
September 9, 2004 12:57 WSPC/Trim Size: 9.75in x 6.5in for Proceedings vortices

VORTICES ON THE WORLD SHEET OF A STRING: CRITICAL
DYNAMICS ∗

I. I. KOGAN

Institute of Theoretical and Experimental Physics

Pis’ma Zh. Eksp. Teor. Fiz. 45, 556 (1987) [ JETP Lett. 45, 709 (1987) ]

(Submitted 13 May 1987)

Vortices on the world sheet of a string which is moving in a multiply connected space

lead to a continuous dependence of the critical indices, in particular, the critical dimen-

sionality, on the parameters of cycles which cannot be contracted. There exist limiting

values of the latter quantities because of a phase transition associated with a loss of

conformal symmetry. Numerous applications are duscussed.

Let us examine a string in a formalism of summations over surfaces [1], in
which string dynamics is determined by a two-dimensional conformal theory
on a world sheet [2] which is propogating in a multiply connected space M .
For simplicity, we will speak exclusively in terms of boson strings here. The
generalization to the case of superstrings requires some slight modifications.
It will be published separately, along with detailed explanations of the asser-
tions made below. A nontrivial π1(M) arises in a broad range of problems,
e.g., (a) compactification onto tori generated by lattices, in particular, on
the maximum tori of Lie groups generated by root lattices in heterotic-string
model [3], where

π1(M) = Z × · · · × Z︸ ︷︷ ︸
r

,

where r is the rank of the group; (b) compactification on multiply connected
Calabi-Yao manifolds or orbifolds [4], where π1(M) is a finite group, possibly
non-Abelian; and (c) strings at finite temperatures [5], with a space which
is periodic in an imaginary time with the period T−1 , with the topology
M=RD−1×S1, and π1(M) = Z . The radius R is related to the temperature

∗ The preprint version of this paper was entitled “Vortices On The World Sheet And String’s
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by R = (2πT )−1. This example may also be thought of as an extremely
simple compactification onto S1.

In addition, a nontrivial π1 arises in a description of metrics of the black-
hole type, with identified right and left worlds, against the background of
cosmological strings, and so forth. We will begin our analysis of vortices
with case (c).

1. The action of the string is

S =
1

4πα′

∫
d2z

√
g gab(z) ∂ax

µ∂bx
νgµν(x) ,

where gab(z) and gµν(x) are the metrics on the world sheet and in a nested
space. In the critical dimensionality we can avoid gab(z) and obtain the
action of a two-dimensional conformal theory of the fields xµ alone. Corre-
sponding to the compact dimension in which we are interested is the action

ϕ ∈ [ 0, 2π]
S =

1
4πα′

∫
d2z ∂ax ∂ax =

R2

4πα′

∫
d2z ∂aϕ∂aϕ ; (1)

a = 1, 2 ,

which describes a continuous limit of the XY model or of a planar magnet.
Berezinskii [6] undertook a detailed study of this model, which was contin-
ued by Kosterlitz and Thouless [7] (the BKT model). Two phases exist:
a low-temperature phase with conformal invariance and a high-temperature
phase with exponentially decreasing correlation functions. The string fa-
miliar to us is described by the first phase alone. The reason for the BKT
phase transition is the creation of vortices: nonperturbative fluctuations
with a logarithmically large action. The appearance of such fluctuations is
not an artifact of the regularization (on a lattice in Refs. [6] and [7] ). In
particular, the naive Pauli-Villars regularization does not work, since the
mass term breaks the symmetry ϕ⇒ϕ+ 2πn , while a potenital of the type
M2cosϕ leads to an infinite self-effect in the limit M→∞ . That result is a
manifestation of the same vortex effects.

In the nonconformal phase the vortices form a two-dimensional Coulomb
plasma in which Debye screening leads to a loss of the conformal properties,
while in the conformal phase the vortices and antivortices are bound into
dipoles. The field and the action of a vortex with a charge q [mapping class
π1(S1) ] are

ϕ(z) = − i
2
q ln

(
z − z0
z̄ − z̄0

)
, Sq = πβ q2 ln

(
A

a2

)
, (2)

where z = x+ iy , β = R2/4παi, A is the area of the world sheet, and a is the
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spacing in lattice – the ultraviolet cutoff. A phase transition occurs when
the creation of a vortex is thermodynamically favorable. Its free energy is
zero, and since the entropy of the vortex is obviously ln(A/a2), we can write

Fq = (πβ q2− 1) ln
(
A/a2

)
, |q| = 1 , βc = π−1, Rc = 2

√
α′ .

It is for specifically this Rc that the soliton sector contains additional
massless states, while at R < Rc the theory would have some additional
tachyons, so that we can see the relationship between the loss of conformal
properties on the world sheet and the appearance of additional tachyons.
The mass spectrum in string theory is (L is the soliton number, and m is
the index of the momentum pϕ):

α′M2

2
= 2 (N − 1) +

α′m2

2R2
+
L2R2

2α′
+mL ; m,L = 0 ,±1 , . . . . (3)

If we now switch from Rc to a critical temperature Tc = (2πRc)
−1, we find

Tc = (4π)−1(α′)−1/2. Comparing it with the limiting temperature in string
theory, i.e., the Hagedorn temperature TH , which would be given in the
case of a boson string [5] by TH = (2π)−1[(D − 2)α′/6 ]−1/2, where D is the
dimensionality of the space-time, we find

D = 26 , Tc = TH ; D < 26 , Tc < TH ; D > 26 , Tc > TH !

The actual reason for the divergence in the Gibbs ensemble of strings is a
BKT phase transition on a world sheet and the loss of conformal symmetry!

In the conformal dipole phase, corrections to the correlation functions
which are nonperturbative in α′ arise, and as a result there are corrections
to all the critical parameters of the two-dimensional conformal theory. In
the one-dipole approximation we have

〈ϕ(z)ϕ(0) 〉 = − 1
8πβ

(
1 + 8π2 β

β − βc
exp (−µβ)

)
ln z2, (4)

where µ is the minimal energy of the dipole – the chemical potential. From
Eq. (4) we find corrections to the coefficients in the operator expansions
which determine, for example, the mass spectrum of the string and the cri-
tical dimensionality. In the former case, we deal with the product of the ver-
tex operator V(z) and the two-dimensional energy-momentum tensor T (z)

V (z)T (z′) = ∆V (z − z′)−2
V (z) + (z − z′)−1

∂zV + . . . .

From conformal symmetry we have ∆V = 2 ; finding ∆V from (4), we then
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find the spectrum:

M2α′

2
= 2 (N − 1) +

m2α′

2R2

(
1 + 8π2 R2

R2 − 4α′
exp

(
−µR2/4πα′

))
. (3′)

From (3′) we find a renormalization of Rc due to the dipole-dipole inter-
action; this renormalization has been found previously by renormalization-
group methods [7, 8 ]. The corrections to the central charge of the Virasoro
algebra are found from

T (z)T (z′) =
c

2
(z − z′)−4 + . . . .

We find

cϕ =
(
1 + 8π2 β

β − βc
exp (−µβ)

)2

;
D∑

i=1

ci = 26 . (5)

This result tells us that the critical dimensionality deviates from its standard
value in the presence of a cycle (or cycles) which cannot be contracted! It
thus becomes possible to construct a theory in other critical dimensionalities.
Corrections to the equations of motion of massless fields (the graviton, the
dilaton, etc.) also arise; in particular, a cosmological term which depends
on the parameters, e.g., T , is generated:

Λ =
8π2

3α′
exp

(
−µ/16π3α′ T 2

)
.

2. We turn now to lattices. The interesting action in this case is

S = β

∫
d2z aij∂aϕ

i∂aϕ
j ; i , j = 1 , . . . , r ,

where aij is the matrix of the lattice. This model generalizes the XY

model to the case of several “colors.” It again has vortices, but in this
case the colors interact. The correlation function in this model is of the
form 〈ϕi(z)ϕj(0) 〉 = −(8πβ)−1a−1

ij ln z2. In the one-dipole approximation
the correction is proportional to δij , while in the two-dipole approximation
it is proportional to aij (to the correlation energy of dipoles with the colors
i and j). The higher-order corrections reduce to either δij or powers of aij :

〈ϕi(z)ϕj(0) 〉 = −(8πβ)−1(a−1
ij + c1δij + c2 aij + . . . ) ln z2. (6)

It follows from (6) that only self-dual lattices with aij = a−1
ij retain their

structure in the face of dipole renormalizations, and it is specifically these
lattices which are used in the model of a heterotic string! If we are studying
a lattice with Lorentzian signature, then the components which have the
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incorrect sign of the action correspond to an antiferromagnet. Again in this
case, nonperturbative effects are important.

3. We conclude with a few words about compactification. In addition to
the possibility of other dimensionalities, which we have already mentioned
[see Eq. (5) ], there is a mechanism for the generation of the condensates
of external fields with decreasing R < Rc . This situation gives rise to the
formation of a vortex phase described by the action [9]

S =
∫
d2z(β ∂aχ∂aχ+ λ cosβχ) .

If we now consider a sine-Gordon model in the external field of a tachyon, it
can contract the potential and restore conformal symmetry. In the supercase,
a Yang-Mills field will precipitate in a condensate, since the sine-Gordon
superpotential is ψ̄ψ cosβχ. This is precisely the form of the required part
of the vortex operator of a Yang-Mills field. This mechanism may explain
the subsequent breaking of gauge symmetry in the superstring model [10, 4 ].

I wish to thank A.A. Abrikosov (Jr.) and K. A. Ter-Martirosyan for some
interesting discussions. After this paper had been prepared for publication,
A.A. Tseytlin called my attention to the preprint by Sathiapalan [11], who
also discusses the role played by vortices for explaining the Hagedorn tem-
perature but does not mention a change in critical parameters.
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