā−k

)
, (4.5)

where Λ is a matrix to be determined by imposing the boundary condition

(Ln − L̄−n)|B(α, ᾱ; Λ)〉 = 0 . (4.6)

For positive n this gives the constraint( 1
2

n−1∑
l=1

an−l · (ΛT · Λ− I) · a−l + (a0 − 2α0(n+ 1)ρ) · Λ · a−n

+(−a0 − 2α0(n− 1)ρ) · a−n
)
|α, ᾱ〉 = 0 , (4.7)

and similarly for negative n. The constraint is satisfied provided

ΛT · Λ = I, (4.8)

Λ · ρ+ ρ = 0, (4.9)

ΛT · α+ 4α0ρ− ᾱ = 0. (4.10)

The last of these conditions allows us to simplify our notation by defining

|B(α; Λ)〉 ≡ |B(α, ᾱ = ΛT · α+ 4α0ρ; Λ)〉. (4.11)

We next identify solutions for Λ. Using the form (3.3), the last constraint
in (4.10) becomes

ΛT (pni − p′mi)ωi = −(pn̄i − p′m̄i)ωi . (4.12)

Using the {ωi} basis, we see that the simplest form for Λ, which we will
denote Λω, is one in which all the elements are integers; this guarantees that
α exists. In addition the vector (1, . . . 1) must be an eigenvector of Λω with
eigenvalue −1 in order that (4.9) is satisfied so

Λωk1 + Λωk2 + . . .+ Λωkr = −1, k = 1, . . . r . (4.13)



September 1, 2004 6:52 WSPC/Trim Size: 9.75in x 6.5in for Proceedings wheater˙con

Boundary states and broken bulk symmetries in WAr minimal models 1451

A little bit of care is necessary in implementing (4.8); recall that this is in an
orthogonal cartesian basis because of the definition of the Heisenberg algebra
(2.10). In the {ωi} basis it becomes

Λω TA−1 Λω = A−1, or, equivalently, Λω AΛω T = A , (4.14)

where A is the Cartan matrix; picking out the diagonal elements gives

(Λωk1)
2 + (Λωk1 − Λωk2)

2 + . . .+ (Λωk r−1 − Λωkr)
2 + (Λωkr)

2 = 2 . (4.15)

Now (4.15) is a sum of squares so exactly two terms in the sum must be
equal to unity. In conjunction with (4.13) this shows that each row of Λω

contains one element which is −1, all other elements being zero. Each row
must be different, otherwise detΛω = 0 which contradicts (4.14) because
detA 6= 0. Thus the action of Λω on the l.h.s. of (4.14) is to permute the
rows and columns of A. By inspection there are only two permutations that
leave A invariant, the identity and reversal of the order of rows and columns,
so there are only two solutions

Λω = −I

or Λω = S . (4.16)

Equivalently, the action of Λ is simply the group of outer automorphisms on
the Dynkin diagram for Ar.

5. States and decoupled states

The cylinder amplitudes between boundary states of the form (4.11) can be
calculated by standard techniques and are given by

〈B(β; Λ2)| q
1
2
(L0+L0− c

12
) |B(α; Λ1)〉 =

qh(α)− c
24 exp

( ∞∑
k=1

∞∑
l=1

qkl

l
Tr(Λ1ΛT2 )l

)
δα,β δα,Λ1ΛT

2 β
.

(5.1)
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There are then three cases where the amplitude is non-zero;

〈B(α; Λ1)| q
1
2
(L0+L0− c

12
) |B(α; Λ2)〉 =

qh(α)− c
24∏

k>0(1− qk)r
, Λ1 = Λ2,

=
qh(α)− c

24 δα,−Sα∏
k>0(1− q2k)

r
2

, Λ1 6= Λ2, r even

=
qh(α)− c

24 δα,−Sα∏
k>0(1− qk)(1− q2k)

r−1
2

,

Λ1 6= Λ2, r odd. (5.2)

Note that the states |B(α;S)〉 can be written down for any α but they are
completely decoupled from the theory unless

α = −Sα (5.3)

and, from (4.10), all non-decoupled states have the property

α+ α = 4α0ρ. (5.4)

The constraint (5.3) implies that

λ(m,n) = −Sλ(m,n) (5.5)

which is uniquely satisfied by the highest (or lowest) weights of self-conjugate
representations. Thus the only primary fields which have the second bound-
ary state |B(α;S)〉 associated with them are the self-conjugate ones.

The states |B(α; Λ)〉 lie in the Fock space and the corresponding states
that lie in the physical Hilbert space, |α; Λ 〉〉, are obtained by summing over
the Felder complex

|α; Λ 〉〉 =
∑
w∈W
N∈Zr

κwN |B(2α0ρ−
1√
pp′

(p′wniωi−pmiωi+pp′N iei); Λ)〉 , (5.6)

where the κwN are constants of magnitude 1. There is a similar expression
for the bra states but with κwN replaced by κ′wN satisfying

κwNκ
′
wN = εw . (5.7)

From these states the physical cylinder amplitudes can be calculated; be-
tween identical in and out states these are simply the characters

〈〈α; Λ |q
1
2
(L0+L0− c

12
)|α′; Λ 〉〉 = χλ(m,n)(q)δα,α′ . (5.8)



September 1, 2004 6:52 WSPC/Trim Size: 9.75in x 6.5in for Proceedings wheater˙con

Boundary states and broken bulk symmetries in WAr minimal models 1453

However for the self-conjugate fields there is a second non-zero amplitude

χ̃λ(m,n)(q) = 〈〈α;−I |q
1
2
(L0+L0− c

12
)|α;S 〉〉. (5.9)

Recall that, for such fields, niωi and miωi must be self-conjugate highest
weights; non-zero contributions to this amplitude further require that wniωi
and N iei are self-conjugate. To solve these constraints introduce the basis
for self-conjugate combinations of roots

dk = ek + ek+1 + . . .+ eN−k, k = 1, . . . d r2e (5.10)

which, conveniently, is also orthogonal and denote by W̃ the abelian sub-
group of W

d r
2
e⊗

k=1

{I, wdk
}. (5.11)

Then the amplitude becomes

χ̃λ(m,n)(q) =
1

η(τ)r−2b r
2
cη(2τ)b

r
2
c

∑
w∈fW
N∈Zd r

2 e

εwq
|p′wniωi−pmiωi+pp

′N idi|2/2pp′ .

(5.12)
This expression can be simplified further but it is better to study the modular
properties of the diagonal cylinder amplitudes first. At this point we still
do not know the minimum self-consistent set of λ(m,n) or, equivalently, the
primary fields.

6. Modular properties and the primary fields

In this section we will show how modular covariance fixes the set of primary
fields in these models. This was first done in [14]; the exact method we use
here yields the results in a very convenient form for our subsequent study
of the boundary states. The modular properties of the cylinder amplitudes
can be examined using standard methods [18]; starting with the diagonal
amplitudes, or equivalently the characters (3.19), the Poisson resummation
formula gives

χλ(m,n)(q) =
1

(pp′)
1
2
rη(τ ′)r

√
detA

×
∑
w∈WeN∈Zr

εwq
′| eN iωi|2/2pp ei2π( eN iωi)·(p′wniωi−pmiωi)/pp

′
, (6.1)
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where τ ′ = −1/τ and q′ = ei2πτ
′
. Now split the sum over the dual lattice

D = Zω1 + . . .+ Zωr (6.2)

into a sum over the scaled root lattice

R = pp′(Ze1 + . . .+ Zer) (6.3)

and the quotient Q = D/R . d Then it is the case that

Ñ iωi = pp′N iei + b , (6.4)

where N ∈ Zr and b = biωi ∈ Q and (6.1) becomes

χλ(m,n)(q) =
1

(pp′)
1
2
rη(τ ′)r

√
detA

×
∑
w∈W
N∈Zr

b∈Q

εwq
′|pp′N iei+b|2/2pp′ ei2πb·(p

′wniωi−pmiωi)/pp
′
. (6.5)

All points inQ can be written b = p′kiωi−p`iωi. It is therefore convenient
to introduce the unique integers r0, s0 such that

1 ≤ r0 ≤ p− 1 ,

1 ≤ s0 ≤ p′ − 1 ,

1 = p′r0 − ps0 , (6.6)

and define the operators

Pw = p′r0w − ps0 ,

Pw = wPw−1 = p′r0 − ps0w , (6.7)

which have the properties

Pw(p′kiωi − p`iωi) = p′w kiωi − p`iωi mod R ,

Pw(p′kiωi − p`iωi) = p′kiωi − pw `iωi mod R ,

PwPw′ = Pww′ mod R ,

PwPw′ = Pww′ mod R . (6.8)

d There are many equivalent choices for Q; in the following we take it to be the interior of a

polyhedron centred on the origin.
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Note that Pw is defined so that repeated application of it simply generates
the Felder complex C(λ).

Now, suppose that

b = Pw̃b mod R , (6.9)

where w̃ is some odd element of the Weyl group; then b can be replaced by
Pw̃b in the phase factor part of (6.5); using (6.8) and changing the summation
variable over W to ww̃ shows that the contribution to χ is minus itself and
therefore must be zero. A similar argument applies if b = P w̃b mod R. The
condition (6.9) implies that

w̃ kiωi = kiωi + pN iei . (6.10)

Choosing w̃ to be a reflection in an arbitrary root em,n = shows that (6.9)
is certainly the case if

n∑
i=m

ki = 0 mod p, for some m,n: r ≥ n ≥ m > 0 . (6.11)

A similar exercise on P yields the conditions

n∑
i=m

`i = 0 mod p′, for some m,n: r ≥ n ≥ m > 0 . (6.12)

It follows that only those b s for which

n∑
i=m

bi 6= 0 mod p′ or mod p, for any m,n: r ≥ n ≥ m > 0 . (6.13)

contribute to the sum over Q in (6.5). In particular for the bs remaining
bi, ki, `i 6= 0 and so b, kiωi and `iωi all lie inside Weyl chambers (never on
the boundaries) and can always be moved to the fundamental Weyl chamber
C0 by the application of a Weyl transformation. Then if b lies in C0 ∩Q

b · θ ≤ pp′

2
θ · θ (6.14)

i.e.
∑r

i=1 b
i ≤ pp′; but equality is ruled out by (6.13) so b always lies inside

Q (never on the boundary).
Now consider kiωi in C0 and define the hyperplanes ΠM by

ΠM : (x− 1
2
Mpθ) · θ = 0, M = 1, 2, . . . . (6.15)
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Note that because of (6.11) x = kiωi can never lie on the hyperplanes;
supposing that x lies between ΠM and ΠM+1 reflect it in ΠM to get

x′ = wθx+Mpθ . (6.16)

If x′ lies outside C0 a Weyl transformation will put it back so

Tx = w(wθx+Mpθ) (6.17)

lies between ΠM−1 and ΠM and in C0. Successive transformations will shift
x to the region between Π0 and Π1 and in C0; in this region x satisfies

x · θ < p . (6.18)

The effect of T on b is

b→ p′w(wθkiωi +Mpθ)− p`iωi

= Pwwθ
b mod R . (6.19)

Similar manipulations on `iωi lead to the conclusion that any b can be written
in the form

b = w′Pwb0 ,

b0 = p′kiωi − p`iωi , (6.20)

where ki and `i are positive integers satisfying

r∑
i=1

`i < p′,
r∑
i=1

ki < p . (6.21)

The b0s are the same as the set of allowed λs derived from fusion and
discussed in Section 3. However we have not finished. Clearly some b0s fall
into C0; these satisfy

θ · b0 =
r∑
i=1

bi0 = p′
r∑
i=1

ki − p
r∑
i=1

`i

≤ p′(p− 1)− rp . (6.22)

Others do not fall into C0 but can be put there by Weyl transformation,
b′0 = wb0, so that

θ · b′0 = ±
n∑

i=m

p′ki − p`i for some m,n: r ≥ n ≥ m > 0 , (6.23)
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where we have used the fact that wθ is a root. Thus we get the bounds
r∑
i=1

b′0
i ≤ p′(p− 1)− rp− (r − n+m− 1)(p′ − p) , if “+” in (6.23),

≤ p′(p− 1)− rp− (n−m)(p′ − p) , if “−” in (6.23), (6.24)

and so the b0s are equivalent, up to a Weyl transformation, to a sub-set of
b+s defined by

bi+ ≥ 1,
r∑
i=1

bi+ ≤ p′(p− 1)− rp , (6.25)

and the conditions (6.13). The transformations T are invertible so there
are no bs which cannot be obtained by starting with a point outside the
b+ domain and applying T. However some points in the b+ domain may
correspond to either kiωi or `iωi lying outside (6.21). (The possibility of
cancellation between the two terms in b ensures that it is never the situation
that both lie outside.) Suppose that kiωi lies outside then for some m,n

n∑
m

bi+ = (p+K)p′ − p(p′ − L), 0 < K, 0 < L < p

= Kp′ + Lp, 0 < K < p, 0 < L < p′. (6.26)

A similar argument deals with the case that `iωi lies outside, except that
this time we must take “−” in (6.23). Thus if

n∑
m

bi+ = Kp′ + Lp, 0 < K < p, 0 < L < p′, (6.27)

then b+ cannot be one of the b0s. We conclude that all bs contributing to
the sum over Q in (6.5) can be written

b = w′Pwµ, w′, w ∈ W, (6.28)

where µ = µiωi lies in the set B defined by

B : µi ≥ 1,
r∑
i=1

µi ≤ p′(p− 1)− rp ,

n∑
m

µi 6= Kp′ + Lp , 0 < K < p, 0 < L < p′,

for any m,n: r ≥ n ≥ m > 0 . (6.29)
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It is also convenient to define the self-conjugate subset

C : µ ∈ B; µ = −Sµ . (6.30)

Each µ ∈ B labels a primary field in the CFT and each distinct primary field
has just one µ. For example, in the case W3(5, 4) (the critical point of the
3-state Potts model) application of the rules (6.29) yields

I : µ = ω1 + ω2

σ : µ = 2ω1 + ω2

σ† : µ = ω1 + 2ω2

ψ : µ = 6ω1 + ω2

ψ† : µ = ω1 + 6ω2

ε : µ = 3ω1 + 3ω2 , (6.31)

whereas W4(5, 4) yields just one solution

µ = ω1 + ω2 + ω3 , (6.32)

which is the identity operator, and so on.
The characters {χµ(q), µ ∈ B} form a representation of the modular

group. Combining (6.28) and (6.5) gives

χλ(q) =
1

(pp′)
1
2
rη(τ ′)r

√
detA

×
∑

w,w′,w′′∈W
N∈Zr

µ∈B

εwq
′|pp′N iei+w

′′Pw′µ|2/2pp′ ei2πw
′′Pw′µ·Pwλ/pp′ , (6.33)

which can be simplified by changing variables to {w′′, w′, w′w} and using
(6.8) to

χλ(q) =
1

(pp′)
1
2
rη(τ ′)r

√
detA

×
∑

w,w′,w′′∈W
N∈Zr

µ∈B

εwεw′q′|pp
′N iei+Pw′µ|2/2pp′ ei2πw

′′µ·Pwλ/pp′ , (6.34)

which is nothing but

χλ(q) =
∑
µ∈B

Sλµχµ(q′), (6.35)
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where

Sλµ =
1

(pp′)
1
2
r
√

detA

∑
w,w′∈W

εw e
i2πµ·w′Pwλ/pp′ . (6.36)

Thus we see that the characters for the set of primary fields given by (6.29)
are covariant under modular transformations. Note that S is symmetric,
real if both λ, µ ∈ C, and that SIλ > 0 by Cardy’s argument [8]. One can
easily check by explicit evaluation that (6.36) generates the correct modular
S matrix for the three state Potts model. It is easy to check that S is unitary
and that S2 = C, the charge conjugation matrix; for example

S2
λρ =

1
(pp′)rdetA

∑
µ∈B

∑
w,w′∈W

∑
w̄,w̄′∈W

εwεw̄ e
i2πµ·(w′Pwλ+w̄′Pw̄ρ)/pp′ . (6.37)

Now change variables to b = w′Pwµ and reintroduce those bs which were
excluded in (6.13) because they did not contribute to the sum; they don’t
contribute here either so the sum over w,w′, µ can be replaced by the un-
restricted sum over Q to give, after a change of variables in the remaining
Weyl sum,

S2
λρ =

1
(pp′)rdetA

∑
b∈Q

∑
w,w′∈W

εw e
i2πb·(λ+w′Pwρ)/pp′ . (6.38)

The sum over Q is now zero unless λ+w′Pwρ = 0 which occurs only if w = 1,
w′ = w0 and ρ = −w0λ, ie ρ and λ are conjugate representations; in which
case the sum just gives the volume of Q which cancels the denominator and
leaves S2

λρ = 1. A similar argument can be used to demonstrate unitarity.
We now return to the mixed amplitudes (5.12) which can be rewritten

using the notation of this section as

χ̃λ(q) =
1

η(τ)r−2b r
2
cη(2τ)b

r
2
c

∑
w∈fW
N∈Zd r

2 e

εwq
|pp′N idi+Pwλ|2/2pp′ , (6.39)

where λ ∈ C. Using the basis (5.10) in which

λ =
1
2
λ̂idi , λ̂i = λ · di , (6.40)
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χ̃λ(q) takes the factorized form

χ̃λ(q) =

1
2
r∏

i=1

χ̂λ̂i
(q), if r even,

= χV
λ̂ r+1

2

(q)

1
2
(r−1)∏
i=1

χ̂λ̂i
(q), if r odd, (6.41)

where

χ̂λ̂(q) =
1

η(2τ)

∑
ε=±1
N∈Z

εqpp
′(N+Pελ̂/2pp′)2 ,

χV
λ̂

(q) =
1

η(τ)

∑
ε=±1
N∈Z

εqpp
′(N+Pελ̂/2pp′)2 , (6.42)

and

Pε = p′r0ε− ps0 . (6.43)

The behavior of these functions under modular transformation, which will
be needed in the next section, is given by

χ̂λ̂(q) =
2√
pp′

pp′−1∑
a=1

∑
ε=±1

ε cos

(
πaPελ̂

pp′

)
Ga(q′),

Ga(q) =
1

η(τ/2)

∑
N∈Z

qpp
′(N+a/2pp′)2 , (6.44)

and

χ̂V
λ̂

(q) =
√

2√
pp′

pp′−1∑
a=1

∑
ε=±1

ε cos

(
πaPελ̂

pp′

)
GVa (q′),

GVa (q) =
1

η(τ)

∑
N∈Z

qpp
′(N+a/2pp′)2 . (6.45)

In these formulae the sum over a can omit multiples of p′ and p because the
coefficient vanishes. Note that the set of functions appearing on the right
hand is now not the same as on the left hand side and at this point there is
no particular relationship between the indices λ̂ and a. Using these formulae
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shows that

χ̃λ(q) =
∑
ψ∈P

ΨλψHψ(q′), (6.46)

where Hψ(q′) are some set of modular functions assembled from products
of the Gs, and P is some domain not yet determined but which contains at
least as many members as C.

7. Physical boundary states

Physical boundary states are defined so that when cylinder amplitudes be-
tween them are expressed in terms of the annulus variable q′ the result is
a power series in q′ in which every coefficient is a (positive) integer. Thus
the annulus partition function with given boundary conditions is essentially
formed from the contributions of physical degrees of freedom propagating
round the annulus. The W3(5, 4) (critical three state Potts) model is also
a Virasoro minimal model which can be exploited to ease the calculation of
the physical boundary states. In general these shortcuts are not available
and we have to proceed rather differently.

First introduce the condensed notation for the basis states in the Hilbert
space (5.6)

|λ 〉〉 ≡ |α = 2α0ρ− (pp′)−
1
2λ,−I 〉〉

| λ̂ 〉〉 ≡ |α = 2α0ρ− (pp′)−
1
2λ, S 〉〉. (7.1)

For every primary field there is an ordinary, W current conserving, physical
boundary state constructed in the usual way [8],

|λ̃〉 =
∑
µ∈B

Sλ∗µ√
SIµ

|µ 〉〉, (7.2)

where λ∗ denotes the conjugate to λ. In addition we expect there might be
physical boundary states constructed from the W violating states

|Ã〉 =
∑
µ∈C

bAµ| µ̂ 〉〉. (7.3)

The annulus partition function with boundary conditions labelled by λ̃ and
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Ã is then

Zeλ eA = 〈λ̃| q
1
2
(L0+L0− c

12
) |Ã〉

=
∑
µ∈C

Sλ∗µbAµ√
SIµ

χ̃µ(q)

=
∑
µ∈C

∑
ψ∈P

Sλ∗µbAµ√
SIµ

ΨµψHψ(q′) . (7.4)

Provided that the Hψ(q′) are linearly independent the coefficient of Hψ(q′)
should be an integer. The equations determining the boundary states are
then ∑

µ∈C

Sλ∗µbAµ√
SIµ

Ψµψ = nψeλ eA . (7.5)

From now on we will confine our attention to the (p+ 1, p) models which
are unitary so there should be no question that the physical boundary states
exist and satisfy the criteria discussed above. W3(p + 1, p) is the simplest
case because there is only one basis vector, d1 (5.10), and pp′ is necessarily
even. Then (6.44) can be written

χ̃λ(q) =
2√
pp′

2pp′−2∑
even a=2

(
cos
(π(p′ − p)aλ̂

2pp′

)
− cos

(
π(p′ + p)aλ̂

2pp′
))

Ga/2(q
′) .

(7.6)

For the same reasons as in the previous section, there is no contribution if a
is a multiple of p or p′; thus the sum runs over a ∈ H, defined as the set of
even numbers between 0 and 2pp′ that are not an integer multiple of p or p′.

We will now show that the set

H′ = {µ ·d1, (p+p′)µ ·d1, 2pp′−µ ·d1, 2pp′−(p+p′)µ ·d1; µ ∈ C} mod 2pp′

(7.7)
is the same as H. The number of elements in H is

|H| = (p− 1)2 p odd,

= p(p− 2) p even. (7.8)

If µ ∈ C then N = µ · d1 is a positive even number such that

N ≤ p2 − 2p− 1

N 6= np+mp′, p > n,m ≥ 0 . (7.9)
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The second condition can be rewritten

N 6= np+m, 0 ≤ m ≤ n < p (7.10)

from which we can immediately see that allowed Ns are given by

N = np+m, 0 ≤ n < m < p, n ≤ p− 3. (7.11)

Some further constraints, which depend on whether p is odd or even, are
needed onm,n to ensure thatN is even. These only play a role in calculating
|C|, the number of allowed Ns. Using (7.11) we find that

|C| = 1
4

(p− 1)2 p odd,

=
1
4
p(p− 2) p even. (7.12)

Thus |H| = |H′| and of course H′ does not contain any multiples of p or p′

because of the definition of C (6.29,6.30). It remains to show that all the
elements of H′ are distinct.

Consider

N̄ = (p+ p′)N mod 2pp′ = p(2m− n) +m

= n̄p+ m̄ . (7.13)

Note that 0 < m̄ < n̄ which means that N̄ can never be one of the Ns. Now
consider

¯̄N = 2pp′ −N = p(2(p−m) + 2m− n+ 1) + (p−m) . (7.14)

Comparing this with (7.13) and noting that 2m − n + 1 > 0 shows that ¯̄N
can never be one of the N̄s. This completes the proof that H′ ≡ H.

Now we can replace the sum over a ∈ H in (7.6) by a sum over a ∈ H′

which gives

χ̃λ(q) =
∑
µ∈C

Ψλµ

(
Gµ̂/2(q

′)+Gpp′−µ̂/2(q
′)−G(p′+p)µ̂/2(q

′)−Gpp′−(p′+p)µ̂/2(q
′)
)
,

(7.15)
where

Ψλµ =
4√
pp′

sin

(
πµ̂λ̂

2p

)
sin

(
πµ̂λ̂

2p′

)
. (7.16)

The combination of G functions appearing here has a series expansion in q′

with all positive coefficients and is linearly independent for different µ. Thus
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this is the form required; note that Ψ is in fact a square matrix in this case
and it is straightforward to check that

ΨλρΨρµ = δλµ . (7.17)

When p is small the conditions (7.5) can now be solved by brute force.
For p = 4 they yield exactly the “free” and “new” boundary conditions
found by Affleck et al [9]. To solve the constraints (7.5) one can proceed
analogously to the calculation of the usual boundary states; suppose that
nψe0 eA = δψeA and use the invertibility of Ψ to get

bAµ =
ΨµA√
SIµ

. (7.18)

Substituting these back in (7.5) yields∑
µ∈C

Sλ∗µΨµAΨµψ

SIµ
= nψeλ eA . (7.19)

For p = 5, which has four self-conjugate fields with µ̂ = 2, 4, 8, 14, and for
p = 6, which has six with µ̂ = 2, 4, 8, 10, 16, 22, we have checked explicitly
that the expressions on the left hand side generate positive integers. Thus
these models generate an analogue of the Verlinde formula for the symmetry
violating sector (see also [19,20] for other examples of this).

For rank 3 and above the situation is more complicated and even for
the simplest rank 3 model, W4(6, 5), we have not been able to construct
consistent physical states in the W violating sector. The reason is that the
number of independent Ga(q′) appearing in the equivalent of (7.6) is now
too large to be accounted for by the equivalent of H′ (7.7). This strongly
suggests that the basis of symmetry violating states may be incomplete.
Further evidence for this is given in the next section.

8. W currents

In this section we will assume that the W fields can indeed be constructed
according to the prescription of [21] and show that |B(α;S)〉 necessarily vio-
lates conservation of all the currents with conformal dimension greater than
2. The first step in obtaining the Virasoro primary fields {WK , K = 3, . . . N}
which, together with T , form the W algebra is to define the generating func-
tional

(2iα0)NDN =
N∏
K=1

(2iα0∂z + hK · ∂φ(z)) : , (8.1)



September 1, 2004 6:52 WSPC/Trim Size: 9.75in x 6.5in for Proceedings wheater˙con

Boundary states and broken bulk symmetries in WAr minimal models 1465

where, if the product were written out, the value of K increases from left to
right. This can be evaluated [11,12] to get

(2iα0)NDN = (2iα0∂)N +
N∑
K=1

uK [φ(z)] (2iα0∂)N−K , (8.2)

where the uK [φ(z)] are fields of conformal dimension K (u1 vanishes iden-
tically). Unfortunately the uK , apart from u2(z) ≡ T (z), are not them-
selves primary fields. The true WK are constructed from combinations of
{uK , . . . , u2, ∂}. In the present case it is sometimes more useful to think of
them being assembled iteratively as combinations of {uK ,WK−1 . . . ,W2, ∂}.
Note that WK is essentially just a normal ordered multinomial expression
in ∂φi and its derivatives but that unfortunately precise expressions are un-
known for K > 5 (for the completely known algebras see [22]). The following
arguments will make use of the facts that a)

SK>1(x) ≡
∑

L1>L2>...LK

(hL1 ·x)(hL2 ·x) . . . (hLK
·x) =

(−1)K+1

K

N∑
L=1

(hL ·x)K

(8.3)
and b), defining S1(x) = 1,

b 1
2
Kc∑

k=1

AkSK−k(x)Sk(x) 6= 0, unlessAk = 0,∀k, (8.4)

(i.e. linear independence of the product functions).
Conservation of the W current at the boundary is given in terms of modes

by (
WK n − (−1)KWK−n

)
|B(α; Λ)〉 = 0. (8.5)

Since the WK are primary, it is sufficient to check the n = 0 case so let(
WK 0 − (−1)KWK 0

)
|B(α; Λ)〉 = CΛ∆K

0 |α, α〉, (8.6)

and ∆KL
0 be the part of ∆K

0 containing exactly L factors of an or an with
n 6= 0. Terms in WK which do not contain ∂ but just products of primaries
satisfy this condition automatically if the primaries do; if they do not then
the violations cannot be cancelled between different products of primaries
on account of (8.4) and WK automatically violates the condition too. So, of
the possible terms in WK which contribute to ∆KK

0 only the ones coming
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from uK have unknown properties at the boundary. Now note that

hK · ∂φCΛ |α, α〉 = −iCΛ

(
hK · α
z

+
∑
n<0

hK · an
zn+1

+
∑
n<0

hK · Λan
z−n+1

)
|α, α〉,

hK · ∂ φCΛ |α, α〉 = −iCΛ

(
hK · α
z

+
∑
n<0

hK · an
zn+1 +

∑
n<0

hK · Λan
z−n+1

)
|α, α〉,

(8.7)

which implies

∆KK
0 = (−i)KP0

[
SK(Q(z))− (−1)KSK

(
ΛQ

(
1
z

))]
, (8.8)

where

Q(z) =
∑
n<0

an
zn

+
∑
n<0

Λan
z−n

(8.9)

and P0 projects out terms O(z0). Evaluating (8.8) gives

∆KK
0 = 0, if Λ = −I,

= 0, if Λ = S and K even,

6= 0, if Λ = S and K odd. (8.10)

Thus the states |B(α;S)〉 violate WK conservation for all odd K. To deter-
mine whether this is also the case for even K > 2 we have to examine the
terms containing K − 1 factors an with n 6= 0.

The operator product T (w)uK(z) contains a piece proportional to (w −
z)−3, and containing K − 1 factors an, n 6= 0, which it is known can be
cancelled by forming the combination [13]

u′K = uK − 2iα0(N−K+1
2 ) ∂uK−1 . (8.11)

Now terms in WK of the form bk∂WK−k−1Wk, k = 2 . . . can also generate
such pieces in the OPE with T ; but the complete cancellation (8.11) means
that these contributions must cancel among themselves. Therefore, by the
linear independence property (8.4), bk = 0 and ∆KK−1

0 must come from u′K .
Both contributions to u′K contain ∂2φ which in terms of the modes satisfies

∂2φCΛ = iCΛ

(
−a0

z2
− Q

z2
+

1
z
Q′(z)

)
,

∂
2
φCΛ = iCΛ

(
−a0

z2 −
ΛQ
z2 − 1

z
ΛQ′

(1
z

))
. (8.12)
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This shows that for each holomorphic sector contribution to ∆KK−1
0 of the

form (h·Q)K−2h·Q′ there is one (h·ΛQ)K−2h·ΛQ′ from the anti-holomorphic
sector. Thus when Λ = −I they cancel (remember we are now considering
just even K). On the other hand if K is even and Λ = S they add up. The
remaining terms involve just Q and a0 or a0 and explicit calculation for this
combination yields

∆KK−1
0 = P0

∑
L

[
(hL ·Q(z))K−1

(
hL · α− 2α0(

1
2
(N + 1)− L)

)

−(−1)K
(
hL · ΛQ

(1
z

))K−1(
hL · α− 2α0

(1
2
(N + 1)− L

))]
(8.13)

which implies that

∆KK−1
0 = 0, if Λ = −I provided (5.4) ,

6= 0, if Λ = S. (8.14)

This completes the proof that the states |B(α;S)〉 violate WK conservation
for all K > 2. It also shows that the condition (5.4) is necessary, although
not sufficient, for the WK to be conserved by the states |B(α; I)〉.

Now we see that for rank 2, where there is only one W charge, the bound-
ary states either conserve it or break it. However for r ≥ 3 our states conserve
either all or none of the W charges. We do not have any states that par-
tially break the W algebra down to a smaller one. These may be the missing
states which prevented us from constructing the physical boundary states
for r ≥ 3.

9. Summary and Discussion

The coherent states |B(α; Λ)〉 can be used to construct a basis for bound-
ary states. These are specified by a field label α and a generator Λ of the
group of outer automorphisms of the Dynkin diagram of Ar (the reader
should note that this was derived, not assumed). Those corresponding to
the identity element Λ = −I conserve the entire W algebra while those cor-
responding to charge conjugation Λ = S (inversion of the Dynkin diagram)
maximally break the chiral algebra down to Virasoro. The states |B(α; Λ)〉
lie in the Fock space; to get states in the Hilbert space |α; Λ 〉〉 it is neces-
sary to take linear combination s of the |B(α; Λ)〉 as specified by Felder’s
BRST construction. It is important to note that this can be done in such a
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way that cylinder amplitudes between the |α;−I 〉〉 reproduce the W charac-
ters. Then the form of the cylinder amplitudes (or characters) can be used
together with the requirement of modular invariance to determine the mini-
mal consistent set of field labels α; these then specify the primary fields of the
minimal Wr(p′, p) models. The fact that this whole construction produces a
self-consistent structure can be regarded as a powerful demonstration that
Felder’s construction is correct for arbitrary rank r.

With these basis states we can try to construct physical boundary states.
In general this is a complicated exercise even if we confine attention to
the unitary Wr(p + 1, p) models. It is straightforward to do it for the W
conserving sector where the calculation just follows Cardy’s usual procedure;
however in the W breaking sector it seems that for r ≥ 3 we do not have
enough basis states to make a consistent construction ofW violating physical
boundary states. However for rank 2 the unitary W3(p + 1, p) theories do
have, in addition to the usual Cardy states, an extra W violating physical
boundary state for each self-conjugate primary field. Each of these states
corresponds to an extra physical boundary condition for which the annulus
amplitude is an admissible partition function with positive definite Boltzman
weights. There is a straightforward generalization of the Verlinde formula
to the symmetry violating sector. In sum the results are essentially similar
to the Potts case and to those found in some other examples of CFTs with
extended chiral symmetries [20].

The situation for r ≥ 3 is unclear and remains an open problem. Certainly
the physical boundary states must be well defined at least for the unitary
models. It would be strange if all the basis states we do know were not to
appear in the physical boundary states; on this intuition we then expect W
violating physical boundary states to exist. The question is whether there
are in fact the necessary extra basis states which would allow this to happen.
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