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QUARTIC ANHARMONIC MANY-BODY OSCILLATOR

ALEXANDER TURBINER∗

Instituto de Ciencias Nucleares, UNAM, Apartado Postal 70–543,

04510 Mexico D.F., Mexico

Two quantum quartic anharmonic many-body oscillators are introduced. One of them is

the celebrated Calogero model (rational An model) modified by quartic anharmonic two-

body interactions which support the same symmetry as the Calogero model. Another

model is the three-body Wolfes model (rational G2 model) with quartic anharmonic

interaction added which has the same symmetry as the Wolfes model. Both models are

studied in the framework of algebraic perturbation theory and by the variational method.
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This work is dedicated to the memory of Ian Kogan who died so young

that is hard for me to imagine that he is not with us anymore. I knew

him for about 30 years since the time when he appeared at ITEP Theory

Division as a young, very brilliant student. Then for many years we were

sitting in the next door offices at ITEP. Sometimes we talked on science being

both intrigued by the transition from Quantum Mechanics to Quantum Field

Theory. I am sure that Ian would be pleased to read the present article.

1. Introduction

Anharmonic oscillators play a crucially important role in contemporary

physics since they model intrinsic anharmonic effects of the real world. The

goal of the present work is to introduce and then to study a special type of

quantum anharmonic oscillator – many-body anharmonic oscillators. One

of them can be considered as an anharmonic perturbation of the celebrated

many-body Calogero model (see [1]) or, in other words, the rational An

model. Another is an anharmonic perturbation of the three body Wolfes

model or, equivalently, the rational G2 model (see [2]). The first system

describes n interacting particles on a line with fixed ordering with pairwise

interaction, while the second one corresponds to three identical interacting

particles on a line with fixed ordering with two- and three-body interactions.

It is rather natural to impose a requirement that these anharmonic systems

should possess the same symmetry properties as the original Calogero or

Wolfes models: (i) translation invariance, (ii) permutation invariance, (iii)

reflection symmetry with respect to a change of the sign of all coordinates.

The one-dimensional anharmonic oscillator

H = −
d2

dx2
+ x2 + λx4 , x ∈ R , (1)

is perhaps one of the most celebrated and the most studied problems in

quantum mechanics. A systematic study was carried out by Bender-Wu

in 1969-1973 in their seminal papers [3]. Even this simplest anharmonic

oscillator possesses exceptionally rich properties:

• divergent perturbation theory (PT) in λ [3, 4], i.e.

E =
∑

k

akλ
k , ak ∝ k ! ,

• highly non-trivial but convergent PT in 1/λ (strong coupling expan-

sion) [3, 5], i.e. E =
∑

k bkλ
1/3−2k/3,
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• analytic structure in λ; all even (odd) eigenvalues are analytically

related through square-root branch points, which accumulate to λ =

0 (see Fig.1) [3].

Hence by studying one eigenstate the whole family of eigenstates

is explored!

V (x) = m2x2 + x4 Ground State Energy (m2 = λ−2/3)

m2

Figure 1. Structure of singularities in the inverse coupling constant m2 = λ−1/3 on the first sheet

of the Riemann surface of the ground state energy. Bullets denote the square-root branch points

connected by cuts (vertical lines)

So far very little (almost nothing) is known about eigenfunctions as func-

tions of λ.

2. Anharmonic Calogero Model

The Hamiltonian of the An−1 anharmonic oscillator takes the form

HA = −
1

2

n∑

i=1

∂2

∂xi
2
+g

n∑

i>j

1

(xi − xj)2
+

ω2

2

n∑

i>j

(xi−xj)
2+

λ

n + 6

n∑

i>j

(xi−xj)
4 ,

(2)

where g > − 1
4 , ω is the frequency, λ ≥ 0 is the coupling constant with a factor

(n + 6) which is introduced for a convenience and n = 2, 3, ... . This Hamil-

tonian describes a system of n identical particles situated on the straight
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line with pairwise interaction separated from each other by impenetrable

barriers. The configuration space is

−∞ < x1 ≤ x2 ≤ . . . ≤ xn < ∞ . (3)

If the coupling constant λ = 0, the Hamiltonian (2) corresponds to the

celebrated Calogero model and the domain (3) is nothing but the Weyl

chamber of the An−1 root system. The ground state eigenfunction of the

Calogero model is

Ψ
(c)
0 (x) = ∆ν(x)e−

ω
2n

X2 , g = ν(ν − 1) , (4)

where ∆(x) =
∏

i<j |xi − xj| is the Vandermonde determinant and X2 =
∑

i>j(xi − xj)
2, when the ground state energy is E

(c)
0 = ω(1 + νn).

In order to deal with translation invariance of many-body systems we

replace the Cartesian coordinates by the center-of-mass coordinate, Y =
∑n

j=1 xj, and the translation-invariant relative coordinates – the Perelomov

coordinates [6],

yi = xi −
1

n
Y , i = 1, 2, . . . , n , (5)

which obey the constraint
∑n

j=1 yj = 0, where xi are the Cartesian coor-

dinates. The coordinates (5) make sense as translation-invariant relative

coordinates which measure a distance from the center of mass to a parti-

cle position. Since we consider a system of identical particles, permutation

symmetry holds. In order to make manifest the permutation symmetry

we introduce permutationally symmetric coordinates. The most convenient

candidate is the invariants of the symmetric group. Eventually, we arrive at

elementary symmetric polynomials of the arguments y (see Eq.(5)) as new

coordinates

(x1, x2, . . . xn) →
(
Y, τk(x) = σk(y(x))| k=2,3,...n

)
. (6)

Here,

σk(x) =
∑

i1<i2<···<ik

xi1xi2 · · · xik

are elementary symmetric polynomials. As an illustration let us present in

explicit form the τ coordinates for n = 2, 3, putting −yn = y1+y2+. . .+yn−1,

• n = 2 τ2 = −y2
1 ,

• n = 3 τ2 = −y2
1 − y1y2 − y2

2 , τ3 = −y1y2(y1 + y2) .
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It is easy to recognize that the τ coordinates are nothing but a particular

form of the Weyl invariant polynomials of the lowest degrees in the An−1

root space.

It can easily be shown that

n∑

i>j

(xi − xj)
2 = −2nτ2 , (7)

n∑

i>j

(xi − xj)
4 = 2(n + 6)τ 2

2 − 4nτ4 . (8)

These relations reveal a remarkable feature of the τ coordinates – although

the left-hand-side depends on all xi coordinates, the right-hand-side depends

on a finite number of τ ’s. Making a gauge rotation of the Hamiltonian (2)

with the Calogero ground state eigenfunction (4) as the gauge factor and

re-writing the result in the τ coordinates (6), we arrive at a strikingly simple

expression after separating out the center-of-mass coordinate Y ,

hA = 2(Ψ
(c)
0 )−1 (HA − E

(c)
0 )Ψ

(c)
0 ≡ hCal + λvp (9)

=
n∑

i,j=2

Aij
∂2

∂τi∂τj
+

n∑

i=2

Bi
∂

∂τi
+ 2λ

[

τ2
2 −

2n

n + 6
τ4

]

,

where

Aij =
(n − i + 1)(1 − j)

n
τi−1 τj−1 +

∑

l≥max(1,j−i)

(2l − j + i) τi+l−1 τj−l−1 ,

Bi =

(
1

n
+ ν

)

(n − i + 2)(n − i + 1) τi−2 + 2ω i τi ,

vp = 2 τ2
2 −

4n

n + 6
τ4 . (10)

Explicit formulae for the first few coefficient functions are

A22 = 2 τ2 , B2 = 4ω τ2 + (1 + νn)(n − 1) ,

A23 = 3 τ3 , B3 = 6ω τ2 ,

A24 = 4 τ4 , B4 = 8ω τ4 +
1

n
(1 + νn)(n − 2)(n − 3) τ2 ,

A33 = 4 τ4 − 2
(

1 −
2

n

)

τ2
2 , A34 = 5 τ5 − 2

(

1 −
3

n

)

τ2τ3 ,

A44 = 6 τ6 + 2 τ2τ4 − 3
(

1 −
3

n

)

τ2
3 .
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In [7] it was demonstrated that at λ = 0 the gauge-rotated Calogero

Hamiltonian hCal (9) has infinitely many finite-dimensional invariant sub-

spaces

Pk = 〈τ2

p2τ3

p3 . . . τn
pn | 0 ≤ Σpi ≤ k〉 , k = 0, 1, 2, . . . . (11)

These spaces can be embedded one into another,

P0 ⊂ P1 ⊂ P2 ⊂ . . . ⊂ Pk ⊂ . . . ,

thus forming an infinite flag (filtration) P. Hence one can say that the

operator hCal preserves the flag P. Another property of hCal is the existence

of a hidden gln−1 algebra. The Hamiltonian hCal can be written as a second

degree polynomial in generators of the gln algebra in the totally symmetric

representation (k, 0, 0, . . . , 0),

J −
i =

∂

∂τi
, i = 2, 3 . . . n ,

J 0
ij = τi

∂

∂τj
, i, j = 2, 3 . . . n ,

J 0 =
n∑

i=2

τi
∂

∂τi
− k ,

J +
i = τiJ

0 = xi

( n∑

j=2

τj
∂

∂τj
− k

)

, i = 2, 3 . . . n , (12)

in such a way that the generators J +
i do not appear. It is worth men-

tioning that for integer k, n2 the generators (12) possess a common finite-

dimensional invariant subspace Pk. This is nothing but a finite-dimensional

irreducible representation space of the algebra glk in the realization (12).

Therefore the flag P is made out of irreducible finite-dimensional represen-

tation spaces of the algebra gln taken in the realization (12). It is worth

emphasizing that the perturbation potential is itself an element of the rep-

resentation spaces (11),

vp ∈ Pk , k = 2, 3, . . . . (13)

2.1. Perturbation theory (generalities)

Now let us consider the spectral problem for the operator hA,

hAφ = 2 ε φ . (14)
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The spectral parameter ε is related to the energies E of (2) by

E = E
(c)
0 + ε ,

and φ is related to the eigenfunction of (2) through

Ψ(x) = φ(x)Ψ
(c)
0 (x) ,

where Ψ
(c)
0 (x) is the ground state eigenfunction of the Calogero Hamiltonian

(2) at λ = 0. We develop perturbation theory for the equation (14) in powers

of λ,

φ =
∞∑

k=0

φkλ
k , ε =

∞∑

k=0

εkλ
k , (15)

which is in fact the Dalgarno-Lewis form of perturbation theory [8]. It is

easy to derive an equation to find the kth correction

(hCal − 2ε0)φk = 2

k∑

i=1

εi φk−i − vp φk−1 . (16)

Following the theorem from [9], as a consequence of the property (13) the

perturbation theory (15) is algebraic – all perturbation corrections φk are

polynomials in τ ’s of finite degree. Hence the construction of perturbation

theory is a linear algebraic procedure.

2.2. Perturbation theory (concrete results)

2.2.1. Ground state

The ground state of the gauge-rotated Calogero Hamiltonian hCal is (see (9))

φ0 = 1 , ε0 = 0 . (17)

A simple analysis of equation (16) shows that the first eigenfunction cor-

rection φ1 ∈ P2, hence it should be a second degree polynomial in the τ ’s.

After substitution of such an Ansatz into (16) simple calculations give

ε1 =
n(n − 1)(1 + νn)[6 − ν(6 − 5n)]

4(n + 6)ω2
,

φ1 =
n

2(n + 6)ω
τ4 −

1

4ω
τ2
2 +

n[6 − ν(6 − 5n)]

4(n + 6)ω2
τ2 . (18)

It is worth mentioning that the correction φ1 depends on two τ variables

only, τ2,4.
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A similar analysis of equation (16) shows that the second eigenfunction

correction φ2 ∈ P4, hence it should be a fourth degree polynomial in the τ ’s.

After substitution of such an Anzatz into (16) simple calculations give for

the second correction

ε2 = −
n(n − 1)(1 + νn)

16(n + 6)2ω5

[
150n + 36 + ν(5n − 6)(49n + 6) (19)

+ ν2n(101n2 − 245n + 150)
]
,

(n + 6)2φ2 =

[

−
n2

4ω3
τ6 +

n2

4ω2
τ2
4 −

n(n + 6)

4ω2
τ4τ

2
2

+
n(7n + 8 − 6νn + 5νn2)

4ω3
τ4τ2 −

n[19n + 6 + νn(14n − 19)]

8ω4
τ4

+
n(n − 3)

8ω3
τ2
3 +

(n + 6)2

16ω2
τ4
2 −

(n + 6)[4(5n + 3) + 3νn(5n − 6)]

24ω3
τ3
2

+
55n2 + 120n + 36 + νn(74n2 + 5n − 114) + ν2n2(5n − 6)2

16ω4
τ2
2

−
n[150n + 36 + ν(49n + 6)(5n − 6) + ν2n(101n2 − 245n + 150)]

16ω5
τ2

]

.

It is worth mentioning that the correction φ2 depends on four τ variables

only, τ2,3,4,6.

A similar analysis of equation (16) shows that the third eigenfunction

correction φ3 ∈ P6, hence it should be a sixth degree polynomial in the τ ’s.

After substitution of such an Anzatz into (16) simple calculations give for

the third energy correction

ε3 =
n(n − 1)(1 + νn)

32(n + 6)3ω8

[
18 (36 + 144n + 215n2) (20)

−9ν (72 + 504n + 772n2 − 1033n3)

+nν2(2592 + 6948n − 16524n2− 7529n3)

−n2ν3(3870 − 9297n + 7529n2− 2052n3)
]
.

It is worth mentioning that the correction φ3 depends on six τ variables only,

τ2,3,4,5,6,8.

It can be shown that the kth correction to the eigenfunction φk ∈ P2k for

2k + 2 ≤ n; hence it should be a 2kth degree polynomial in the τ ’s. It takes

the form

φk = Pol2k(τ2, τ3, . . . τ2k+2) (21)
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and depends on 2k of the τ variables only, τ2,3,4,...,2k,2k+2. In general, only

when 2k + 2 ≥ n does the kth correction begin to depend on all n of the

τ variables. Hence the first corrections (which are important in practice)

contain very few τ ’s independently of n.

The first three energy corrections ε1,2,3 have a quite non-trivial property

– they vanish at non-physical values of n = 0, 1,−1/ν. It seems quite natural

to conjecture that the correction of arbitrary order will continue to have this

property so that

εk = −
n(n − 1)(1 + νn)

(n + 6)kω3k−1
ε̃k(n, ν) . (22)

Most likely there exist some physical reasons explaining this property, but

the present author is not aware of them.

It is worth mentioning that there is no doubt that the present pertur-

bation theory (15) is divergent. The coefficients εk should grow factorially

with k. However, it is not clear how to calculate the index of divergence.

If g = 0 in (2), the singular term in the potential disappears and the

formulae for corrections simplify. This happens when ν = 0, 1 (see (4)) for

which

• at ν = 0,

ε1 =
3n(n − 1)

2(n + 6)ω2
,

ε2 = −
3n(n − 1)(25n + 6)

8(n + 6)2ω5
,

ε3 =
9n(n − 1)(215n2 + 144n + 36)

16(n + 6)3ω8
,

• at ν = 1,

ε1 =
5n2(n2 − 1)

4(n + 6)ω2
,

ε2 = −
n2(n2 − 1)(101n2 + 36)

16(n + 6)2ω5
,

ε3 =
n2(n2 − 1)(324 + 1035n2 + 1026n4)

16(n + 6)3ω8
.

It is interesting to point out that at ν = 1 the numerators of ε1,2,3 depend

on n2. This could be a general feature of arbitrary corrections.
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For the two-body case, n = 2, the problem is reduced to a standard one-

dimensional anharmonic oscillator where ν = 0 and ν = 1 cases correspond

to the ground state and the first excited state, respectively. Explicitly the

corrections are,

• at ν = 0,

ε1 =
3

8ω2
, ε2 = −

21

32ω5
, ε3 =

333

128ω8
,

• at ν = 1,

ε1 =
15

8ω2
, ε2 = −

165

32ω5
, ε3 =

3915

64ω8
,

in agreement with the results of the calculation carried out in [3] and [10].

2.2.2. First excited state

The first excited state of the gauge-rotated Calogero Hamiltonian hCal (see

(9)) is characterized by,

φ0 = τ2 +
(n − 1)(1 + νn)

4ω
, ε0 = 2ω . (23)

A simple analysis of equation (16) shows that the first eigenfunction correc-

tion φ1 ∈ P3, hence it should be a third degree polynomial in τ ’s. After

substitution of such an Anzatz into (16) simple calculations give

ε1 =
n[6 + ν(5n − 6)][n + 11 + νn(n − 1)]

4(n + 6)ω2
, (24)

φ1 =
n

2(n + 6)ω
τ4τ2 +

n[n − 9 + νn(n − 1)]

8(n + 6)ω2
τ4 −

1

4ω
τ3
2

−
n2 − 27n − 54 + νn(n2 − 15n + 18)

16(n + 6)ω2
τ2
2

+
n[6 + ν(5n − 6)][n + 11 + νn(n − 1)]

16(n + 6)ω3
τ2 .

It is worth mentioning that the correction φ1 depends on two τ variables

only, τ2,4.

A similar analysis of equation (16) shows that the second eigenfunction

correction φ2 ∈ P5, hence it should be a fifth degree polynomial in τ ’s.
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After substitution of such an Anzatz into (16) simple calculations give the

following results for the second correction

ε2 =
1

32(n + 6)2ω5

[
− 3n4 + 342n3 + 6471n2 + 5574n − 360

− 2νn(3n4 − 437n3 − 4564n2 + 3666n + 2916)

− ν2n2(3n4 − 734n3 − 2421n2 + 9092n − 6324)

+2ν3n3(n − 1)(101n2 − 245n + 150)
]

.

We will not present the explicit form of φ2 due to its complexity. It is worth

mentioning that the correction φ2 depends on four τ variables only, τ2,3,4,6

as happens for the ground state (see (19)). Neither ε1 nor ε2 vanish simul-

taneously for some value of n. It can be shown that the kth eigenfunction

correction has the property φk ∈ P2k+1.

If g = 0 in (2), the singular term in the potential disappears and the

formulae for corrections simplify. This happens when ν = 0, 1 (see (4)) for

which

• at ν = 0 , φ0 = τ2 + (n − 1)/4ω ,

ε1 =
3n(n + 11)

2(n + 6)ω2
,

ε2 =
3(n4 − 114n3 − 2157n2 − 1858n + 120)

32(n + 6)2ω5
,

• at ν = 1 , φ0 = τ2 + (n2 − 1)/4ω ,

ε1 =
5n2(n2 + 11)

4(n + 6)ω2
,

ε2 = −
199n6 + 36n5 + 4082n4 + 78n3 + 5463n2 − 258n − 360

32(n + 6)2ω5
.

For the two-body case, n = 2 the problem is reduced to a standard one-

dimensional anharmonic oscillator where ν = 0 and ν = 1 cases correspond

to the second and third excited states, respectively. Explicitly the corrections

are,

• at ν = 0,

ε1 =
39

8ω2
, ε2 = −

615

32ω5
,
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• at ν = 1,

ε1 =
75

8ω2
, ε2 = −

1575

32ω5
,

in agreement with the results of the calculation carried out in [3] and [10].

2.3. Correlation functions and perturbation theory

By purely algebraic means we calculated the first correction to the ground

state energy (18). Making a comparison of this result with a formula for the

first correction in the Rayleigh-Schroedinger perturbation theory we find [9]

that we have calculated the expectation value

ε1 =
〈0|vp|0〉

〈0|0〉
=

n(n − 1)(1 + νn)[6 − ν(6 − 5n)]

4(n + 6)ω2
.

This expectation value is a rational function of the parameters ω, n, ν
∫

Dc

n∑

i<j

(yi − yj)
4

n∏

i<j

|yi − yj|
2νe−

ω
2n

P

(yi−yj)
2

dn−1y

∫

Dc

∏

i<j

|yi − yj|
2νe−

ω
2n

P

(yi−yj)2dn−1y

=

=
n(n − 1)(1 + νn)[6 − ν(6 − 5n)]

4(n + 6)ω2
,

where −yn =
∑n−1

i=1 yi and the domain of integration is the Weyl chamber.

It is quite amazing that although each integral is a complicated combination

of Euler Γ-functions, their ratio reduces to the rational function.

2.4. Variational study

We consider a strong coupling limit λ → ∞ in (2), which is equivalent to

putting ω = g = 0. Following the recipe for choice of the trial functions (see

e.g. [10]), the simplest trial function for the ground state can be written as

Ψtrial = e−α(−τ2)− 2

3
β(−τ2)3/2−γ(a2+τ2

3 )1/2−δ(τ2( 2n
n+6

τ4−τ2
2 ))1/2

, (25)

where α, β, γ, δ and a are variational parameters. From dimensional argu-

ments it seems clear that the ground state energy should be of the form

En = f(n)λ
1

3 . (26)

For two- and three-body cases the result of calculations is

f(2) = 0.53042 (α = 0.837, β = 0.837, a = γ = δ = 0) , (27)
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f(3) = 1.17273 (α = 0.914, β = 0.845, a = γ = δ = 0) . (28)

For the two-body case one can make a comparison with the best numerical

studies, f(2)numerics = 0.530362... (see e.g. [10]). Hence the simple trial

function reproduces four significant digits in the energy.

3. Anharmonic Wolfes Model

Let us introduce the Hamiltonian which describes a system of three identical

particles with two- and three-body interactions

HG =
1

2

3∑

k=1

[

−
∂2

∂x2
k

+ ω2x2
k

]

+ g
3∑

k<l

1

(xk − xl)2

+3g1

3∑

k<l, k,l 6=m

1

(xk + xl − 2xm)2
+

λ

36

3∑

k<l

(xk − xl)
4 , (29)

where ω is the parameter, g = ν(ν − 1) > − 1
4 and g1 = µ(µ − 1) > − 1

4

are the coupling constants associated with the two-body and three-body

interactions, respectively, λ ≥ 0 is an anharmonic coupling constant and

the factor 1/36 is introduced for convenience. We call this system the G2

anharmonic oscillator.

At λ = 0 the Hamiltonian (29) becomes the Hamiltonian of the rational

G2 model which was introduced for the first time by Wolfes [2] and later

obtained in the Hamiltonian Reduction method [11, 12]. Its ground state is

given by

Ψ
(r)
0 (x) = (∆

(r)
1 (x))ν(∆

(r)
2 (x))µe−

1

2
ω

P

3
k=1

x2
k , E0 =

3

2
ω(1+2ν+2µ) , (30)

where ∆
(r)
1 (x) =

∏3
i<j |xi − xj | and ∆

(r)
2 (x) =

∏3
i<j; i,j 6=k |xi + xj − 2xk|.

An interesting observation is that all fourth order permutationally sym-

metric and translation invariant polynomials correspond to two body inter-

actions because

(x1 + x2 − 2x3)
4 + (x1 + x3 − 2x2)

4 + (x2 + x3 − 2x1)
4 =

= 9 [(x1 − x2)
4 + (x1 − x3)

4 + (x2 − x3)
4] ,

and

(x1 − x2)
2(x1 − x3)

2 + (x1 − x2)
2(x2 − x3)

2 + (x1 − x3)
2(x2 − x3)

2 =

= 1/2 [(x1 − x2)
4 + (x1 − x3)

4 + (x2 − x3)
4] .

This leads to the important conclusion that a general fourth degree polyno-

mial translation invariant potential reduces to two body interactions. There-
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fore, the Hamiltonian (29) describes the most general permutationally sym-

metric and translationally invariant anharmonic oscillator associated with

the G2 rational model with fourth order polynomial anharmonicity.

Let us make a gauge rotation of the Hamiltonian (29) with the ground

state eigenfunction (30),

hG2
= 2(Ψ

(r)
0 (x))−1(HG2

− E0)Ψ
(r)
0 (x) . (31)

The result can be written in terms of two relative coordinates and the center-

of-mass coordinate X.

Now let us take the Perelomov relative coordinates (5) and introduce new

permutationally symmetric relative coordinates,

λ1 = y2
1 + y2

2 + y2
3 , λ2 = y2

1y
2
2y

2
3 , (32)

with the condition −y3 = y1 + y2 (cf. (6)). Making in (31) a change of

variables

(x1, x2, x3) → (Y, λ1, λ2)

and separating the center-of-mass motion (and then omitting it), the re-

maining part of the Hamiltonian (31) takes the form

hG2
= −4λ1∂

2
λ1λ1

− 24λ2∂
2
λ1λ2

− 18λ2
1λ2∂

2
λ2λ2

(33)

+ {4ωλ1 − 4[1 + 3(µ + ν)]} ∂λ1
+

[
12ωλ2 − 9(1 + 2ν)λ2

1

]
∂λ2

+ λλ2
1 .

This is the algebraic form of the G2 anharmonic model (cf. (9) at n = 3).

This Hamiltonian possesses a remarkable property – among eigenfunctions

there exists a family which depends on the variable λ1 only (!). The ground

state belongs to this family. In order to find the eigenfunctions depending

on λ1 only it is necessary to solve the spectral problem for the operator

h̃G = −4λ1∂
2
λ1λ1

+ {4ωλ1 − 4[1 + 3(µ + ν)]} ∂λ1
+ λλ2

1 . (34)

By making a gauge rotation the operator (34) can be reduced to the two-

body Hamiltonian

H = −
1

2

2∑

i=1

∂2

∂x2
i

+
ω2

2
(x1 − x2)

2 +
[ 9 (µ + ν)2 − 1/4 ]

(x1 − x2)2

︸ ︷︷ ︸

A1−rational model

+
λ

8
(x1 − x2)

4 .

Similarly to what was done for the An anharmonic many-body oscillator

in Section 1.2, one can develop perturbation theory in powers of λ for the

Hamiltonian (29) taken in the algebraic form (34).
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4. Conclusion

We introduced an anharmonic perturbation of two completely-integrable and

exactly-solvable systems, which are in fact anharmonic many-body oscilla-

tors. It is not clear that these systems remain integrable or whether the an-

harmonic terms break this feature. However, the calculation of perturbation

corrections is not influenced by existence or non-existence of integrability.

Perhaps, it is interesting for the An-anharmonic oscillator to study the limit

n → ∞ and a field-theoretic limit. Another interesting question is about

the existence of the quasi-exactly-solvable anharmonic generalizations of the

Calogero and Wolfes models other than those found in [13].

Acknowledgments

Author thanks J. C. Lopez Vieyra for useful conversations, the interest to

the work and a help with computer calculations. The work is supported in

part by DGAPA grant No. IN124202 and CONACyT grant 25427-E.

References

1. F. Calogero, J. Math. Phys. 12, 419 (1971).
2. J. Wolfes, J. Math. Phys. 15 1420 (1974).
3. C. Bender, T.T. Wu, Phys. Rev. 184, 1231 (1969); Phys. Rev. D 7 , 1620 (1973).
4. A.I. Vainshtein, Decaying systems and divergence of the series of perturbation theory,

Preprint, Budker Institute of Nuclear Physics, Novosibirsk, 1964. Published in
Continuous advances in QCD 2002 (World Scientific, 2002) pp. 617-646.

5. A.V. Turbiner and A.G. Ushveridze, J. Math. Phys. 29, 2053 (1988).
6. A. M. Perelomov, Teor. Mat. Fiz. 6, 364 (1971) [Sov. Phys. – Theor. and Math.

Phys. 6, 263 (1971)].
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