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We review a special class of semiclassical string states in AdS5×S5 which have a regular

expansion of their energy in integer powers of the ratio of the square of the string tension

(‘t Hooft coupling) and the square of the large angular momentum in S5. They allow one

to check AdS/CFT duality quantitatively for states in the non-supersymmetric sector

and also help to uncover the role of integrable structures on both sides of the string

theory – gauge theory duality.
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1. Introduction

Better understanding of the duality between type IIB superstring theory in
AdS5 × S5 and the planar limit of N = 4 supersymmetric Yang–Mills the-
ory [1] and extending it to less supersymmetric cases may allow us to find
simple string-theoretic descriptions of various dynamical aspects of gauge
theories, from high-energy scattering to confinement. This AdS/CFT dual-
ity is usually viewed as an example of strong coupling – weak coupling dual-
ity: while the large N perturbative expansion in SYM theory assumes that
the ’t Hooft coupling λ = g2

YMN is small, the string perturbative (inverse
tension) expansion applies for

√
λ = R2

α′ � 1. In general, observables (such
as scaling dimensions, correlation functions, finite temperature free energy,
etc.) depend on λ through non-trivial functions f(λ) of the couplings, with
the perturbative SYM and string theories describing opposite asymptotic
regions. For special “protected” BPS observables the dependence on λ may
become trivial due to supersymmetry and then can be directly reproduced
on the two sides of the duality [2].

Checking duality beyond the BPS cases remains a challenge. The Green–
Schwarz superstring action in AdS5 × S5 appears to have a complicated
structure [3], so finding, e.g., its full spectrum exactly in λ seems hard at
present. One may hope to bypass the computation of non-trivial functions
f(λ) by considering special limits involving other parameters or quantum
numbers besides λ. Specific progress can be made by concentrating on a
particular (and basic) class of observables which should be related according
to AdS/CFT: a spectrum of energies of single-string states (in global AdS5×
S5 coordinates) and scaling dimensions of the corresponding single-trace
gauge-invariant local operators in SYM theory. These may carry quantum
numbers such as SO(2, 4)× SO(6) spins of string states or powers of scalar
fields and covariant derivatives in the SYM operators. A remarkable recent
development initiated in [4] (which in turn was inspired by [5,6]) is based on
the idea that for a special subset of string/SYM states parametrized by large
quantum numbers [7,8] there may be new interesting limits in which certain
quantum corrections may be suppressed. One may then be able to check
the AdS/CFT correspondence for such special non-supersymmetric states
by comparing the corresponding string energies with the perturbative gauge
theory scaling dimensions.

In the BMN case [4] (see [9] for reviews) one concentrates on a particular
“semiclassical” [8] sector of near-BPS states represented by small closed
strings with center of mass moving along a large circle of S5 with angular
momentum J � 1. The SYM operators are of the type tr(ZJ ...) where
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Z = Φ5 + iΦ6, ΦM are SO(6) scalars and dots stand for a small number of
other SYM fields or covariant derivatives. By considering the limit J →∞,
λ
J2 =fixed one is able to establish a precise correspondence between the
energies of the string states and the scaling dimensions of the corresponding
SYM operators [4, 10] (for a complete list of references see [9]). The reason
why this is possible can be understood by interpreting this sector of states
as “semiclassical” states [8] corresponding to quadratic fluctuations near a
point-like string running along a geodesic in S5 with angular velocity w =

J√
λ

. One is then able to argue [11, 12] that higher than one-loop string
sigma model corrections to the leading (“quadratic” or “plane-wave”) string
energies are suppressed in the limit J →∞ with w held fixed.

One may hope to apply similar reasoning to other, far from BPS, semiclas-
sical sectors of string states. For example, considering a string rotating with
large spin S in AdS5 one discovers [8] a new qualitative test of AdS/CFT: the
agreement between the dependence of the string energy E on large spin S and
the spin dependence of the anomalous dimension of twist 2 gauge-invariant
SYM operators: E = S + f(λ) lnS + .... Here f(λ) = b0

√
λ + b1 + b2√

λ
+ ...

on the perturbative string side and f(λ) = a1λ + a2λ
2 + ... on the pertur-

bative gauge theory side [8, 11, 13]. According to the AdS/CFT duality the
two expansions must represent different asymptotics of the same function.
Checking this in a precise manner is obviously hard since that would re-
quire first finding all terms in the respective perturbative series and then
resumming them.

For other semiclassical string states one might expect to find similar
“interpolation in λ” patterns, which again preclude a direct quantitative
comparison with perturbative SYM theory. Remarkably, as was noticed
in [14, 15], there are exceptions: for certain multispin string states (with at
least one large S5 spin component J) the classical energy has a regular expan-
sion in λ

J2 while quantum superstring sigma model corrections are suppressed
in the limit J →∞, λ

J2 =fixed. It was proposed [14] that for such states one
can carry out the precise test of the AdS/CFT duality in a non-BPS sector
by comparing the λ

J2 � 1 expansion of the classical string energy with the
corresponding quantum anomalous dimensions in perturbative SYM theory.

This was indeed successfully accomplished in a series of recent papers
[16–21]. The main technical problem – how to find the eigenvalues of the
anomalous dimension matrix for “long” (large J) scalar operators – was
solved (at the one-loop level) using the interpretation of the anomalous di-
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mension matrix as an integrable spin-chain Hamiltonian [22, 23].∗ This al-
lowed one to find the one-loop anomalous dimensions by applying Bethe
ansatz techniques. The leading order λ

J terms in the energies of particular
string solutions were then reproduced as one-loop anomalous dimensions on
the SYM side by choosing particular Bethe root distributions in the “ther-
modynamic” limit of “long” (J →∞) operators. There is some evidence [19]
that the correspondence extends, as one of course expects, to the next λ2

J3 or-
der, but checking this explicitly and going beyond the two-loop level remains
an important open problem.

Our aim here will be to review a class of such classical string solutions in
AdS5 × S5 [11,14,15,17,18,34] whose energy E has a regular expansion in
integer powers of λ (i.e. the square of the effective string tension) divided
by the square of the total S5 spin J , and for which quantum sigma model
corrections to E should be suppressed in the J →∞ limit.

Let us first make some general comments on the structure of this semi-
classical expansion for the string energy. The form of a classical solution
cannot depend on the value of the string tension, i.e. on

√
λ , which appears

as a factor in front the string action I =
√

λ
4π

∫
d2ξ Gµν(x)∂aX

µ∂aXν + ....
Thus the classical energy can be written as E =

√
λ E(w), where w stands

for all constant parameters that enter the classical solution. These param-

∗ The integrable spin chain connection was uncovered and extensively studied previously in the

context of QCD. In particular, the Regge-like asymptotic behavior of scattering amplitudes was

described by evolution equations that were related to the SL(2, C) Heisenberg spin chain [24].

More importantly for the present discussion, the one-loop anomalous dimensions of certain (quasi-

partonic) composite operators were related to the energies of the SL(2, R) XXX Heisenberg spin

chain [25, 26]. Similar relations hold in other asymptotically free gauge theories, in particular,

supersymmetric theories [27, 28]. The role of conformal symmetry in QCD and these integrabil-

ity relations were reviewed in [29]. More recent work relating integrability of light-cone QCD

operators to gauge/string duality appeared in [30–32]. In N=4 SYM theory viewed as a partic-

ular gauge theory with adjoint matter the above QCD-inspired work implies that the (one-loop,

large N) anomalous dimension matrix for the minimal-twist operators (such as tr(Φ̄DSΦ) + ...,

D = D0 + D3) should be the same as the Hamiltonian of the SL(2, R) XXX spin chain. Inde-

pendently, it was observed in [22] that the one-loop planar anomalous dimension matrix in the

pure-scalar sector of operators tr(ΦM1 ...ΦMJ
) can be interpreted as the Hamiltonian of an in-

tegrable SO(6) spin chain. Ref. [23] generalized these facts to all superconformal operators to

claim that the complete one-loop planar dilatation operator of N=4 SYM is equivalent to the

Hamiltonian of an integrable SU(2, 2|4) (super) spin chain. More recent work [33] addressed the

same problem using the original (light-cone operator) QCD approach, i.e. considering the sub-

sector of supermultiplets of quasipartonic operators ( tr(Ds1ΦM1 ...DsnΦMn ) + ..., etc.) with the

conclusion that in this case the one-loop dilatation operator coincides with the Hamiltonian of an

SL(2|4) spin chain. The relation between the approaches of [23] and [33] and also whether the

SL(2) integrability in the twist 2 sector may be somehow related by supersymmetry to SO(6)

integrability in the pure-scalar sector seems worth clarifying further.
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eters should be fixed in the standard sigma model loop (α′ ∼ 1√
λ

) expan-
sion. The classical values of the integrals of motion such as the S5 and
AdS5 angular momentum components are also proportional to the string
tension, e.g., J =

√
λ J (w) (they take integer values in the full quan-

tum theory). Expressed in terms of these integrals the classical energy is
E =

√
λ E(J ) =

√
λ E( J√

λ
).

In the limit of large values of semiclassical parameters and the corre-
sponding quantum charges the classical energy of a string solution in any
AdSp×Sm space goes as linear function of J , i.e. E = J+ .... This linear be-
havior [35] (seen explicitly on examples of particular solutions [8,11,36–38])
is different from the flat-space Regge one E ∼

√
J and is a consequence

of the constant curvature of AdS space. This is consistent with AdS/CFT
duality: one expects that the large J expression for the full dimension of the
corresponding gauge theory operator should start with its canonical dimen-
sion.

We would like to identify a class of special classical string solutions in
AdS5 × S5 whose energy has a particular dependence on conserved charges
that allows for a direct comparison with anomalous dimensions on the per-
turbative SYM side. While such extended string solutions turn out to have
several conserved global charges, here for notational simplicity we shall keep
track of just one of them – the total S5 angular momentum J =

√
λ J . For

the solutions we will be interested in the classical energy E =
√
λ E should

have the following expansion in large classical parameter J � 1

E = J
(
1 +

c1
J 2

+
c2
J 4

+ ...
)
, (1.1)

i.e. E
J should have an expansion in even inverse powers of J . The coefficients

ci may be functions of ratios of conserved charges that are finite in the large-
charge limit. Equivalently, for 1

J =
√

λ
J � 1

E = J
(
1 +

c1λ

J2
+
c2λ

2

J4
+ ...

)
= J +

c1λ

J
+
c2λ

2

J3
+ ... , (1.2)

which formally looks like an expansion in positive integer powers of λ. Rotat-
ing string solutions with this property were indeed found in [11,14,17,18,34]
and will be reviewed below.

Furthermore, let us assume that in such cases the string sigma model loop
corrections to the energy which in general can be computed in the standard
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inverse tension expansion

Etot =
√
λ E(J ) + E1(J ) +

1√
λ
E2(J ) +

1
(
√
λ )2

E3(J ) + .... = E +
∞∑

n=1

En

(1.3)
should have the following specific form of their expansion in J � 1

En(J ) =
dn1

J n+1
+

dn2

J n+3
+ ... , n = 1, 2, ... . (1.4)

This behavior was verified in [15] for n = 1 on a particular example of a
solution [14] satisfying (1.2). Equation (1.4) implies that the n-loop term in
the quantum-corrected energy (1.3) will be given, for λ

J2 � 1, by

En =
1

(
√
λ )n−1

En(J ) =
dn1λ

Jn+1
+
dn2λ

2

Jn+3
+ ... . (1.5)

In general, the energy Etot = Etot(J, λ) should be some function of J and
the string tension but if the above assumptions (1.2) and (1.5) are true, it
will be given by the following double expansion in λ

J2 and 1
J :

Etot = J

[
1 +

∞∑
k=1

(
λ

J2
)k

(
ck +

∞∑
n=1

dnk

Jn

)]
. (1.6)

Then if we first take the limit of J � 1 for fixed λ
J2 , all quantum sigma

model corrections will be suppressed and the full energy Etot will be given
just by its classical part E (1.2).

In the BMN case [4], where one expands [8,11] near a point-like BPS string
state, the ground-state energy is not renormalized, i.e. Etot = E = J , but
the double expansion similar to the one for Etot/J in (1.6), namely, Efluct =
J +

∑∞
k=0(

λ
J2 )k

(
hk +

∑∞
n=1

fnk
Jn

)
, applies to energies of string fluctuations

near the geodesic, i.e. to energies of excited string modes [11, 12, 39, 40].
In the limit J → ∞ their energies are then determined by the quadratic
(“one-loop” or “plane-wave”) approximation.

The general conditions for the validity of the expansions (1.2) and (1.5)
remain to be clarified (some observations made in recent papers [41, 42]
relating the large J limit to an ultra-relativistic limit may turn out to be
useful for that). In particular, the “regularity” of the expansion of the
energy in λ (1.2) may apply not only to multi-spin rotating but also to S5

pulsating [21,38] solutions.
In order to test AdS/CFT duality one should reproduce the same ex-

pression for the (quantum-corrected) AdS5 string energy Etot(λ, J) (1.6) as
the exact scaling dimension ∆(λ, J) of the corresponding SYM operator, i.e.
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as a particular eigenvalue of the dilatation operator having the same global
charges (i.e. belonging to the same SO(2, 4) × SO(6) representation as the
string state). Given that (1.6) looks like an expansion in the ‘t Hooft cou-
pling λ it is natural to expect that the perturbative (λ � 1) expansion for
∆(λ, J) can be organized in the following way

∆(λ, J) = J +
∞∑

k=1

qk(J) λk , (1.7)

where the functions qk(J) should have the following form for J � 1

qk(J) =
1

J2k−1

(
ak +

ak1

J
+ ...

)
. (1.8)

Assuming that this is indeed the case and taking the J →∞ limit, one could
then directly compare the classical part of the energy in (1.6) expanded in
λ
J2 with the sum of the leading (J � 1) terms at each order of expansion of
∆ in powers of λ. The AdS/CFT correspondence implies then that the two
expressions should coincide, i.e. that ck = ak. The classical string energy
should thus represent the leading J →∞ term in the quantum SYM scaling
dimension.

In particular, the coefficient c1 of the first subleading (order λ) term in
the classical string energy (1.2) should match the coefficient a1 in the one-
loop SYM term in (1.7), (1.8). This was indeed verified on specific examples
in [16–19, 21]. There is also a numerical evidence [19] that this matching
extends to the λ2 term, i.e. c2 = a2.

The J → ∞ behavior (1.8) of the one-loop correction to the anomalous
dimensions was checked using the spin chain relation and the Bethe ansatz
for particular large R-charge or large spin operators [16,19,21]. The general
proof of (1.8) which should follow from a higher-loop structure of the di-
latation operator [44,45] and should be heavily based on the superconformal
symmetry of the N = 4 SYM theory remains to be given.

Let us now summarize the contents of the following sections. In section
2 we shall write down the bosonic part of the superstring action in AdS5 ×
S5 and the corresponding integrals of motion as a preparation for a discussion
of classical finite energy closed string solutions which carry several SO(2, 4)×
SO(6) spin components. In section 3 we shall consider the special case of the
SO(6) invariant sigma model (embedded into string theory by adding time
direction from AdS5) and briefly review its integrability (local and non-local
conserved charges, etc.).

Then in section 4 we shall concentrate on a particular class of semiclassical
string states rotating in S5 with three angular momenta Ji and show that
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for the rotating string ansatz the Rt × S5 sigma model reduces to a well-
known one-dimensional integrable system – the Neumann-Rosochatius (NR)
system. Its special case is the n = 3 Neumann system describing an oscillator
on a 2-sphere. This relation allows one to classify the corresponding rotating
string solutions, which, as in flat space, can be of folded or circular type.

In section 5 we shall study a simple special class of circular rotating
string solutions on S5 whose energy has a regular large-spin expansion as
in (1.2). We shall also determine (in section 5.3) the spectrum of quadratic
fluctuations near these circular solutions pointing out some analogies with
the point-like (BMN) case. In section 5.4 we shall consider the one-loop
string sigma model correction to the energy of a particular solution (with
two equal spins); this one-loop correction indeed turns out to be suppressed
in the large spin limit, in agreement with (1.6).

The discussion of sections 4 and 5 will be generalized in section 6 to
the case of states represented by semiclassical strings rotating in both S5

and AdS5 and thus carrying 3+2 spin quantum numbers. They are again
described by a generalized NR integrable system. While the energy of strings
rotating only in AdS5 is non-analytic in λ (section 6.1), the expansion (1.2)
is true for circular strings having large S5 spin components.

Similar conclusions apply to other multi-spin solutions of the NR system
representing folded and circular strings with more complicated (“inhomoge-
neous”) dependence on the string coordinate σ. In particular, we consider
a class of two-spin solutions for which the Neumann system degenerates to
a sine-Gordon one and, as a result, the solutions are expressed in terms of
the elliptic functions (section 7). The classical energy can then be found as
a solution of two parametric equations involving elliptic integrals and has
again a regular expansion as in (1.2).

Section 8 will contain a summary of some open problems and possible
generalizations, including a brief discussion of pulsating string solutions.

2. Closed superstrings in AdS5 × S5: classical solutions

Superstrings in AdS5 × S5 can be described by a Green–Schwarz action [3]
which defines a consistent perturbation theory near each semiclassical string
configuration, e.g., a point-like massless geodesic in a light-cone type gauge
as in [11,46] or extended string configurations as in [11,14,15,47].

The bosonic part of the action in the conformal gauge is the sum
of the two coset-space sigma models (AdS5 = SO(2, 4)/SO(1, 4) and
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S5 = SO(6)/SO(5))

I = −
√
λ

4π

∫
dτdσ

[
G(AdS5)

mn (x)∂ax
m∂axn + G(S5)

pq (y)∂ay
p∂ayq

]
. (2.1)

The effective string tension Teff =
√

λ
2π = R2

2πα′ is related to the ‘t Hooft
coupling λ = g2

YMN on the SYM side of the string/gauge theory duality [1].
The AdS5 and S5 parts of the action are “coupled” at the classical level
through the conformal gauge constraints.

The classical conformal invariance of this sigma model is preserved at the
quantum level after addition of fermions with coupling to the metric and R-
R 5-form background [3]. There are quadratic and quartic fermionic terms
in the action (in a particular gauge). The quadratic part of the fermionic
Lagrangian can be written as (see, e.g., [3, 11,47])

LF = i (ηabδIJ − εabsIJ) ϑ̄I%aDbϑ
J , %a ≡ ΓAe

A
a , (2.2)

where I, J = 1, 2, sIJ =diag(1,-1), and %a ≡ ΓAE
A
µ ∂aX

µ are the projections
of the 10-d Dirac matrices. Here Xα are the string coordinates (given func-
tions of τ and σ for a particular classical solution) corresponding to the AdS5

(µ = 0, 1, 2, 3, 4) and S5 (µ = 5, 6, 7, 8, 9) factors. The covariant derivative
Da can be put into the form

Daϑ
I = (δIJDa −

i

2
εIJΓ∗%a)ϑJ , Γ∗ ≡ iΓ01234 , Γ2

∗ = 1 , (2.3)

where Da = ∂a + 1
4 ω

AB
a ΓAB, ω

AB
a ≡ ∂aX

αωAB
α and the “mass term” origi-

nates from the R-R 5-form coupling.
Here we will be interested mostly in the classical bosonic finite-energy

solutions for closed strings in AdS5 × S5 space and ignore the fermions. To
study these bosonic solutions it is useful to rewrite the action (2.1) in the
form

I =
√
λ

∫
dτ

∫ 2π

0

dσ

2π
(LAdS + LS) , (2.4)

where

LAdS = −1
2
ηPQ∂aYP∂

aYQ +
1
2

Λ̃(ηPQYPYQ + 1) , (2.5)

LS = −1
2
∂aXM∂

aXM +
1
2

Λ(XMXM − 1) . (2.6)

We use (−+) signature on the world sheet and XM , M = 1, . . . , 6 and YP ,
P = 0, . . . , 5 are the embedding coordinates of R6 with the Euclidean metric
δMN in LS and with ηPQ = (−1,+1,+1,+1,+1,−1) in LAdS , respectively.
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Λ and Λ̃ are the Lagrange multiplier functions of τ and σ. The action (2.4)
is to be supplemented with the usual conformal gauge constraints expressing
the vanishing of the total 2-d energy-momentum tensor

ηPQ(ẎP ẎQ + Y ′PY
′
Q) + ẊMẊM +X ′

MX
′
M = 0 , (2.7)

ηPQẎPY
′
Q + ẊMX

′
M = 0 , (2.8)

where

ηPQYPYQ = −1 , XMXM = 1 . (2.9)

We shall assume that the world sheet is a cylinder, i.e. impose the closed
string periodicity conditions

YP (σ + 2π) = YP (σ) , XM (σ + 2π) = XM (σ) . (2.10)

The classical equations that follow from (2.4) can be written as

∂a∂aYP − Λ̃YP = 0 , Λ̃ = ηPQ∂aYP∂aYQ , ηPQYPYQ = −1 , (2.11)

∂a∂aXM + ΛXM = 0 , Λ = ∂aXM∂aXM , XMXM = 1 . (2.12)

The action is invariant under the O(2, 4) and O(6) global symmetries with
the corresponding conserved (on-shell) charges being

SPQ =
√
λ

∫ 2π

0

dσ

2π
(YP ẎQ − YQẎP ) , (2.13)

JMN =
√
λ

∫ 2π

0

dσ

2π
(XMẊN −XNẊM ) . (2.14)

We are interested in finding “spinning” solutions that have non-zero values
of these charges. The physical target-space interpretation of the solutions
depends on a particular choice of coordinates (that solve (2.9)) in AdS5 and
S5. One natural (“global coordinate”) choice is

Y1 ≡ Y1 + iY2 = sinh ρ sin θ eiφ1 , Y2 ≡ Y3 + iY4 = sinh ρ cos θ eiφ2 ,

Y0 ≡ Y5 + iY0 = cosh ρ eit, X3 ≡ X5 + iX6 = cos γ eiϕ3 , (2.15)

X1 ≡ X1 + iX2 = sin γ cosψ eiϕ1 , X2 ≡ X3 + iX4 = sin γ sinψ eiϕ2 .

Then there is an obvious choice of the 3+3 Cartan generators of
SO(2, 4)× SO(6) corresponding to the 3+3 linear isometries of the
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AdS5 × S5 metric

(ds2)AdS5 = dρ2− cosh2ρ dt2+ sinh2ρ (dθ2 + cos2θ dφ2
1 + sin2θ dφ2

2), (2.16)

(ds2)S5 =dγ2+ cos2γ dϕ2
3 + sin2γ (dψ2 + cos2ψ dϕ2

1 + sin2ψ dϕ2
2) , (2.17)

i.e. to the translations in AdS5 time t, in the two angles φa and in three
angles ϕi of S5:

S0 ≡ S50 ≡ E =
√
λ E , S1 ≡ S12 =

√
λ S1 , S2 ≡ S34 =

√
λ S2 , (2.18)

J1 ≡ J12 =
√
λ J1 , J2 ≡ J34 =

√
λ J2 , J3 ≡ J56 =

√
λ J3 . (2.19)

We will be interested in classical solutions that have finite values of the
target-space energy E as well as of the spins Sa, Ji. For a solution to have
a consistent semiclassical approximation, i.e. to correspond to an eigenstate
of the Hamiltonian which carries the corresponding quantum numbers (and
thus being associated to a particular SYM operator with definite scaling
dimension) all other non-Cartan (i.e. non-commuting) components of the
symmetry generators (2.13), (2.14) should vanish [11].

In the above R2,4 embedding representation of AdS5 the charges of the
isometry group SO(2, 4) can be related to the boundary SYM theory con-
formal group generators as follows (µ, ν = 0, 1, 2, 3):

Sµν = Mµν , Sµ4 =
1
2
(Kµ−Pµ) , Sµ5 =

1
2
(Kµ+Pµ) , S54 = D . (2.20)

One can identify the standard spin with S1 = S12 = M12, the second (con-
formal) spin with S2 = S34 = 1

2(K3 − P3), and finally the conformal energy
with the rotation generator in the 05 plane, i.e. with the global AdS5 energy,
E = S05 = 1

2(K0 + P0).∗

∗ The energy of a string state in global AdS5 space with boundary R× S3 should be equal to the

energy of the corresponding SYM state on R × S3 (which can be mapped conformally to R4).

Through radial quantization this state may be associated with a local operator that creates it.

At the same time, the AdS5 energy or conformal Hamiltonian generates an SO(2) subgroup of

SO(2, 4) while the dilatation operator (whose eigenvalues are scaling dimensions) generates an

SO(1, 1) subgroup of the conformal group. Their eigenvalues happen to be the same since the two

representations (the unitary one classified by SO(4) × SO(2) and the one classified by SO(4) ×
SO(1, 1)) are related by a global SO(2, 4) similarity transformation (see, e.g., [43]). Alternatively,

after the Euclidean continuation Y0 → iY0E (to allow for the mapping from R × S3 to R4) one

may exchange Y0E with Y4 which exchanges the generator S54 = D with S05 = 1
2
(P0 + K0) = E.

For all the solutions discussed below S50 = E 6= 0 while S54 = D = 0. One could, in principle,

apply a similar Y0E → Y4 transformation to string solutions, getting equivalent ones (but more

complicated-looking, with the radial direction of AdS5 depending on τ) that would have non-zero

values of the SO(1, 1) generator S54.
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Let us first consider point-like string solutions, for which YP = YP (τ),
XM = XM (τ), i.e. massless (cf. (2.7)) geodesics in AdS5 × S5. As follows
from the second-order equations in (2.11), (2.12), in this case Λ = const,
Λ̃ = const, i.e. YP and XM are given by trigonometric functions. The
constraint (2.7) implies that the two frequencies are related: Λ = −Λ̃ > 0.
Then a generic massless geodesic in AdS5×S5 can be shown to be one of the
two “irreducible” types (up to a global SO(2, 4) × SO(6) transformation):
(i) a massless geodesic that stays entirely within AdS5; (ii) a geodesic that
runs along the time direction in AdS5 and wraps a big circle of S5. In the
latter case the angular motion in S5 provides an effective (“Kaluza-Klein”)
mass to a particle in AdS5, i.e. the corresponding geodesic in AdS5 is a
massive one. Then we can choose the coordinates so that

Y5 + iY0 = eiκτ , X5 + iX6 = eiwτ , κ = w =
√

Λ, Y1,2,3,4 =X1,2,3,4 = 0 .
(2.21)

Here the only non-vanishing integrals of motion are E = J3 =
√
λ κ, rep-

resenting the energy and SO(6) spin of this BPS state, corresponding to
trZJ3 operator in SYM theory. More generally, one may choose any mass-
less geodesic in AdS5 for which then ηPQẎP ẎQ = −w2. The massless limit
w → 0 corresponds to J3 → 0, i.e. the resulting state should be representing
a vacuum in string theory or a unit operator in SYM theory [4].

The former case, i.e. the “massless” w → 0 limit, is actually subtle:
naively, a massless geodesic in AdS5 does not represent a semiclassical string
state in the sense defined above. Indeed, for a point-like string moving inside
AdS5 we have ηPQẎP ẎQ = 0, i.e. ŸP = 0. Thus in terms of the embedding
coordinates the massless geodesic is a straight line

YP (τ) = AP +BP τ , ηPQBPBQ = ηPQAPBQ = 0 , ηPQAPAQ = −1 .
(2.22)

Then the SO(2, 4) angular momentum tensor (2.13) is SPQ =
√
λ (APBQ−

AQBP ) and can be shown to always have non-vanishing non-Cartan com-
ponents. Indeed, by applying an SO(2, 4) rotation we may put the con-
stant vectors AP and BP in a canonical form: AP = (0, 0, 0, 0, 0, 1), BP =
(p, 0, 0, p, 0, 0), i.e.

Y5 + iY0 = 1 + ip τ , Y3 = p τ , Y1,2,4 = 0 . (2.23)

Here p is an arbitrary parameter and S50 = S53 =
√
λ p. An alternative

choice of the parameters (related to the above one by an SO(2, 4) rotation
with parameter u) gives Y5 + iY0 = 1+u2

2u + i p
uτ , Y1 + iY2 = 1−u2

2u + i p
uτ ,
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Y3,4 = 0 .† It corresponds to the massless geodesic running parallel to the
R1,3 boundary in the Poincare coordinates where (ds2)AdS5 = 1

z2 (dxmdxm +
dz2): x0 = x3 = pτ, z = u = const (see also [12]). An expansion near this
geodesic is used to define the light-cone gauge in [46], i.e. it should represent
a light-cone vacuum state.

Below we would like to study non-trivial (σ-dependent) solitonic solutions
of classical closed string equations in AdS5 × S5 that have finite 2-d energy
and carry finite space-time energy and spins, i.e. 1+2 plus 3 commuting
conserved charges of the O(2, 4) × O(6) isometry group. The conformal
gauge constraints will then imply a relation between the energy and the
spins (a = 1, 2; i = 1, 2, 3)

E = E(Sa,Ji; kp) , i.e. E =
√
λ E(

Sa√
λ
,
Ji√
λ

; kp) , (2.24)

where kp are “topological” numbers determining the particular type (e.g.,
shape) of the rotating solutions. We will be interested in solutions that
have a regular dependence of E on on λ in the large spin limit as in (1.2).
A necessary condition for that appears to be to have large total angular
momentum in the S5 direction. That applies to both rotating [14] and
oscillating [38] solutions. Note also that rotating solutions in S5 (but not in
AdS5) have a “nearly-BPS” interpretation [41] in the formal λ→ 0 limit.

In general, coset space sigma models are known to be integrable [48,49].
To make this formal integrability property explicit and useful one needs to
specify a class of solutions by choosing a special ansatz for string coordinates.
Before discussing particular rotating strings in S5 and AdS5 let us first make
some general comments on the corresponding classical sigma model and its
conserved charges.

3. Rt × S5 sigma model: classical integrability and
conserved charges

Let us consider the classical S5 sigma model embedded into string theory by
adding an extra time direction Rt. This may be viewed as a special case of
the AdS5 × S5 sigma model where the string is placed at the center ρ = 0
of AdS5 while moving in S5.

Introducing ξ± = 1
2(τ ±σ) and ∂± = ∂τ ±∂σ the corresponding equations

† In this case in addition to the Cartan components E = S50 =
√

λ 1+u2

2u
p and S12 = −

√
λ 1−u2

2u
p

we also have nonvanishing S01 and S25.
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of motion and conformal gauge constraints can be written as (cf. (2.12))

∂+∂−XM + (∂+XN∂−XN )XM = 0 , XMXM = 1 , (3.1)

∂+XM∂+XM = (∂+t)2 , ∂−XM∂−XM = (∂−t)2 , (3.2)

where t satisfies ∂+∂−t = 0, which have general solution (κ = const)

t = κτ + h+(τ + σ) + h−(τ − σ) . (3.3)

The equations (3.1), (3.2) are invariant under 2-d conformal transformations,
ξ± → F±(ξ±), so given a solution XM (ξ+, ξ−) one can find another one as
X̃M (ξ+, ξ−) = XM (F+(ξ+), F−(ξ−)). One can also use this residual confor-
mal symmetry to make the components of the stress tensor ∂+XM∂+XM

and ∂−XM∂−XM equal to a constant, or, which is equivalent in the present
case, to gauge away h± in (3.3), putting t in the form t = κτ . When only
3 of XM ’s are non-zero (as in the case of the O(3) invariant sigma model )
one can show [48] that (3.1) reduces to the 2-d sine-Gordon equation

∂+∂−α+ sinα = 0 , cosα = ∂+XM∂−XM . (3.4)

Similar reduced systems can be derived also from other O(n) invariant sigma
models [50].∗

The above equations (3.1) admit various special solutions. One is the
“flat-space” or “chiral” solution (for which the Lagrange multiplier Λ in
(2.12) vanishes): XM = f+

M (ξ+) or XM = f−M (ξ−) for particular values of
M . In contrast to the flat-space case, a linear combination of such solutions
is no longer a solution, so one may thus say that (3.1) describes scattering of
left-moving and right-moving light-like energy lumps [48]. For chiral XM to
satisfy the string theory constraints (3.2) we need to make a special choice
of h± in t.

Let us now review various types of local and non-local conserved currents
in this sigma model (see, e.g., [50, 53]). One can define a first-order linear
system (Lax pair) [48] whose consistency is equivalent to the equations (3.1):

∂+R
(`) = (1− `−1)j+R(`) , ∂−R

(`) = (1− `)j−R(`) , (3.5)

R(`)(R(`))T = (R(`))TR(`) = I ,

where R(`) is an so(6) matrix and

(ja)MN = 2(XM∂aXN −XN∂aXM ) . (3.6)

∗ A relation to the sine-Gordon system appeared previously in the context of strings moving in

constant curvature spaces in [51,52].
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One can then construct a new solution from a given one as X(`)
M = R

(`)
MNXN .

Solving (3.5) by the inverse scattering method is subtle due to complications
related to the choice of boundary conditions [49,50] (e.g., on an infinite line,
for ja → 0 at spatial infinity the solution R(`) does not have plane-wave
behavior). Still, (3.5) may be used as a basis for analyzing the integrability
properties of the sigma model .

One approach is to look at non-abelian (non-commuting) non-local con-
served charges related to Yangians [54]. At the same time, it is important
also to study an infinite family of commuting local conserved charges whose
existence is a manifestation of integrability of the corresponding equations
of motion. These may be constructed using the Bäcklund transformation. If
XM is a given “trial” solution of (3.1), let us define its Bäcklund transform
X

(γ)
M as another solution satisfying [20,53],

∂+(X(γ)
M +XM ) =

1
2

(1 + γ−2)X(γ)
N ∂+XN (X(γ)

M −XM ) , (3.7)

∂−(X(γ)
M −XM ) = −1

2
(1 + γ2)X(γ)

N ∂−XN (X(γ)
M +XM ) , (3.8)

X
(γ)
M X

(γ)
M = 1 , XMXM = 1 , X

(γ)
M XM =

1− γ2

1 + γ2
, X

(0)
M = XM .(3.9)

Here γ is a spectral parameter. One can write the solution of the equations
(3.8) as an expansion in γ

X
(γ)
M = XM +

∞∑
k=1

X(k)Mγ
k , X(1)M =

2∂+XM√
∂+XN∂+XN

, ... . (3.10)

One can define the generating function of local commuting conserved scalar
charges associated with the original solution XM by [20,53]

Q(γ) =
1
2
γ

∫ 2π

0

dσ

2π
X

(γ)
M (∂+XM + γ2∂−XM ) =

∞∑
k=2

Qkγ
k , (3.11)

Q2 =
1
2

∫ 2π

0

dσ

2π
X(1)M∂+XM =

∫ 2π

0

dσ

2π

√
∂+XN∂+XN =

∫ 2π

0

dσ

2π
∂+t ,

(3.12)

Qk =
1
2

∫ 2π

0

dσ

2π
(
X(k−1)M∂+XM +X(k−3)M∂+XM

)
, k ≥ 3 . (3.13)

Here in (3.12) we used the constraint (3.2). Then Q2 can be interpreted as
the space-time energy: since the general solution for t is given by (3.3), we
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conclude that Q2 = κ = E . For values of these charges on specific solutions
see [20].

One can also define an infinite number of conserved non-local so(6) Lie
algebra valued (i.e. matrix) currents and associated charges as for any prin-
cipal or coset sigma model [48,55]. Let us follow [55] and replace XM by an
orthogonal O(6) (or unitary SU(4)) matrix

g = eiπP = 1− 2P , (3.14)

where PMN ≡ XMXN is a projector since XMXM = 1. Then g = g−1 =
1− 2P and

tr (∂ag∂ag
−1) = 8 ∂aXM∂aXM , ja ≡ g−1∂ag = ja(X) , ∂aja = 0 ,

(3.15)
where the conservation of ja(X) given by (3.6) follows from the equations of
motion (2.12), (3.1) forXM . DefiningDa = ∂a+ja we get [∂a, Da] = 0. Then
starting with the conserved current ja one can construct an infinite sequence
of conserved non-local currents jn

a using the following iterative procedure.
Given a conserved current j(n)

a we define a matrix function χ(n) and use it
to construct the next conserved current

j(n)
a = εab∂

bχ(n) , j(n+1)
a = Daχ

(n) , j(1)a ≡ ja , χ(0) = 1 . (3.16)

This leads to an infinite set of conserved charges

Q(n) =
∫ 2π

0
dσ j(n)

τ (τ, σ) . (3.17)

For example,

Q(1)
MN =

∫ 2π

0
dσ jτMN (τ, σ) = 2

∫ 2π

0
dσ (XM∂τXN −XN∂τXM ) , (3.18)

is proportional to the O(6) angular momentum JMN (2.14), and

∂σχ
(1) = jτ , χ

(1)
MN (τ, σ) =

∫
dσ′ jτMN (τ, σ′) , (3.19)

Q(2)
MN =

∫ 2π

0
dσ′ [∂τ + jτ (τ, σ′)]MKχ

(1)
KN (τ, σ′) . (3.20)

These relations can be consistently defined on an infinite spatial (σ) line
but not on a circle which is what we need for the closed string case: for
XM periodic, ja (3.6) is also periodic, but its integral in (3.19) may not
be, and thus Q(2) may not be well-defined (see also related comments in
[56, 57]). There are, however, particular classes of solutions (such as the
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circular solutions discussed below) for which these charges may be well-
defined.

Let us mention also that as in other sigma models with a current satisfying
ja = g−1∂ag, ∂

aja = 0 we can construct a set of chiral currents – symmetric
higher spin 2-d local currents which are scalars under O(6) [58,59]

T+...+ = tr jn
+ , ∂−T+...+ = 0 , T−...− = tr jn

− , ∂+T−...− = 0 . (3.21)

The special case of spin 2 currents T++ and T−− are the components of the
sigma model stress tensor proportional to ∂±XM∂±XM . There are also other
examples of local chiral currents built out of totally symmetric invariant
tensors associated with the corresponding Lie algebra [59].

Similar non-local and local currents can be defined [56] also for the full
AdS5 × S5 supercoset string sigma model of [3].†

To conclude, the above sigma model admits an infinite set of conserved
charges which is usually interpreted as implying its integrability [48]. The use
of this integrability of a 2-d system for classifying finite energy solutions on
a 2-d cylinder is not immediately clear however. In one dimension a system
is integrable if it has the same number of commuting integrals of motion
as the number of its degrees of freedom. In 2-d where one has an infinite
number of degrees of freedom it is usually assumed that having infinite set
of conserved quantities implies integrability. A more practical definition of
integrability could be a prescription of how to construct explicitly a generic
solution with the required properties. Formal solution-generating techniques
(see, e.g., [62]) are not guaranteed a priori to produce finite energy solutions
(cf. [63]).

As we shall see below, one can understand the integrability of the Rt×S5

sigma model in a very explicit way by reducing it [18,34] on a special “rotat-
ing string” ansatz [14] to a well-known 1-d integrable system, the Neumann
system [62, 64], or its generalization, the Neumann-Rosochatius (NR) sys-
tem [65,66].

4. Reduction of Rt × S5 sigma-model to 1-d Neumann
system

4.1. Rotating string ansatz

Let us consider a string located at the center of the spatial part of AdS5

with time coordinate being proportional to the worldsheet time, i.e. with

† That the AdS5 × S5 superstring, being a conformal extension of a bosonic coset sigma model ,

should be integrable was suggested previously in [46,60] (see also [61]).
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the AdS5 coordinates in (2.15) given by

Y5 + iY0 = eit , Y1, ..., Y4 = 0 , t = κτ . (4.1)

The general case when the string can be extended and rotate in both AdS5

and S5 will be discussed below in section 6. The S5 metric (2.17) has three
commuting translational isometries in ϕi which give rise to three global
commuting integrals of motion Ji (2.19) , so to get solutions with non-zero
Ji it is natural to choose the following “rotating string” ansatz for the S5

coordinates XM in (2.15) [14,18,34]

X1 ≡ X1 + iX2 = z1(σ) eiw1τ , X2 ≡ X3 + iX4 = z2(σ) eiw2τ ,

X3 ≡ X5 + iX6 = z3(σ) eiw3τ . (4.2)

Here wi may be interpreted as frequencies of rotation in the three orthogonal
planes. The functions zi may be real [18] or, in general, complex [34] and
should satisfy XMXM = 1, i.e.

zi = rie
iαi ,

3∑
i=1

r2i = 1 . (4.3)

Thus the shape of a rotating string is not changed in time (i.e. the string is
rigid) and it always belongs to a 2-sphere.

The closed string periodicity condition (2.10) implies

ri(σ + 2π) = ri(σ) , αi(σ + 2π) = αi + 2πmi , mi = 0,±1,±2, ... .
(4.4)

Comparing (4.2) to (2.15) we conclude that the S5 angles ϕi may depend on
both τ and σ,

ϕi = wiτ + αi(σ) , (4.5)

with the integers mi in (4.4) thus playing the role of “winding numbers” in
the Cartan directions ϕi.

The space-time energy E of the string in (2.18) and the spins (2.19)
forming a Cartan subalgebra of O(6) are given by

E =
√
λ E , E = κ , (4.6)

Ji ≡
√
λ Ji , Ji = wi

∫ 2π

0

dσ

2π
r2i (σ) ,

Ji

wi
= 1 . (4.7)

All other components of the conserved angular momentum tensor JMN (2.14)
vanish automatically if all wi are different [18], but their vanishing should
be checked if two of the three frequencies are equal.
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4.2. Integrals of motion and constraints

In general, starting with

Xi(τ, σ) = ri(τ, σ) eiϕ(τ,σ) , (4.8)

one finds that the Lagrangian (2.6) reduces to

LS =
1
2

3∑
i=1

[
ṙ2i − r′2i + r2i (ϕ̇

2
i − ϕ′2i )

]
+

1
2

Λ
( 3∑

i=1

r2i − 1
)
. (4.9)

One can then check that the “rotating string” ansatz (4.2), i.e.

ri = ri(σ) , ϕi = wiτ + αi(σ) (4.10)

is indeed consistent with the equations of motion following from (4.9). Note
that because of the formal τ ↔ σ symmetry of the 2-d equations of motion
another special solution is given by the “pulsating string” ansatz: ri =
ri(τ), ϕi = miσ + βi(τ), where mi are now integer winding numbers. Then
ri(τ) is a solution of a similar Neumann system discussed below (see also
section 8).

Substituting (4.2) into (2.6) we get the following effective 1-d “mechani-
cal” system for a particle on a 5-d sphere

L =
1
2

3∑
i=1

(z′iz
′∗
i − w2

i ziz
∗
i )− 1

2
Λ

( 3∑
i=1

ziz
∗
i − 1

)
, (4.11)

with σ playing the role of time (we changed the sign of L). If we set zk =
xk + ixk+3 (k = 1, 2, 3), this is recognized as a special case of the well-
known integrable system – the standard n = 6 Neumann model [62, 64, 65]
describing a harmonic oscillator on a 5-sphere

LN =
1
2

6∑
M=1

(x′2M − w2
Mx

2
M )− 1

2
Λ

( 6∑
M=1

x2
M − 1

)
. (4.12)

Here three of the six frequencies are equal to the other three, wk+3 = wk,
k = 1, 2, 3. This implies integrability of the model (4.11) and determines its
integrals of motion. Indeed, the Neumann system (4.11) has the following
six commuting integrals of motion (see, e.g., [64, 65]):

FM = x2
M +

6∑
M 6=N

(xMx
′
N − xNx

′
M )2

w2
M − w2

N

,

6∑
M=1

FM = 1 . (4.13)
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Since in the present case 3 of the 6 frequencies are equal one needs to consider
3 non-singular combinations of FM which then give the 3 integrals of (4.11):

Ii = Fi + Fi+3 , i = 1, 2, 3 ,
3∑

i=1

Ii = 1 . (4.14)

More explicitly, (4.11) can be written as

L =
1
2

3∑
i=1

(r′2i + r2i α
′2
i − w2

i r
2
i )−

1
2

Λ
( 3∑

i=1

r2i − 1
)
, (4.15)

implying that

α′i =
vi

r2i
, vi = const , (4.16)

where vi are three integrals of motion, which complement the two indepen-
dent integrals in (4.14). Eliminating α′i from (4.15) (changing the sign of the
corresponding term to reproduce the same equations for ri) we then get the
following effective Lagrangian for the radial coordinates

L =
1
2

3∑
i=1

(
r′2i − w2

i r
2
i −

v2
i

r2i

)
− 1

2
Λ

( 3∑
i=1

r2i − 1
)
. (4.17)

When the new integration constants vi vanish, i.e. αi are constant, we go
back to the case of the n = 3 Neumann model studied in [18]. For non-zero
vi [34] the Lagrangian (4.17) describes the so called Neumann-Rosochatius
(NR) integrable system (see, e.g., [66]). As explained above, its integrability
follows from the fact that it is a special case of the n = 6 Neumann system,
with the integrals of motion (4.14) taking the following explicit form:

Ii = r2i +
3∑

j 6=i

1
w2

i − w2
j

[
(rir′j − rjr′i)2 +

v2
i

r2i
r2j +

v2
j

r2j
r2i

]
. (4.18)

This gives two additional (besides vi) independent integrals of motion.
The conformal gauge constraints (2.7), (2.8) or (3.2) now become

κ2 =
3∑

i=1

(
r′ 2i + w2

i r
2
i +

v2
i

r2i

)
, (4.19)

3∑
i=1

wivi = 0 . (4.20)
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As a consequence of (4.20) only two of the three integrals of motion vi are
independent of wi. Note also that (4.19), (4.20) imply κ2 =

∑3
i=1

[
r′2i +

(wiri± vi
ri

)2
]
, so that the space-time energy E or κ is minimized if ri = const

and (wiri ± vi
ri

)2 take minimal value, i.e. if w2
i ri −

v2
i

r3
i

= 0. Since all three
wi/vi cannot be positive, this does not mean that κ should vanish. We shall
return to the discussion of such solutions below at the end of section 5.1.

To summarize, we are interested in finding periodic finite-energy solitonic
solutions of the O(6) sigma model defined on a 2-cylinder that carry three
global charges Ji. As discussed in [18] (see also below), the periodicity condi-
tion (4.4) on ri implies that the two integrals of motion ba (two appropriate
independent combinations of Ii in (4.18)) can be traded for two integers
na labelling different types of solutions. Imposing the periodicity condition
(4.4) on αi gives, in view of (4.16), the following constraint:

vi

∫ 2π

0

dσ

r2i (σ)
= 2πmi . (4.21)

It implies that vi should be expressible in terms of the integers mi, fre-
quencies wi and the “radial” integrals ba or na (note also that since the
integral in (4.21) is of a positive function, mi = 0 implies vi = 0).
As a result, the moduli space of solutions will thus be parametrized by
(w1, w2, w3;n1, n2;m1,m2,m3). The constraint (4.20) will give one relation
between these 3+2+3 parameters. As a consequence, trading wi for the
angular momenta using (4.7), the energy of the solutions as determined by
(4.6) and the conformal gauge constraint (4.19) will be a function of the
SO(6) spins and the “topological” numbers na and mi (cf. (2.24))

E = E(Ji;na,mi) , i.e. E =
√
λ E

(
Ji√
λ

;na,mi

)
. (4.22)

The constraint (4.20) will provide one additional relation between Ji and
na,mi. Our aim will be to study the relation (4.22) for various types of
solutions and in various limits.

4.3. Special case of n = 3 Neumann system

In the special case of vi = 0 (when the angles αi are constant, i.e. ϕi

in (4.10) depend only on τ) the NR system (4.17) reduces to the n = 3
Neumann system with the two independent integrals in (4.18) and only one
non-trivial constraint (4.19), which expresses the fact that κ is related to the
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1-d Hamiltonian of the Neumann system,

H =
1
2

3∑
i=1

(r′2i + w2
i r

2
i ) =

1
2
κ2 . (4.23)

Note that this Hamiltonian is related to the 3 integrals of motion in (4.18) by
H = 1

2

∑3
i=1w

2
i Ii. Any two of these three integrals are enough to integrate

this dynamical system. In order to find the relevant closed string solutions
we need also to impose the periodicity condition (4.4), i.e. we are interested
in the subsector of periodic solutions of the Neumann model.

Since ri belong to a 2-sphere (4.3), the corresponding equations can be
expressed in terms of the two S2 angles, namely, γ and ψ in (2.15). However,
in the general case it is convenient to use another parametrization of S2 –
to replace ri by the two “ellipsoidal” coordinates ζa which are the roots of
the equation

∑3
i=1

r2
i

ζ−w2
i

= 0:

r1 =

√
(ζ1 − w2

1)(ζ2 − w2
1)

w2
21w

2
31

, r2 =

√
(w2

2 − ζ1)(ζ2 − w2
2)

w2
21w

2
32

, (4.24)

r3 =

√
(w2

3 − ζ1)(w2
3 − ζ2)

w2
31w

2
32

, w2
ij ≡ w2

i − w2
j . (4.25)

Expressing the integrals of motion (4.13) in terms of ζa one finds a system
of two 1-st order equations(dζ1

dσ

)2
= −4

P (ζ1)
(ζ2 − ζ1)2

,
(dζ2
dσ

)2
= −4

P (ζ2)
(ζ2 − ζ1)2

. (4.26)

The function P (ζ) is the following 5-th order polynomial

P (ζ) = (ζ − w2
1)(ζ − w2

2)(ζ − w2
3)(ζ − b1)(ζ − b2) . (4.27)

The parameters b1, b2 here are the two constants of motion which can be
expressed in terms of the integrals Ii in (4.18) by solving

b1 + b2 = (w2
2 + w2

3)I1 + (w2
1 + w2

3)I2 + (w2
1 + w2

2)I3 ,

b1b2 = w2
2w

2
3I1 + w2

1w
2
3I2 + w2

1w
2
2I3 . (4.28)

The Neumann system’s Hamiltonian (4.23) is then H = 1
2

(
w2

1 + w2
2 + w2

3 −
b1−b2

)
= 1

2κ
2. The polynomial P (ζ) in (4.27) can be interpreted as defining

a hyperelliptic curve of genus 2 defined by the equation s2 + P (ζ) = 0, with
s and ζ being two complex coordinates of C2. The formal solution of the
system (4.26) is then given in terms of the related θ-functions [18,67].
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Thus, the most general three-spin string solutions are naturally associated
with special genus 2 hyperelliptic curves [18]. The simpler two-spin case
(e.g., w3 = 0) is associated with an elliptic curve and the corresponding
relation between the energy and the spins then involves elliptic functions
(see [11,17,19]). Elliptic integrals appear also in the one-spin case [8, 36].

The system (4.26) allows one to achieve the full separation of the vari-
ables: dividing one equation in (4.26) by the other one can integrate, e.g., ζ2
in terms of ζ1 and then obtain a closed equation for ζ1 as a function of σ. In
finding solutions we need also to take into account the periodicity conditions
on ri now viewed as conditions on ζ1, ζ2. The spins Ji in (4.7) expressed in
terms of ζ1, ζ2 satisfy [18]

3∑
i=1

wi(wi − Ji) =
∫ 2π

0

dσ

2π
(ζ1 + ζ2) , (4.29)

3∑
i=1

Ji

w3
i

=
1

w2
1w

2
2w

2
3

∫ 2π

0

dσ

2π
ζ1ζ2 ,

3∑
i=1

Ji

wi
= 1 . (4.30)

To find the energy (4.6) as a function of the spins Ji we need to express
the frequencies wi and the Neumann integrals of motion or ba in (4.28) in
terms of Ji. After finding a periodic solution of (4.26), this reduces to the
problem of computing the two independent integrals on the r.h.s. of (4.29)
and (4.30).

Let us briefly mention that the case of the NR system (4.17) with vi 6= 0
can be treated similarly [34]. We can again introduce the ellipsoidal coor-
dinates (ζ1, ζ2), and expressing the integrals of motion (4.18) in terms of ζa
we end up with the same system (4.26) where now

P (ζ) = (ζ − b1)(ζ − b2)(ζ − w2
1)(ζ − w2

2)(ζ − w2
3) + v2

1(ζ − w2
2)

2(ζ − w2
3)

2

+ v2
2(ζ − w2

1)
2(ζ − w2

3)
2 + v2

3(ζ − w2
1)

2(ζ − w2
2)

2 . (4.31)

The Hamiltonian of the NR system reduces to H= 1
2

[∑3
i=1(w

2
i +v

2
i )−b1−b2

]
.

As in the pure Neumann case, P (ζ) is the fifth order polynomial which
again defines a hyperelliptic curve s2 + P (ζ) = 0. The general solution of
equations (4.26) can be again given in terms of theta-functions associated
with the Jacobian of the hyperelliptic curve. An example of a solution is
provided by the v3 = 0 case where ζ = w2

3 is a root of P (ζ) and then the
NR system can be solved in terms of the elliptic functions [34].
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4.4. Types of solutions and rotating strings in flat space

Let us consider for simplicity the case with vi = 0 described by the n = 3
Neumann system (general solutions of the NR system have similar structure).
The five parameters wi (or Ji) and ba of the solutions of the Neumann
system may be viewed as coordinates on the moduli space of periodic finite-
energy solitons. The values of ba will not be arbitrary: such solutions will
be classified by two integer “winding number” parameters na which will be
related to wi and ba through the periodicity condition. In general, there will
be several different solutions for given values of Ji, i.e. the energy of the
string E will be a function not only of Ji but also of na: there will be a
discrete series of solutions with energies starting from some minimal value.

Depending on the values of these parameters (i.e. location in the moduli
space) one may find different geometric types (or shapes) of the resulting
rotating string solutions. The shape of the string does not change with time
and the string may be “folded” (with topology of an interval) or “circular”
(with topology of a circle). A folded string may then be “straight” as in the
one- and two-spin examples considered in [8] and [17], or “bent” (at one or
several points) as in the general three-spin case [18]. A “circular” string may
have the form of a round circle as in the two-spin and three-spin solutions
of [14,15] or may have a more general “bent circle” shape as in the three-spin
solutions in [18].

It is useful to review how these different string shapes appear in the case of
a closed string rotating in flat R1,5 Minkowski space. In the conformal gauge,
string coordinates are then given by solutions of free 2-d wave equation, i.e.
by combinations of ein(τ±σ), subject to the standard constraints (3.2). For
a closed string rotating in the two orthogonal spatial 2-planes and moving
along the 5-th spatial direction we find (cf. (4.2); here t = κτ as in (4.1))

X1 + iX2 = r1(σ) eiw1τ , X3 + iX4 = r2(σ) eiw2τ , X5 = p5τ , (4.32)

w1 = n1 , w2 = n2 , r1 = a1 sin(n1σ) , r2 = a2 sin[n2(σ+σ0)] . (4.33)

Here σ0 is an arbitrary integration constant, and na are arbitrary integers.
The conformal gauge constraint implies that κ2 = p2

5 + n2
1a

2
1 + n2

2a
2
2. Then

the energy, the two spins and the 5-th component of the linear momentum
are (here the tension parameter is

√
λ → 1

α′ )

E =
κ

α′
, J1 =

n1a
2
1

2α′
, J2 =

n2a
2
2

2α′
, P5 =

p5

α′
, (4.34)
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i.e.

E =

√
P 2

5 +
2
α′

(n1J1 + n2J2) . (4.35)

To get the two-spin states on the leading Regge trajectory (having minimal
energy for given values of the two non-zero spins) one is to choose n1 =
n2 = 1. The shape of the string depends on the values of σ0 and n1, n2. If
σ0
π is irrational then the string always has a “circular” (loop-like) shape. In
general, the “circular” string will not be lying in one plane, i.e. will have one
or several bends. For rational values of σ0

π the string can be either circular
or folded, depending on the values of n1, n2.

Let σ0 = 0. If n1 = n2 the string is folded and straight, i.e. have no
bends. Indeed, then X1 + iX2 is proportional to X3 + iX4 and thus one
may put the string in a single 2-plane by a global O(4) rotation. If both
n1 and n2 are either even or odd and different then the string is folded and
has several bends (in the 13 and 24 planes). For example, if n2 = 3n1 then
the folded string is wound n1 times and has two bends (for a1 = a2 we have
r2 = r1(3− 4r21)). Next, let us choose σ0 = π

2n2
. Then for n1 = n2 the string

is an ellipsoid, becoming a round circle in the special case of a1 = a2 (i.e.
J1 = J2) [14]. The string is also circular if n1 is even and n2 is odd. If,
however, n1 is odd and n2 is even the string is folded, e.g., if n2 = 2n1 then
the folded string is wound n1 times and has a single bend at one point.

The structure of spinning string soliton solutions in curved S5 case is
analogous. The equations of motion of the Neumann system are linearized
on the Jacobian of the hyperelliptic curve. The image of the string in the
Jacobian whose real connected part is identified with the Liouville torus can
wind around two non-trivial cycles with the winding numbers n1 and n2 re-
spectively [18]. The size and the shape of the Liouville torus are governed by
the moduli (wi, ba). Specifying the winding numbers n1, n2, two of the five
parameters (wi, ba) are then uniquely determined by the periodicity condi-
tions. The actual rigid shape of the physical string lying on the two-sphere
will depend on the numbers n1, n2 and on the remaining moduli parameters
(relative values of ba and w2

i ): it may be of (bent) folded type or of (de-
formed) circular type. Various examples of folded and circular three-spin
string solutions and their energies were discussed in [14, 18]. In most three-
spin cases finding an explicit relation for the energy (4.22) is complicated,
but one can always develop the large Ji perturbation theory [18]. We shall
discuss some examples of such solutions below.

Finally, let us note that while the Neumann or NR 1-d systems have a
small finite number of commuting integrals, there are infinitely many com-
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muting conserved charges in the original 2-d sigma model and the corre-
sponding integrable spin chain on the SYM side. These are expressed in
terms of the NR integrals in the present case, see [20] for details.

5. Simplest circular solutions in Rt × S5: Λ = const

A simple special class of solutions of the system (4.11) or (4.17) is found by
demanding that the Lagrange multiplier Λ in (2.12) is constant, i.e. Ẋ2

M −
X ′2

M = const. In this case the radii ri turn out to be constant (and na = 0,
i.e. there are no bends). This represents an interesting new class of circular
three-spin solutions [34] which includes as a special case the circular solution
of [14] where two out of three spins are equal.

5.1. Constant radii solution

Let us start with the Lagrangian (4.11) written in terms of three complex
coordinates zi. Then the equations of motion are

z′′i +m2
i zi = 0 , m2

i ≡ w2
i + Λ ,

3∑
i=1

|zi|2 = 1 , (5.1)

Λ =
3∑

i=1

(|z′i|2 − w2
i |zi|2) . (5.2)

Equation (5.1) can be easily integrated if one assumes that Λ = const,

zi = aie
imiσ + bie

−imiσ , (5.3)

where ai, bi are complex coefficients. The periodicity condition zi(σ+ 2π) =
zi(σ) implies that mi must be integer. It is easy to show [34] that modulo
the global SU(3) ∈ SO(6) invariance the solution of (5.3) that satisfies both
Λ = const and

∑3
i=1 |zi|2 = 1 should have bi = 0 (or ai = 0), i.e. should

look like (mi may be positive or negative and ai may be made real by U(1)
rotations)

zi = aie
imiσ ,

3∑
i=1

a2
i = 1 . (5.4)

It may seem that one may get a new solution if two of the windings mi are
equal while the third is zero, i.e. z1 = a cosmσ, z2 = a sinmσ, z3 =

√
1− a2

(which is, in fact, the circular solution of [14]), but this configuration can be
transformed into the form (5.4) by a global SU(2) rotation.
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One can also rederive (5.4) by starting with (4.17), (4.16). The potential
wir

2
i + v2

i

r2
i

in (4.17) has a minimum, and that suggests that ri =const may
be a solution. The equations of motion that follow from (4.17)

r′′i = −w2
i ri +

v2
i

r3i
− Λri , (5.5)

Λ =
3∑

j=1

(
r′2j − w2

j r
2
j +

v2
j

r2j

)
,

3∑
j=1

r2j = 1 (5.6)

are indeed solved by

ri(σ) = ai = const , w2
i −

v2
i

a4
i

= ν2 = const , Λ = −ν2 , (5.7)

where ν is an arbitrary constant (which may be positive or negative). Equa-

tion (5.7) then implies a2
i = |vi|√

w2
i−ν2

, α′i = vi

a2
i

= vi
|vi|

√
w2

i − ν2 ≡ mi, i.e.

αi = α0i + miσ, where mi must be integer to satisfy the periodicity con-
dition (4.4) and α0i may be set to zero by independent SO(2) rotations.
Then

w2
i = m2

i + ν2 , vi = a2
imi ,

3∑
i=1

a2
i = 1 . (5.8)

The constraints (4.19), (4.20) give κ2 = 2
∑3

i=1 a
2
iw

2
i − ν2, and∑3

i=1 a
2
iwimi = 0 . As a result, we get the following relations for the energy

and spins [34] (cf. (4.6), (4.7))

E2 = 2
3∑

i=1

√
m2

i + ν2 Ji − ν2 , (5.9)

3∑
i=1

Ji√
m2

i + ν2
= 1 , (5.10)

3∑
i=1

miJi = 0 . (5.11)

We shall assume for definiteness that all wi and thus all Ji are non-negative.
Then (5.11) implies that one of the three mi’s must have the opposite sign
to the other two. One can check directly that the only non-vanishing com-
ponents of the SO(6) angular momentum tensor JMN (2.14) on this solution
are indeed the Cartan ones Ji in (2.19).
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The special case of ν2 = 0 (or Λ = 0) corresponds to a solution for the
string in flat space which can be embedded into S5 by choosing the free
radial parameters of a circular string to satisfy the condition

∑3
i=1 a

2
i = 1.

Indeed, as follows from (5.8) for ν2 = 0 we find that all frequencies must
be integer wi = |mi|. We may choose, e.g., m1 < 0, m2 > 0, m3 > 0,
so that the solution is a combination of the left and right moving waves in
different directions (we use complex combinations of the coordinates in (4.2),
cf. (4.32), (4.33))

X1 = a1e
im1(σ−τ), X2 = a2e

im2(σ+τ), X3 = a3e
im3(σ+τ),

3∑
i=1

a2
i = 1 .

(5.12)
Here we get from (5.9)–(5.11)

E2 = 2
3∑

i=1

|mi|Ji ,
3∑

i=1

Ji

|mi|
= 1 ,

3∑
i=1

miJi = 0 . (5.13)

This corresponds to a very special point in the moduli space of solutions.
For fixed mi, we get two constraints on Ji, and the energy is given by the
standard flat-space Regge relation (cf. (4.35)). Then |m1|J1 = m2J2+m3J3

(where J2 and J3 are related via
∑3

i=1
Ji
|mi| = 1) and thus E2 = 4|m1|J1. The

energy of this “flat” solution thus does not have a regular (1.2) expansion in
integer powers of 1

J 2 = λ
J2 , J =

∑3
i=1 Ji. This will no longer be so in the

genuinely “curved” ν 6= 0 case where we will have indeed a regular expansion
for the energy in 1

J 2 , as in the case of the circular solution of [14]. This then
opens up a possibility of direct comparison with perturbative anomalous
dimensions in SYM theory.

5.2. Energy as a function of spins

In general, to express E in terms of Ji and mi one first solves the condition
(5.10) in terms of ν, determining ν as a function of Ji and mi and then
substitutes the result into (5.9). The condition (5.11) may be imposed at
the very end, implying that for given spins Ji the solution exists only for a
special choice of the integers mi. Expanding in large total spin J =

∑3
i=1 Ji

as in [14,18] one finds [34] that ν2 = J 2 −
∑3

i=1m
2
i
Ji
J + ... and thus

E = J +
1

2J

3∑
i=1

m2
i

Ji

J
+ ... . (5.14)
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Thus, as in other examples in [14, 17, 18], here the energy admits a regular
expansion in 1

J 2 = λ
J2 as in (1.2)

E = J
(
1 +

λ

2J2

3∑
i=1

m2
i

Ji

J
+ ...

)
= J +

λ

2J

3∑
i=1

m2
i

Ji

J
+ ... , (5.15)

where mi should satisfy the constraint
∑3

i=1miJi = 0.
Let us now look at some special cases. In the one-spin case (0, 0, J3), i.e.

J1 = J2 = 0, a1 = a2 = 0, we have w2
3 = ν2, i.e. m3 = 0 and J3 = w3, and

then E = J3. This is simply the point-like BMN geodesic case: there is no
σ-dependence.

In the two-spin case (J1, J1, 0), i.e. J3 = 0, a3 = 0, the equation (5.10)
for ν2 becomes a quartic equation. Its simple explicit solution is found in
the equal-spin case when J1 = J2, i.e. when

a1 = a2 =
1√
2
, m2 = −m1 ≡ m > 0 , (5.16)

so that

E =
√
J 2 +m2 , J ≡ J1 + J2 = 2J2 , (5.17)

i.e.

E = J

√
1 +m2

λ

J2
. (5.18)

We get

X1 =
1√
2
eiwτ−imσ , X2 =

1√
2
eiwτ+imσ , w =

√
ν2 +m2 . (5.19)

This solution is thus equivalent to the circular two-spin solution of [14] – it is
related to it by an SO(4) rotation: X′

1 = 1√
2
(X1+X2), X′

2 = 1√
2
(−X1+X2).

In the general case of two unequal spins we can again solve (5.10) in the
limit of large J1,J2 (for fixed m1,m2), getting the special case of (5.14)
with m1J1 +m2J2 = 0, J3 = 0.

Another special case is (J2, J2, J3) when two out of three non-vanishing
spins are equal, e.g., J1 = J2. Setting

m3 = 0 , m1 = −m2 = m , a3 = a < 1 , a1 = a2 =
√

1− a2 , (5.20)

J3 = a2ν , J1 = J2 =
1
2
(1− a2)

√
m2 + ν2 , (5.21)



September 2, 2004 10:7 WSPC/Trim Size: 9.75in x 6.5in for Proceedings tseytlin

1678 A.A. Tseytlin

we thus find from (5.14)

E = J +
m2J2

J 2
+... , i.e. E = J+

m2λJ2

J2
+... , J = 2J2+J3 . (5.22)

This solution is equivalent to the circular three-spin solution with two equal
spins in [14, 15] (the two backgrounds are related by a global rotation in
X2, X3 directions converting eimσ into cosmσ and sinmσ). The correspond-
ing operator in the gauge theory tr (XJ1Y J1ZJ3) + .... (belonging to the
SO(6) representation with Dynkin indices [J2 + J3, 0, J2 − J3] for J2 > J3)
which has the one-loop anomalous dimension equal to (5.22) does indeed
exist as was found in [21].

More generally, we may consider a three-spin solution (J2, J2, J3) with
m3 6= 0, so that (m1 +m2)J2 +m3J3 = 0. Then (5.15) gives

E = J +
J2

2J 2

[
m2

1 +m2
2 + (m1 +m2)2

J2

J3

]
+ ... , (5.23)

which generalizes (5.22) to the case when m1 + m2 6= 0. The energy is
minimal in the latter case. This suggests that the band of such states in the
same representation [J2 + J3, 0, J2 − J3] (if | m3

m1+m2
| > 1) but with higher

energy than (5.22) should also be found on the SYM side.

To summarize, the constant-radii solutions of the NR system represent a
simple generalization of the circular two-spin and three-spin solutions of [14]
which have regular expansion of the energy in powers of λ

J2 . Therefore,
it should be possible to match, as in [16, 18, 19, 21], the coefficient of the
O(λ) term in (5.14) with the SYM anomalous dimensions determined by
the Hamiltonian of the integrable SU(2, 2|4) spin chain [22,23] in the corre-
sponding three-spin subsector of states.

5.3. Quadratic fluctuations near circular solutions

The remarkable simplicity of the circular solutions discussed above makes
it easy to find the quadratic fluctuation action and to compute the corre-
sponding spectrum of string fluctuations. This in turn allows one to analyze
the stability of the solution and to find the string one-loop correction to
the ground-state energy, in the same way as was done in [15] for a particu-
lar three-spin circular solution with two equal spins (5.21). In spite of the
σ-dependence of the solution, the quadratic action turns out to have con-
stant coefficients, just like in the BMN case [4,6] when one expands near the
point-like geodesic in S5 [8,11]. Sending J →∞ for fixed λ

J2 � 1 suppresses
higher loop corrections to masses of excited string states. As a result, as in
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the “plane-wave” BMN case, the string fluctuation spectrum can be found
exactly.

To illustrate this, we shall consider the bosonic part of the quadratic
fluctuation action following [34]. The fermionic part of the spectrum can
be easily found in the same way as was done (in a special case (5.21)) in
a [15]. In contrast to the BMN case, here we are expanding near a non-
supersymmetric solution, and the resulting world-sheet string action (in the
static or light-cone type gauge) will not have a world-sheet supersymmetry.
There remains an interesting question if a “nearly-BPS” property of similar
rotating string solutions in the λ→ 0 limit observed in [41] imposes certain
constraints on the world-sheet action.

It is straightforward to find the quadratic fluctuation Lagrangian by ex-
panding near the solution (5.4) or (5.7)–(5.8) following [15, 34]. Using 3
complex combinations of coordinates in (4.2) and expanding (Xi → Xi +X̃i)
the sigma model action (2.5) near the classical solution (5.4),

Xi = aie
iwiτ+imiσ , w2

i =
√
m2

i + ν2 , (5.24)
3∑

i=1

a2
i = 1 ,

3∑
i=1

a2
iwimi = 0 , (5.25)

we find the following Lagrangian for the quadratic fluctuations (see [15])

L̃ = −1
2
∂aX̃i ∂

aX̃∗
i +

1
2

ΛX̃i X̃∗
i , (5.26)

where Λ = −ν2 (see (5.7)) and X̃i are subject to the constraint∗

3∑
i=1

(XiX̃∗
i + X∗

i X̃i) = 0 . (5.27)

To solve this constraint we set

X̃i = eiwiτ+imiσ(gi + ifi) , (5.28)

∗ The imposition of the conformal gauge constraints on the fluctuations is not necessary in order

to determine the non-trivial part of the fluctuation spectrum [14, 15] (solving the constraints in

terms of fluctuation of t leads to equivalent results [15]). In addition to S5 fluctuations there are

also AdS5 fluctuations: one massless and four massive ones with mass κ coming from the classical

value of the Lagrange multiplier Λ̃ [14,15].
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where gi and fi are real functions of τ and σ. Then (5.27) reduces to

3∑
i=1

aigi = 0 . (5.29)

Using (5.28) the Lagrangian (5.26) becomes (after integrating by parts, cf.
[15])

L̃ =
3∑

i=1

[
1
2

(
ḟ2

i + ġ2
i − f ′2i − g′2i

)
− 2wifiġi + 2mifig

′
i

]
. (5.30)

To solve the linear relation (5.29) we may apply a global O(3) rotation to
gi, ḡi = Mij(a)gj , which preserves the kinetic terms in (5.30) and trans-
forms

∑3
i=1 aigi into ḡ1; then we may set the latter to zero in the resulting

Lagrangian (5.30). Equivalently, we may solve (5.29) directly for g1 and
substitute it into (5.30). The result (after diagonalization) is a special case
of the following 2-d Lagrangian (summation over p, q is assumed)

L =
1
2
ẋ2

p −
1
2
x′2p + Fpqxpẋq −Hpqxpx

′
q , (5.31)

where xp = (f1, f2, f3, g2, g3) and Fpq and Hpq are constant antisymmetric
matrices depending on ai, wi,mi. Equation (5.31) can be written also as
(ignoring total derivative)

L =
1
2
(ẋp + Fpqxq)2 −

1
2
(x′p +Hpqxq)2 − (FpqFqk −HpqHqk)xpxk , (5.32)

i.e. it represents a massive scalar 2-d theory coupled to a constant 2-d gauge
field (which can be “rotated away” at the expense of making the mass term
τ and σ dependent). The Lagrangian (5.31) can be also interpreted as a
light-cone gauge (u = τ) Lagrangian for the bosonic string sigma model
L = −(ηabgmn + εabBmn)∂ax

m∂bx
n in a (in general, non-conformal) plane-

wave background with the following metric and antisymmetric 2-form field

ds2 = 2dudv+ 2Fpqxpdxqdu+ dxpdxp , B2 = 2Hpqxpdxq ∧ du . (5.33)

By analogy with the BMN case, one may say that the geometry “seen” in
the large J limit by the circular rotating string is a generalized plane-wave
background. The resulting quadratic string excitation spectrum for such an
action can be found in a more or less explicit way (as in [69]).

For example, let us consider the two-spin case where m3 = 0 and

a2
1+a2

2 = 1 , a3 = 0 , a2
1m1w1+a2

2m2w2 = 0 , w2
1−m2

1 = w2
2−m2

2 = ν2 .

(5.34)
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We shall assume that wi > 0, m1 < 0, m2 > 0. In this case f3, g3 decouple
(they have mass ν, cf. (5.26)) and we get the following Lagrangian for the
remaining three xs-fluctuations f1, f2 and (rescaled) g2

L̃ =
1
2
(ḟ2

1 + ḟ2
2 + ġ2

2 − f ′21 − f ′22 − g′22 )

+ 2 (a2w1f1 − a1w2f2) ġ2 − 2 (a2m1f1 − a1m2f2) g′2 . (5.35)

To find the spectrum of characteristic frequencies corresponding to this ac-
tion we note that since fi and gi must be periodic in σ one can expand the
solution of the quadratic fluctuation equations in modes

xs =
∞∑

n=−∞

8∑
k=1

A(k)
sn e

i(Ωn,kτ + nσ) , (5.36)

where k labels different frequencies for a given value of n (we shall suppress
the index k below). Plugging this into the classical equations that follow
from (5.35) one finds the following equation for the four non-trivial char-
acteristic frequencies (it expresses the vanishing of the determinant of the
characteristic matrix)

(Ω2 − n2)2 − 4a2
2(w1Ω−m1n)2 − 4a2

1(w2Ω−m2n)2 = 0 . (5.37)

The stability condition is that all four roots should be real. The solutions are
obviously real for n = 0 so an instability may appear only for n = ±1, .... In
the special case of the equal-spin circular solution of [14], i.e. (5.16), (5.17),
we find (Ω2 − n2)2 − 4w2Ω2 − 4m2n2 = 0, i.e. [14]

Ω2
± = n2 + 2ν2 + 2m2 ± 2

√
(ν2 +m2)2 + n2(ν2 + 2m2) , (5.38)

which implies instability when n2 − 4m2 < 0, i.e. for n = ±1, ...,±(2m− 1)
[15]. This instability is present also for generic two-spin solutions with a1 6=
a2, m1 6= −m2.

In spite of the instability it is useful to work out the spectrum of frequen-
cies in the limit of large spins (i.e. large ν, cf. (5.21)) since the resulting
energies may be compared to SYM theory. The large ν expansion of (5.38)
gives (for the lower-energy modes)

Ω− = ± 1
2ν

n
√
n2 − 4m2 +O

(
1
ν3

)
, (5.39)

and so the contribution to the energy of a rotating string from (a pair of)
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such modes is (here κ2 = ν2 + 2m2, J = J1 + J2 =
√
λ
√
ν2 +m2)

∆En =
2|Ω−|
κ

=
1
ν2
n
√
n2 − 4m2 +O

( 1
ν4

)
=

λ

J2
n
√
n2 − 4m2 +O

(λ2

J4

)
.

(5.40)
This expression was indeed reproduced [16] on the SYM side (for m = 1)
as the anomalous dimension of excited string states corresponding to a par-
ticular Bethe root distribution of a Heisenberg spin chain related to the
dilatation operator in the two R-charge sector.

In the general (m1,m2) case, there are modes that have Ω ∼ 1
ν and

modes for which Ω2 → 4ν2 at large ν (see [15]). Expanding (5.37) at large
ν assuming Ω = O( 1

ν ) we find the following generalization of (5.39)

Ω− =
1
2ν
n

[
2a2

2m1 + 2a2
1m2 ±

√
n2 − 4a2

1a
2
2(m1 −m2)2

]
+O

( 1
ν3

)
, (5.41)

where a2
1 + a2

2 = 1. Equation (5.41) reduces to (5.39) in the equal-spin case
when a2

1 = a2
2 = 1

2 , m1 = −m2. Recalling that we have the constraint

m1J1 + m2J2 = 0 where Ji = a2
i

√
m2

i + ν2, one concludes that there exist
unstable modes with n2 < 4|m1m2| [34]. Again, one should be able to
reproduce the analog of (5.40) in the case of (5.41) on the gauge theory side.

It is straightforward to find the generalization of (5.35), (5.37) to the
three-spin case, i.e. when a3 is non-zero. The resulting spectrum is similar
to the spectrum in the (J1, J2 = J3) case in [15]. The generalization of the
equation. (5.37) to the three-spin case is [34]

(Ω2 − n2)4 − (Ω2 − n2)2
[
(a2

2 + a2
3)Ω̃

2
1 + (a2

2 + a2
3)Ω̃

2
2 + (a2

1 + a2
2)Ω̃

2
3

]
+ a2

3Ω̃
2
1Ω̃

2
2 + a2

2Ω̃
2
1Ω̃

2
3 + a2

1Ω̃
2
2Ω̃

2
3 = 0 , (5.42)

where Ω̃i ≡ 2(wiΩ−min) and ai and wi can be expressed in terms of ν and
mi using (5.24). Setting Ω̃3 = 0, a3 = 0 leads us back to (5.37). Equation
(5.42) gives eight characteristic frequencies, four of which scale as 1

ν Ω̄ in the
large ν (large J ) limit. In general, there is a range of parameters for which
the solution is stable [15,34], i.e. Ω̄’s are real.

For example, for the choice of the parameters in (5.20) when two of the
spins are equal, we find [15] (Ω → 1

ν Ω̄)

Ω̄2 =
1
4
n2

[
n2+2(3a2−1)m2±2m

√
(3a2 − 1)2m2 + 4a2(n2 −m2)

]
. (5.43)

Note that the limit m = 0 corresponds to the point-particle (BMN) case
when Ω =

√
ν2 + n2. The condition of stability, i.e. Ω2 ≥ 0 is obtained by
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demanding that (p2 − 4)(p2 − 4a2) ≥ 0 and (3a2 − 1)2 + 4a2(p2 − 1) ≥ 0,
where p ≡ n

m . For m = 1 the stability condition is satisfied if a2 ≥ 1
4 [15].

Similar stability conditions on a (or cos γ0 in the notation of [15]) are found
for other values of m [15, 34].

5.4. One-loop string correction to the classical energy

As was shown in [15], for the stable three-spin solution (5.20) one can com-
pute the one-loop correction to the classical energy (5.22) by summing over
all (bosonic and fermionic) fluctuation frequencies. As in the static gauge,
here t = κτ and so the space-time energy and the 2-d energy (sum of 1

2ωn

for all oscillator frequencies) are related by [11, 15] E = 1
κE2−d. Thus the

one-loop correction is given by the standard sum of the oscillator frequencies

E =
1
κ

E 2−d =
1
2κ

( ∑
n∈Z

ωB
n −

∑
r∈Z+ 1

2

ωF
r

)
, (5.44)

where ωB
n =

∑8
k=1 ΩB

n,k and ωF
r =

∑8
k=1 ΩF

r,k and the index k labels the
characteristic frequencies. Here we need also to include contributions of
AdS5 fluctuations with masses equal to κ [15]. As expected on the basis of
conformal invariance of the AdS5×S5 string theory, this expression is found
to be UV finite [15]. The one-loop correction vanishes in the “point-particle”
limit when m = 0 in (5.20), in agreement with the non-renormalization of
the energy of the corresponding BPS state dual to a gauge theory operator
with protected conformal dimension [4].

As was found in [15], the leading term in E1 in the large κ ≈ ν ≈ J limit
is given for m = 1 by

E1 =
1
κ2
d1 +O

(
1
κ3

)
, (5.45)

d1 = −1
2

[
5a2 + 4−

√
3(4a2 − 1)− 4

√
3a2 + 1

]
. (5.46)

We are interested in the limit when Ji → ∞ with Ji
J held fixed (here J =∑3

i=1 Ji = J1 +2J2). Since at large κ we have 1
κ2 = λ

J2 + ..., and (see (5.21))
a = a(J2

J ) ≈ 1− J2
J ≥ 1

2 we get (cf. (1.5))

E1 =
λ

J2
d1

(J2

J

)
+ ... . (5.47)

For J � J2 we find d1(J2
J ) ≈ 1 − 7J2

J . Combining this with the classical
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result for the energy (5.22), we obtain [15]

E = J+
λ

J2

[
J2+d1

(J2

J

)
+...

]
+... = J+

λ

J

[
J2

J
+

1
J
d1

(J2

J

)
+...

]
+... , (5.48)

i.e.

E = J +
λ

J

[
J2

J
+

1
J

[
1− 7J2

J
+O

(J2
2

J2

)]
+O

( 1
J2

)]
+O

(λ2

J3

)
. (5.49)

We conclude that the leading order J term in the classical energy is not
modified by the one-loop correction, and that the one-loop contribution to
the first classical correction term λ

J is subleading in the 1
J expansion, in

agreement with (1.6).
It is natural to conjecture that all higher-loop sigma model superstring

corrections are also subleading at large J . As in the BMN case (see [11] and
sect. 3.2 in [12]), the underlying reasons for this should be that (i) the 2-d
energy of this 2-d UV finite QFT on a compact space (cylinder) should admit
a regular inverse-mass expansion, and (ii) the space-time supersymmetry of
the superstring action “spontaneously” broken by the solution should imply
some kind of “asymptotic supersymmetry”. That would mean that in the
limit when J is sent to infinity for fixed λ

J2 the classical expression for the
ground-state energy (5.15), (5.22) and the energies of excited string states
obtained from quadratic fluctuations are exact, just like in the BMN case.

Similar conclusions should apply for all multispin string solutions that
have energy admitting a regular expansion in λ

J2 as in (1.2). If there is
indeed a general relation between the regularity of the classical expression of
the energy and the suppression of quantum corrections to it in the J → ∞
limit, this remains to be understood.

As discussed in section 1, it should be then be possible to compare the
classical energy with the SYM anomalous dimension also computed in the
limit of large J . Such a comparison was indeed successfully performed for
the two-spin circular [16, 18, 19] and folded [16, 17, 19] string solutions and
the three-spin circular solution of [14] with two equal spins [21].

Another interesting open problem is to compare the string one-loop 1
J

correction to the leading λ
J term in (5.49) with the corresponding 1

J cor-
rection to the thermodynamic limit of the Bethe ansatz expressions for the
anomalous dimension [21] on the gauge theory side.

6. Rotating strings in AdS5 × S5

Let us now generalize the discussion of section 4 to the case when the string
can rotate in both AdS5 and S5. For that we need to supplement the S5
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rotating string ansatz (4.2) by a similar AdS5 one [14,18,34]:

Y0 ≡ Y5 + iY0 = z0(σ)eiω0τ ,

Y1 ≡ Y1 + iY2 = z1(σ)eiω1τ , Y2 ≡ Y3 + iY4 = z2(σ)eiω2τ . (6.1)

Here the functions zr = (z0, z1, z2) are in general complex and, because of
the condition ηMNY

MY N = −1, their real radial parts lie on a hyperboloid
(ηrs = (−1, 1, 1), cf. (4.3))

zr = rre
iβr , ηrsrrrs ≡ −r20 + r21 + r22 = −1 . (6.2)

In sections 4 and 5 we had r0 = 1, r1 = r2 = 0, βr = 0. To satisfy the closed
string periodicity conditions we need, as in (4.4),

rr(σ + 2π) = rr(σ) , βr(σ + 2π) = βr(σ) + 2πkr , (6.3)

where kr are integers. Comparing (6.1) to (2.15) we conclude that the AdS5

time t and the angular coordinates φ1, φ2 are related to βr by

t = ω0τ + β0(σ) , φ1 = ω1τ + β1(σ) , φ2 = ω2τ + β2(σ) . (6.4)

We shall require the time coordinate t to be single-valued, i.e. ignore wind-
ings in the time direction and will also rename ω0 as κ, i.e.

k0 = 0 , ω0 ≡ κ . (6.5)

The three O(2, 4) Cartan generators (spins) in (2.18) here are (S0 = E, ωr =
(ω0, ω1, ω2))

Sr =
√
λωr

∫ 2π

0

dσ

2π
r2r(σ) ≡

√
λ Sr . (6.6)

In view of (6.2), they satisfy the relation∑
s,r

ηsrSr

ωs
= −1 , i.e.

E
κ
− S1

ω1
− S2

ω2
= 1 . (6.7)

Substituting the above rotational ansatz into the AdS5 Lagrangian (and
changing overall sign) we find the analog of the 1-d Lagrangian (4.11) in the
S5 case [34] (we assume a sum over repeated indices r, s)

L̃ =
1
2
ηrs(z′rz

∗
s
′ − ω2

rzrz∗s)−
1
2

Λ̃(ηrszrz∗s + 1) . (6.8)

Like its S5 counterpart (4.11), this 1-d Lagrangian is a special case of an n =
6 Neumann system, now with signature (−+ + + +−), and thus represents
again an integrable system, being related to a special euclidean-signature
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Neumann model by an analytic continuation. The reduction of the total
AdS5 × S5 Lagrangian on the rotation ansatz is then given by the sum of
(4.11) and (6.8). ¿From (6.8) we find as in (4.16)

β′r =
ur

r2r
, ur = const , (6.9)

so that the effective Lagrangian for the radial coordinates becomes

L̃ =
1
2
ηrs

(
r′rr

′
s − ω2

r rsrs −
urus

rrrs

)
− 1

2
Λ̃ (ηrsrrrs + 1) . (6.10)

Thus (6.10) describes a Neumann-Rosochatius integrable system with indef-
inite signature, i.e. with δij replaced by ηrs (cf. (4.17)).

We should also require the periodicity condition analogous to (4.21):
ur

∫ 2π
0

dσ
r2r(σ)

= 2πkr. Then k0 implies that we should set u0 = 0 as a conse-
quence of single-valuedness of the AdS5 time.

While the equations for ri and rr following from (4.15) and (6.10) are
decoupled, the variables of the two NR systems are mixed in the conformal
gauge constraints (2.7), (2.8) which now take the form (generalizing (4.19),
(4.20) where we had r0 = 1, ur = 0, ra = 0)

r′20 + κ2r20 =
2∑

a=1

(
r′2a + ω2

ar
2
a +

u2
a

r2a

)
+

3∑
i=1

(
r′2i + w2

i r
2
i +

v2
i

r2i

)
, (6.11)

2∑
a=1

ωaua +
3∑

i=1

wivi = 0 . (6.12)

Here r20 −
∑2

a=1 r2a = 1, and
∑3

i=1 r
2
i = 1 and we used that u0 = 0. One can

then repeat the discussion of sections 4.2, 4.3 and 4.4 in the present case,
classifying general solutions of the resulting NR system. One again finds
folded and circular solutions, and the two-spin folded solution exists only if
the string is bent [18].

6.1. Simple circular strings in AdS5

Let us first assume that the string is not rotating in S5 (i.e. wi, vi = 0, ri =
const) and consider the AdS5 analog of the simplest circular solution of
section 5 by demanding Λ̃ = const. The discussion is exactly the same as
in section 5 with a few signs reversed. As in section 5.1, finding solutions
with Λ̃ = const turns out to be equivalent to looking for constant radii
(rr = const) solutions. Then (cf. (5.7), (5.8))

rr = ar = const , βa = kaσ , k0 = 0 , u0 = 0 , ua = a2
aka , (6.13)
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ω2
0 ≡ κ2 = Λ̃ , ω2

a = k2
a + κ2 , a = 1, 2 . (6.14)

The energy as a function of spins is then obtained by solving the system that
follows from the definition of the charges (6.6) and the constraints (6.11),
(6.12) with κ as a parameter (cf. (5.10)–(5.11))

E
κ
− S1√

k2
1 + κ2

− S2√
k2

2 + κ2
= 1 , (6.15)

κE − 1
2
κ2 =

√
k2

1 + κ2 S1 +
√
k2

2 + κ2 S2 , k1S1 + k2S2 = 0 . (6.16)

This implies S1k2
1√

k2
1+κ2

+ S2k2
2√

k2
2+κ2

= 1
2κ

2. Considering the limit of large spins

Si � 1, with ka being fixed we conclude that κ = (2k2
1S1 + 2k2

2S2)1/3 + ...

and then

E = S1 + S2 +
3
4

(2k2
1S1 + 2k2

2S2)1/3 + ... , (6.17)

or, in view of k1S1 = −k2S2 (treating S1, S2 and k1 as independent)

E = S +
3
4

(
2k2

1S
S1

S2

)1/3
+ ... , S ≡ S1 + S2 . (6.18)

Using (6.6) this can be rewritten as

E = S +
3
4

(λS)1/3
(
2k2

1

S1

S2

)1/3
+ ... . (6.19)

The case of k1 = −k2 = k when the two spins are equal S1 = S2 = 1
2S is

that of the the circular solution found in [14] for which we get

E = S +
3
4

(2k2λS)1/3 + ... . (6.20)

As was shown in [14], this k1 = −k2 solution is stable only for small enough

S (namely, S ≤ 5
8

√
7
2 for k = 1).

The “non-perturbative” scaling of the subleading term in (6.19) with λ

precludes a direct comparison of the above energies to the anomalous dimen-
sions of the corresponding [14] SYM operators which (in euclidean version)
have the following structure [14] tr(Φ̄(D1 + iD2)S1(D3 + iD4)S2Φ) + ... .
This is unfortunate, since such operators are of more “realistic” type similar
to the ones relevant for high-energy scattering in non-supersymmetric gauge
theories – they contain many covariant derivatives instead of many scalars
and thus may appear in less supersymmetric gauge theories without adjoint
scalars.
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It turns out that one needs a large J spin in S5 directions to have a
regular (1.2) expansion of the energy. Indeed, the situation changes when
we consider “hybrid” solutions where the circular string rotates in both AdS5

and S5 directions.

6.2. Constant radii circular strings in AdS5 × S5

It is straightforward to combine the solutions of sections 5.1 and 6.1 to write
down the most general circular constant-radii solution in AdS5 × S5 [34]. It
is parametrized by the frequencies (a = 1, 2; i = 1, 2, 3)

ω0 = κ , ω2
a = k2

a +κ2 , w2
i = m2

i +ν2 , κ2 = Λ̃ , ν2 = −Λ , (6.21)

related to the energy E and 2+3 spins Sa and Ji and topological numbers
ka and mi. These will be related by (5.10) and (6.7) as well as by the con-
formal gauge constraints (6.11) and (6.12). Explicitly, we get the following
generalization of both (5.9)–(5.11) and (6.15), (6.16)

3∑
i=1

Ji√
m2

i + ν2
= 1 ,

E
κ
−

2∑
a=1

Sa√
k2

a + κ2
= 1 , (6.22)

2κE − 2
2∑

a=1

√
k2

a + κ2 Sa − κ2 = 2
3∑

i=1

√
m2

i + ν2 Ji − ν2 , (6.23)

2∑
a=1

kaSa +
3∑

i=1

miJi = 0 . (6.24)

Here κ and ν (or the two Lagrange multipliers in (6.21)) are parameters that
need to be solved for in order to find E as a function of the spins Sa, Ji and
windings ka,mi. The solution exists only for such integers ka and mi that
satisfy (6.24).

If all spins are of the same order and large Sa ∼ Ji � 1 we find

κ = J +
1

2J 2

( 3∑
i=1

m2
iJi + 2

2∑
a=1

k2
aSa

)
+O

( 1
J 2

)
, J ≡

3∑
i=1

Ji ,

ν = J − 1
2J 2

3∑
i=1

m2
iJi +O

( 1
J 2

)
, (6.25)
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and thus (S ≡
∑2

a=1 Sa)

E = J + S +
1

2J 2

( 3∑
i=1

m2
iJi +

2∑
a=1

k2
aSa

)
+O

( 1
J 3

)
, (6.26)

or [34]

E = J + S +
λ

2J2

( 3∑
i=1

m2
i Ji +

2∑
a=1

k2
aSa

)
+O

(λ2

J3

)
. (6.27)

This expression is a direct generalization of (5.15) in the Sa = 0 case. The
energy is minimal if m2

i and k2
a have minimal possible values (0 or 1). We

may also look at a different limit when J � S � 1. In this case we get
“BMN-type” (single J rotation) asymptotics with the leading term still given
by (6.27), i.e. ∆E ∼ λ

2J2S.
As an example, let us consider the simplest hybrid solution when only one

of each types of the spin is non-zero, i.e. J1 = J , S1 = S, S2 = J2 = J3 = 0.
Then r20 − r21 = 1, r3 = 0 and r1 = 1, r2 = r3 = 0, i.e. (cf. (2.15))

Y0 = cosh ρ0 e
iκτ , Y1 = sinh ρ0 e

iωτ+ikσ , X1 = eiwτ+imσ , (6.28)

where r0 = cosh ρ0 determines the fixed radial coordinate in AdS5 at which
the string is located while it is spread and rotating in φ1 (it is positioned at
θ = π

2 and φ2 = 0 in S3 of AdS5). Also, the string is a rotating circle along
ϕ1 in S5 located at ϕ2 = ϕ3 = 0, γ = π

2 , ψ = 0. Its energy for J ∼ S � 1
is then

E = J + S +
λ

2J2
(m2J + k2S) + ... . (6.29)

One can easily analyze the fluctuations near this solution as was done in in
section 5.3 [34]. We find one massless and four massive (mass ν) fluctua-
tions in S5 directions; in addition to two massive (mass κ) decoupled AdS5

fluctuations there are also three coupled ones with a Lagrangian similar to
(5.35). Then the equation (5.37) for the characteristic frequencies becomes

(Ω2 − n2)2 + 4r21(κΩ)2 − 4r20(ω1Ω− kn)2 = 0 , (6.30)

and one concludes that this (S, J) solution is always stable. Indeed, setting
r0 = a, r1 =

√
a2 − 1 we get

Ω− =
1
2κ
n
[
2a2k ±

√
n2 + 4a2(a2 − 1)k2

]
+O

( 1
κ3

)
, (6.31)

so that for any a = cosh ρ0 ≥ 1 there are no unstable modes.
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The conclusion is that for a regular large-spin expansion of the energy one
needs to have at least one (large) component of spin in S5 direction. This
turns out to be true also in the case of other (folded and circular) spinning
string solutions with more complicated σ-dependence.

7. “Inhomogeneous” two-spin solutions AdS5 × S5

7.1. Rotating ansatz in terms of angles

If we set ka and mi or ur in (6.10) and vi in (4.17) to zero (i.e. assume
that the angles φa and ϕi do not depend on σ), the AdS5 × S5 NR system
reduces to the sum of the two n = 3 Neumann systems. Then rotating strings
carrying 2+3 charges (S1, S2;J1, J2, J3) are described by the following ansatz
in terms of angles in (2.15) [14]

t = κτ , φa = ωaτ , ϕi = wiτ , ρ(σ) = ρ(σ + 2π) . (7.1)

The remaining angles may depend only on σ, i.e. θ = θ(σ), γ = γ(σ) and
ψ = ψ(σ) and may be periodic modulo 2π, e.g., ψ(σ+ 2π) = ψ(σ) + 2πn. If
n = 0 we get folded solutions, if n 6= 0 we get circular solutions [18].

The conserved charges in (2.18), (2.19) then have the following explicit
form

S1 = ω1

∫ 2π
0

dσ
2π sinh2ρ cos2θ , J1 = w1

∫ 2π
0

dσ
2π sin2γ cos2ψ ,

S2 = ω2

∫ 2π
0

dσ
2π sinh2ρ sin2θ , J2 = w2

∫ 2π
0

dσ
2π sin2γ sin2ψ ,

E = κ
∫ 2π
0

dσ
2π cosh2ρ , J3 = w3

∫ 2π
0

dσ
2π cos2γ .

(7.2)

The sigma model equations for the σ-dependent angles (ρ, θ)

ρ′′ − sinh ρ cosh ρ (κ2 + θ′2 − ω2
1 cos2 θ − ω2

2 sin2 θ) = 0 ,

(sinh2ρ θ′)′ − (ω2
1 − ω2

2) sinh2ρ sin θ cos θ = 0 ,
(7.3)

and (γ, ψ)

γ′′ − sin γ cos γ (w2
3 + ψ′ 2 − w2

1 cos2ψ − w2
2 sin2ψ) = 0 ,

(sin2γ ψ′)′ − (w2
1 − w2

2) sin2γ sinψ cosψ = 0 ,
(7.4)

are decoupled from each other. As explained above and in [18], the resulting
system of equations is completely integrable, being equivalent to a combi-
nation of the two Neumann dynamical systems. As a result, there are 2+2
“hidden” integrals of motion, reducing the general problem to the solution
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of two independent systems of two coupled first-order equations, with pa-
rameters related through the one nontrivial conformal gauge constraint

ρ′ 2 − κ2 cosh2ρ+ sinh2ρ (θ′ 2 + ω2
1 cos2θ + ω2

2 sin2θ)

+ γ′ 2 + w2
3 cos2γ + sin2γ (ψ′ 2 + w2

1 cos2ψ + w2
2 sin2ψ) = 0 . (7.5)

Note that the two metrics in (2.16), (2.17) are related by the obvious ana-
lytic continuation and change of the overall sign, which is equivalent for the
present rotational ansatz (7.1) to

ρ↔ iγ , θ ↔ ψ , κ↔ −w3 , ω1 ↔ −w1 , ω2 ↔ −w2 . (7.6)

This transformation maps the system (7.3) into the system (7.4) and also
preserves the constraint (7.5). Thus it formally maps solutions into solutions
[18,19]. Under (7.6) the conserved charges (7.2) transform as follows

S1 ↔ J1 , S2 ↔ J2 , E ↔ −J3 . (7.7)

This corresponds to interchanging different SO(2) generators of the sym-
metry group SO(2, 4) × SO(6). One can find also other similar transfor-
mations that map solutions into solutions by combining (7.6) with discrete
SO(2, 4) × SO(6) isometries such as interchanging the angular coordinates
(see below).

7.2. Folded two-spin solutions: (S, J) and (J1, J2)

Let us now review the two non-trivial two-spin folded string solutions which
are, in fact, related by the above analytic continuation.

The first is the “(S, J)” solution [11]

κ, ω1, w3 6= 0 , ρ = ρ(σ) , θ = 0 , γ = 0 , ψ = 0 , (7.8)

where the string is stretched in the radial direction ρ of AdS5 and rotates
(ω1) in AdS5 about its center of mass. The latter in turn moves (w3) along
a large circle of S5. In the limit of a point-like string (S = 0) this becomes
a massless geodesic in S5 as in [4, 8]. In the case w3 = 0 this becomes the
folded string rotating in AdS5 [8, 36]. The gauge constraint (7.5) and the
integrals of motion (7.2) here become

ρ′ 2 − κ2 cosh2ρ+ ω2
1 sinh2ρ = −w2

3 , J ≡ J3 = w3 ,

S ≡ S1 = ω1

∫ 2π

0

dσ

2π
sinh2ρ , E = κ

∫ 2π

0

dσ

2π
cosh2ρ .

(7.9)
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For the second “(J1, J2)” solution one has [14,17]

κ,w1, w2 6= 0 , ρ = 0 , θ = 0 , γ =
π

2
, ψ = ψ(σ) . (7.10)

Here the string is located at the center of AdS5 while it is stretched (ψ) along
a great circle of S5 and rotates (w2) about its center of mass which moves
(w1) along an orthogonal great circle of S5. The gauge constraint (7.5) and
the integrals of motion (7.2) here are

ψ′ 2 + w2
1 cos2ψ + w2

2 sin2ψ = κ2 , E = κ ,

J1 = w1

∫ 2π

0

dσ

2π
cos2ψ , J2 = w2

∫ 2π

0

dσ

2π
sin2ψ .

(7.11)

In view of (7.6), (7.7) we conclude that these two solutions are related by
the following analytic continuation:

ρ→ iψ , κ→ −w1 , ω1 → −w2 , w3 → −κ ,

E → −J1 , S → J2 , J → −E .
(7.12)

Here we are assuming that ρ(σ + 2π) = ρ(σ) and ψ(σ + 2π) = ψ(σ), i.e. ψ
does not have a winding number. This choice corresponds to a folded string
solution (a two-spin generalization of the solution of [8, 36]).

The first-order equations in (7.9) and (7.11) are first integrals of the sinh-
Gordon and sine-Gordon equations for ρ and ψ, respectively, which are the
only non-trivial equations of the Neumann systems that one has to solve in
the present two cases: here the related hyperelliptic curve (see section 4.3)
reduces to an elliptic one. Indeed, their solutions can be readily expressed
in terms of elliptic functions (see below).

One can also directly relate [19] the systems of equations expressing the
periodicity condition and the respective energies and spins. In the first
case [11] we get, introducing a modular parameter q < 0 related to the
maximal value of the radial AdS5 coordinate ρ0

q ≡ − sinh2ρ0 =
κ2 − w2

3

κ2 − ω2
1

< 0 , (7.13)√
κ2 − w2

3 =
2
√
−q
π

K(q) , E = κ+
κ

ω1
S =

2κ
√
−q

π
√
κ2 − w2

3

E(q) ,

where K(q) and E(q) are the standard complete elliptic integrals of the
first and the second kind.∗ Solving for ω1 and κ in terms of J and q we

∗ They are defined by K(q) =
R π

2
0

dα√
1−q sin2 α

and E(q) =
R π

2
0 dα

p
1− q sin2 α and are related to
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get the system of two equations for the energy as a function of the spins
E = E(S,J ) [19] (

J
K(q)

)2

−
(

E
E(q)

)2

=
4
π2

q , (7.14)(
S

K(q)− E(q)

)2

−
(
J

K(q)

)2

=
4
π2

(1− q) , (7.15)

where the parameter q is negative for a physical folded solution. The second
of these two parametric equations determines q in terms of S and J , while
the first one then gives the energy as a function of the spins.

Similarly, for the (J1, J2) solution (7.10) one finds [17] (we assume ω2
2 >

ω2
1; here ψ0 is the maximal value of ψ)

q ≡ sin2 ψ0 =
κ2 − w2

1

w2
2 − w2

1

> 0 , 1 =
J1

w1
+
J2

w2
, E = κ ,

J1 =
2w1

π
√
w2

2 − w2
1

E(q) ,
√
w2

2 − w2
1 =

2
π

K(q) . (7.16)

The solution of the equation in (7.11) for ψ can be written as follows

cosψ(σ) = r1(σ) = dn(Aσ, q) , sinψ(σ) = r2(σ) =
√
q sn(Aσ, q) , (7.17)

where r3(σ) = 0 (γ = π
2 , cf. (2.15)), A ≡ 2

π K(q) and dn and sn are the
standard elliptic functions.† Here we end up with a system of two equations
determining E = E(J1,J2)(

E
K(q)

)2

−
(
J1

E(q)

)2

=
4
π2

q , (7.18)(
J2

K(q)− E(q)

)2

−
(
J1

E(q)

)2

=
4
π2

, (7.19)

where q > 0. A manifestation of the analytic continuation relation (7.12)
between the two solutions is the equivalence [19] of the systems (7.14), (7.15)

hypergeometric functions 2F1( 1
2
, 1
2
; 1, q) = 2

π
K(q), 2F1(− 1

2
, 1
2
; 1; q) = 2

π
E(q). Let us note also

that the elliptic integral of the third kind is defined by Π(m2, q) =
R π/2
0

dα

(1−m2 sin2 α)
√

1−q sin2 α
.

† The Jacobi elliptic function sn(u, q) is defined by u =
R sn(u,q)
0

dy√
(1−y2)(1−qy2)

. Equivalently, if

sn u = sin φ then u =
R φ
0

dα√
1−q sin2 α

. One has also dn2(u, q) + q sn2(u, q) = 1 and cn2(u, q) +

sn2(u, q) = 1. These three functions (given by ratios of theta-functions) are meromorphic. Also,

sn(−u, q) = −sn(u, q) and sn(u + 2I, q) = −sn(u, q), where the half-period is I = K(q).
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and (7.18), (7.19) under the substitution

E 7→ −J1 , S 7→ J2 , J 7→ −E , (7.20)

and the analytic continuation from q > 0 to q < 0 in the elliptic integrals.

7.3. Energy as a function of spins

Depending on the region of parameter space (or values of the integrals of
motion) one finds different functional form of dependence of the energy on
the two spins. A direct comparison with gauge theory is possible in the case
when the two spins are large compared to

√
λ , i.e. S � 1, J � 1 in the

(S, J) case and J1 � 1, J2 � 1 in the (J1, J2) case. We can then expand
the energies, e.g., in powers of the total S5 spin J . This amounts to an
expansion in (inverse) powers of J ≡ J3 = J3√

λ
in the (S, J) case and of

J ≡ J1 + J2 = 1√
λ

(J1 + J2) in the (J1, J2) case, respectively,

E = S+J+
λ

J
ε̃1

(S
J

)
+
λ2

J3
ε̃2

(S
J

)
+. . . , J ≡ J3, J, S �

√
λ , (7.21)

E = J +
λ

J
ε1

(J2

J

)
+

λ2

J3
ε2

(J2

J

)
+ . . . , J ≡ J1 +J2, J1, J2 �

√
λ .

(7.22)
The coefficient functions ε̃n and εn in (7.21) and (7.22) (the analogs of cn in
(1.2)) can be related, given that the two solutions are related by the analytic
continuation (7.20). By expanding in large spins one finds a simple relation
between the leading order (“one-loop”) corrections for the energies of the
two solutions [19]:

ε̃1(y) = −ε1(−y) . (7.23)

The same relation is obtained also on the gauge theory side [19].
Equation (7.23) follows also directly from (7.14) and (7.16) or the sys-

tems (7.14), (7.15) and (7.18), (7.19). In the (J1, J2) case, expanding the
parameter q for large J as (with J being J1 + J2)

q = q0 +
q1

J 2
+

q2

J 4
+ . . . , (7.24)

one finds that q0 is given by the solution of the transcendental equation

E(q0)
K(q0)

= 1− J2

J
, q0 = q0

(J2

J

)
. (7.25)
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The rest of the expansion coefficients in q and the energy (7.22) are then
determined simply by linear algebra. In particular, one finds [19]

ε1 =
2
π2

K(q0)
[
E(q0)− (1− q0)K(q0)

]
. (7.26)

In the (S, J) case, using the same expansion (7.24) for the corresponding
parameter q in (7.13) where now J = J3 we find that q0 satisfies

E(q0)
K(q0)

= 1 +
S

J
, q0 = q0

(S
J

)
, (7.27)

and also

ε̃1 = − 2
π2

K(q0)
[
E(q0)− (1− q0)K(q0)

]
. (7.28)

Comparing (7.25), (7.26) to (7.27), (7.28) and observing that to the leading
order (7.12) implies J2 → S, J → −J , we indeed observe the relation (7.23),
or (ε̃1)q0 = −(ε1)−q0 .

Let us now comment on the dependence of the energy on the spins in
other regions of the parameter space. Let us start with the (S, J) solution.
In the limit of short strings with J � 1, S � 1 one finds [11]

E =
√
J2 + 2

√
λ S + ... . (7.29)

This limit probes a small-curvature region of AdS5 where ρ ≈ 0, and where
the energy spectrum should thus be approximately the same as in flat space.
Indeed, (7.29) is the standard relativistic expression for the energy of a string
in flat space moving with momentum J and rotating in a 2-plane with spin
S. If the boost energy is smaller than the rotation one, i.e. if J 2 � S, then
we get the flat-space Regge trajectory relation E ≈

√
2
√
λ S + J2

2
√

2
√

λ S
.

Such an expression (with a non-analytic dependence on λ) cannot be directly
compared to SYM theory without computing all quantum string sigma model

1√
λ

corrections and resumming them to get a regular λ→ 0 limit.
For short strings with J � 1 (and thus with J � S)

E = J + S +
λS

2J2
+ ... . (7.30)

This corresponds to the BMN limit with S playing the role of the string
excitation number [11].‡ One may also consider a “near BMN” limit S

J � 1

‡ The BMN case corresponds to expanding near a point-like string moving along a great circle of

S5. In the limit J →∞, λ
J2 =fixed one may drop all but quadratic fluctuation terms in the string

action (which becomes then equivalent to the plane-wave [5] action [6] in the light-cone gauge).
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of this two-spin solution [11,19]

E = J + S

√
1 +

λ

J2
− λS2

2J3
·
1 + λ

2J2

1 + λ
J2

+ . . . , S � J . (7.31)

This represents the near BMN limit for a total of S excitations of the oscilla-
tion modes with n = ±1. Thus solving non-linear classical sigma model equa-
tions gives the same semiclassical spectrum as expanding the sigma model
action near a point-like geodesic and then quantizing the small-fluctuation
Lagrangian. We see that there is an overlap between the leading order (large√
λ ) quantum spectrum obtained by expanding near S5-boosted point-like

string state with no rotation in AdS5 and a classical spectrum obtained by
expanding near a highly boosted and rotating string solution. This supports
the suggestion [8,11,12] that parts of the semiclassical AdS5×S5 string spec-
trum can be captured by expanding near different classical string solutions.

Other asymptotic expressions are found when S is large. In this case the
string can become very long and approach the boundary of AdS5, i.e. ρ0 →
∞. For J � lnS, S � 1 one finds E ≈ S + 1

π lnS + πJ 2

2 lnS , i.e. [11]

E ≈ S +

√
λ

π
ln

S√
λ

+
πJ2

2
√
λ ln S√

λ

. (7.32)

In the limit of J = 0 this reduces to the remarkable lnS behavior found
in [8] for the single-spin AdS5 rotating string solution in AdS5. Having only
one large AdS5 spin thus does not lead to an analytic dependence of the
energy on λ and, not surprisingly, is not enough to suppress quantum string
sigma model corrections. Indeed, the one-loop string correction shifts the
coefficient of the lnS term by a constant [11], and, in general, the classical√
λ coefficient should be replaced by an “interpolating” function§

E = S + f(λ) lnS + ... , f(λ)
λ�1

=

√
λ

π
+ a1 +

a2√
λ

+ ... . (7.33)

The AdS/CFT correspondence implies that after a resummation f(λ) should
admit a regular weak-coupling expansion f(λ)λ�1 = q1λ + q2λ

2 + ..., with
(7.33) reproducing the anomalous dimension of the corresponding gauge the-
ory operators such as tr(Φ̄DSΦ) + ... (see [13]).

The energies of fluctuations above the BPS ground state E = J are then determined by the string

fluctuation masses given by m2 = 1
J 2 = λ

J2 .
§ The one-loop coefficient computed in [11] is a1 ≈ − 3

2π
ln 2. We use this opportunity to correct

factor of 1/2 misprints in equations (6.6) and (6.9) in [11].
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In the intermediate case where ln S
J � J � S we get [11]

E = S + J +
λ

2π2J
ln2 S

J
+ . . . . (7.34)

In contrast to the large J limit of the short string (small S) case (7.31) here
the third correction term is not related to the BMN-type spectrum: there
the boost is large and string oscillations are small, while in the long-string
case the spin S is always larger than the boost parameter J . Equation (7.34)
appears to be analytic in λ and, assuming that string loop corrections to the
coefficient of the ln2 S

J term are suppressed in the limit S � 1, J � 1, one
could hope to relate the λ

2π2J
ln2 S

J term to the one-loop anomalous dimension
of the gauge theory operators with large spin and large R-charge. Indeed,
(7.34) may be viewed as a special case of (7.21), where ε̃1 ≈ 1

2π2 ln2 S
J .

This asymptotic behavior is indeed observed on the gauge theory side as a
special case of the general relation between the string theory and the gauge
theory results for the function ε̃1(S

J ) established in [19]. One concludes, in
particular, that the coefficient of the lnS term in the anomalous dimensions
of the corresponding N = 4 SYM operators with large spin and large R-
charge J is indeed suppressed also at weak ’t Hooft coupling.

A similar analysis can be repeated for the (J1, J2) solution. The energy
of a short string rotating in S5 with J1 � 1, J1 � J2 is given by a BMN
type expression (cf. (7.30))

E = J +
λJ2

2J2
+ . . . , J2 � J1 , J = J1 + J2 . (7.35)

The full expression in the near BMN limit is (cf. (7.31))

E = J1 + J2

√
1 +

λ

J2
1

− λJ2
2

2J3
1

·
1 + 3λ

2J2
1

1 + λ
J2
1

+ . . . , J2 � J1 . (7.36)

To compare to the BMN case we may set J1 = J and then J2 represents the
number of excitations.

Making the string longer corresponds to increasing the spin J2. For ex-
ample, at J1 = J2 we get [17]

E = J + c1
λ

J
+ . . . , c1 ≡ ε1

(1
2

)
= 0.356 . . . , J2 = J1 =

1
2
J . (7.37)

When J2 → J = J1 + J2, i.e. J1 becomes small, the string extends over half
a great S5 circle and [19]

E = J +
2λ

π2 J(1− J2/J)
+ . . . = J +

2λ
π2 J1

+ . . . , J2 ≈ J . (7.38)
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The point where J2 = J can be viewed as a transition point: one half of
the string can be unfolded to give a circular string which is discussed below.
Alternatively, the case of J1 = 0 can be studied by starting with a single-spin
folded rotating S5 solution with its center of mass at rest at a pole of S5 [8].
In this case for J = J2 � 1 one finds [8]

E = J +
2
π

√
λ + ... ,

√
λ

J
� 1 . (7.39)

As in the single-spin AdS5 case (cf.(7.32)) here the expansion of the energy
is not analytic in λ, and one expects that quantum sigma model corrections
should promote the subleading

√
λ term into a nontrivial function h(λ) =

2
π

√
λ + k1 + k2√

λ
+ · · · .

7.4. Circular two-spin solution

In addition to the “homogeneous” circular two-spin solutions discussed in
section 6 there are also different circular two-spin solutions of the Neumann
system (4.17) with vi = 0 that generalize the “round circle” J1 = J2 solution
of [14] to the case of J1 6= J2 [18]. The circular string solution is given by
the same ansatz (7.10) as for the folded string but now ψ(σ) is assumed to
be periodic modulo 2π

ψ(σ + 2π) = ψ(σ) + 2πk . (7.40)

In what follows we shall set the winding number k to be 1. In general,
in spherical coordinates (γ, ψ) the equations of motion (7.4) describing this
type of string are γ = π

2 and ψ′′ + 1
2w

2
21 sin 2ψ = 0, w2

21 = w2
2 − w2

1.
Integrating once, we get ψ′2 = w2

21(q
−1 − sin2 ψ), where q is an integration

constant. If q > 1, then q−1 = sin2 ψ0 and this solution describes a folded
string extending from −ψ0 to ψ0. If instead q < 1, then there is no turning
point where ψ′ = 0, and the solution describes a circular string extending all
the way around the equator γ = π

2 with ψ from 0 to 2π: instead of folding
back onto itself, the string wraps completely around a great circle of S5. In
the limit q → 0, this solution approaches the circular string with J1 = J2.
Thus the parameter q provides an interpolation between the circular and
the folded string configurations. Note that after a rescaling ψ → 1

2ψ the
equation for ψ describes the plane motion of a pendulum in a gravitational
field. Clearly, the rotation of the pendulum requires more energy than the
oscillatory motion and this explains why the energy of the circular string is
bigger than that of the folded one.
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The radial coordinates in (4.2) in the circular case are given by (cf. (7.17))

cosψ(σ) = r1(σ) = sn(Aσ, q) , sinψ(σ) = r2(σ) = cn(Aσ, q) , (7.41)

where again r3 = 0 and A ≡ 2
πK(q). The set of equations for the energy and

spins of this solution is (cf. (7.16)) [18]

J2 =
w2

q

(
1− E(q)

K(q)

)
, J1 =

w1

q

(
q− 1 +

E(q)
K(q)

)
, (7.42)

E2 = w2
1 +

1
q

(w2
2 − w2

1) , K(q) =
π

2

√
1
q

(w2
2 − w2

1) . (7.43)

Solving for w1, w2 we get a system of two equations for E = E(J1,J2) similar
to the one in (7.18), (7.19)(

E
K(q)

)2

−
(

qJ1

(1− q)K(q)− E(q)

)2

=
4
π2

, (7.44)(
qJ2

K(q)− E(q)

)2

−
(

qJ1

(1− q)K(q)− E(q)

)2

=
4
π2

q . (7.45)

Note that the ansatz for the circular solution is symmetric under J1 ↔ J2,¶

and this symmetry may be seen by applying a modular transformation to the
elliptic integrals [18,19]: K(q) =

√
1− q′ K(q′), E(q) = E(q′)√

1−q′
, 1−q = 1

1−q′ .

In the limit when both spins are large we can expand q and the energy
in powers of 1

J 2 , i.e. q = q0+ q1

J 2 +..., J = J1+J2, and (cf. (7.24), (7.25),
(7.26))

E = J +
λ

J
ε̂1

(J2

J

)
+ .... , (7.46)

ε̂1 =
2
π2

K(q0)E(q0) ,
J2

J
=

1
q0

[
1− E(q0)

K(q0)

]
. (7.47)

The same relations for ε̂1(J2
J ) in (7.47) were reproduced for the corresponding

one-loop anomalous dimension on the gauge theory side [16,18,19].
One may also construct other similar solutions, for example by combining

a folded string solution in AdS5 with a folded or circular (J1, J2) S5 solu-
tion. In this case the energy will be given by a system of three parametric
equations involving E ,S,J1,J2. Such (S, J1, J2) solutions may be related by
an analytic continuation to special (J1, J2, J3) solutions.

To conclude, as we have seen on the examples discussed above, to have
regular (1.2) dependence of the string energy on λ

J2 � 1 we need at least one

¶ The direct limit J2 = 0 is not, however, well-defined for the circular (J1, J2) case.
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large “center-of-mass” momentum in S5. In such cases quantum sigma model
corrections are expected to be suppressed in the limit J � 1, and thus the
classical string energy should represent the exact gauge theory anomalous
dimension computed in the limit J � 1, to all orders in perturbative expan-
sion in λ. This was explicitly verified (for the leading “one-loop” λ

J term)
for several types of such “regular” spinning string solutions [16,18,19,21].

Having large spins in AdS5 only or only one large spin (with center of
mass being at rest) in S5 appears not to be enough for the energy to have
an expansion in even powers of

√
λ
J (note that the circular (S, J) solution

of the NR system discussed in section 6.2 represents an exception from this
rule, cf.(6.29)). In these latter cases quantum sigma model corrections are
not expected to be suppressed in the large spin limit and thus the classical√
λ -coefficients of the leading terms in the expansion of the energy should

become promoted by the string quantum 1
(
√

λ )n
corrections to non-trivial

“interpolating” functions of λ. The latter should be resummed before one
may try to compare to perturbative gauge theory results. Comparing string
theory to gauge theory at a quantitative level in such cases remains a chal-
lenge.

8. Open questions and generalizations

The above discussion of particular string solutions with “regular” expansion
of the energy E in powers of λ

J2 raises several questions.
Since the direct comparison with gauge theory at present can be done

only in the J → ∞ limit and in an expansion in λ
J2 � 1 it would be

interesting to classify all possible solutions with such a property (1.2) of the
energy. One may also try to derive the general expression for the leading
order coefficient in E = J + λ

J c1 + ..., i.e. for c1 as a functional on a space of
such solutions. Interesting work in this direction [42] utilizes the observation
[41] that the induced world-sheet metric of rotating strings with large J

becomes degenerate, and that one can then develop a perturbative expansion
near such a world sheet. Deriving equations for the functional c1 (with the
expressions in (6.27), (7.26), (7.28) and (7.47) as special solutions) may help
to establish the correspondence with spin chain energy eigenstates in a more
universal way than the presently known procedure based on association of a
particular Bethe root distribution with a particular string solution [16,19,21].

It remains also to prove that for all solutions with “regular” expansion
of the energy in λ

J2 � 1 quantum superstring sigma model corrections are
indeed suppressed by extra 1

Jn factors as in (1.5). The underlying super-
symmetry of the AdS5 × S5 string theory is certainly important for that



September 2, 2004 10:7 WSPC/Trim Size: 9.75in x 6.5in for Proceedings tseytlin

Spinning strings and AdS/CFT duality 1701

conclusion, and a possible role of asymptotic supersymmetry at finite J and
λ → 0 observed in [41] for simple S5 rotating solutions remains to be clari-
fied. The string/gauge theory matching for a pulsating solution in [21] (when
the λ → 0 limit does not give a BPS state) seems to indicate that suppres-
sion of quantum sigma model corrections may occur even under more general
conditions.

More generally, as discussed in section 1, the full expression for the classi-
cal energy of a “regular” solution E =

√
λ E( J√

λ
, ...) should be representing

the exact dimensions of the corresponding gauge theory operators computed
in the large J limit. Here we assume that as for the energy on the string side,
the anomalous dimension on the gauge theory side should admit a regular
double expansion in λ

J2 < 1 and 1
J → 0, i.e. should have the form (1.7),

(1.8). This remains to be proved in general for multi R-charge/spin SYM
operators. The full expression for the classical energy should be a solution
of some differential equations or an equivalent system of algebraic or tran-
scendental equations involving moduli parameters of the string solutions (cf.
(6.22)-(6.24) or (7.14), (7.15) and (7.44), (7.45), see also [34]). Thus, as in
the examples discussed above, the full expression for the energy E should
be effectively determined by its leading order term c1. This suggests that
it may be possible to derive, in the large J limit, expressions for the corre-
sponding anomalous dimensions in SYM theory which are exact in λ. By

analogy with the way the simple square root expression
√

1 + λ
J2n2 of the

near-BPS BMN case was reproduced in [10], one may expect that in the
J →∞ limit there may then be a relation between the values of anomalous
dimensions (or, in fact, the expressions for the dilatation operator restricted
to a particular subsector of states) at different orders of the expansion in λ.

Let us add that while the full expression for the classical string energy
comes from the conformal gauge constraint (and looks like a “relativistic”
expression E2 = J2 + 2

√
λ c1 + ...) the one-loop anomalous dimensions on

the SYM side are obtained by solving the quantum spin chain Hamiltonian
eigenvalue problem (∆ − J = a1

λ
J + ...), which looks like a first term in

a “non-relativistic” expansion. It would be important to understand how
the perturbative series on the SYM side can be summed up, i.e. how the
one-loop expression for anomalous dimension can be promoted to the full
“relativistic” expression without order-by-order analysis of modification of
the dilatation operator (interpreted as a generalized “non-local” spin chain
Hamiltonian, cf. [44, 45]).

Another interesting problem is to compare subleading terms in the 1/J
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expansion, as was done in the BMN case in [39,40].∗ This will involve com-
puting one-loop correction to the classical string energy (1.5) and comparing
it with the subleading correction to the “thermodynamic” limit of the one-
loop Bethe energies. Note that the one-loop (order λ) SYM result for the
anomalous dimension for any value of J , i.e. q1(J) in (1.7), should represent
the sum of all string sigma model loop corrections to the leading λ

J term (c1
coefficient) in (1.2). The subleading 1/J terms should be governed by the
same integrable structures on the two sides of the duality. For any value
of J , one certainly expects that, in view of the conformal invariance of the
AdS5 × S5 string theory (absence of mass generation), the classical integra-
bility of the AdS5 × S5 sigma model [56] should have a direct extension to
the quantum level. On the N = 4 SYM side, there are strong indications
that the one- and two-loop integrability of the dilatation operator extends
to all loop orders [44,45,68].

It is important to understand if the precise check of the string theory
/ gauge theory correspondence in the large spin sector of states may be
extended to other semiclassical string states with large oscillation numbers.
An indication that this is indeed the case comes from recent work [21]. As
was noticed earlier in [38], the circular string oscillating in S5 (but not in
AdS5) has energy that admits a regular expansion in λ

N2 , where N is the
oscillation level number. The leading term in this expansion was matched
in [16,21] onto a particular eigenvalue of the corresponding [22] SO(6) spin
chain Hamiltonian.

This raises the question of generalization of the rotation ansatz (4.2),
(6.1) of the previous sections to include the possibility of string oscillations,
i.e. of changing of string shape in time. It is not a priori clear which should
be the most general rotation/oscillation ansatz for the σ and τ dependence of
the AdS5×S5 coordinates consistent with the full 2-d classical sigma model
equations of motion, but for each consistent ansatz one should expect that
the 2-d sigma model should again reduce to an integrable 1-d system, whose
solutions (and thus their energies) could be found in a relatively explicit
way.†

An example is provided by a “2d-dual” version of the rotation ansatz

∗ Since the classical energy of multi-spin (say (J1, J2)) solutions reproduces the near-BMN spec-

trum in the limit J1 � J2 (see (7.36)), computing the one-loop sigma model correction to the

energy would effectively determine the 1/J (two-loop, in the BMN case) correction to the BMN

spectrum and thus could be compared to the result of [39,40].
† An alternative to this direct procedure of finding classical solutions may be the semiclassical

quantization method used in [21,35,38].
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(4.2) with τ and σ interchanged (but keeping the AdS5 time as t = κτ),
i.e. [34]

Xi = zi(τ) eimiσ = ri(τ)eiαi(τ)+imiσ ,
3∑

i=1

r2i (τ) = 1 . (8.1)

In this case the radial directions depend on τ instead of σ and the “fre-
quencies” mi must take integer values in order to satisfy the closed string
periodicity condition. This ansatz describes “oscillating” or “pulsating” S5

string configurations, special cases of which (with motion in both AdS5 and
S5) were discussed previously in [8,21,35,38,70]. Since the sigma model La-
grangian (2.6) is formally invariant under σ ↔ τ , the resulting 1-d effective
Lagrangian will have essentially the same form as (4.11), (4.15)

L =
1
2

3∑
i=1

(żiż∗i −m2
i ziz

∗
i ) +

1
2

Λ
( 3∑

i=1

ziz
∗
i − 1

)
. (8.2)

Solving for α̇i as in (4.16) we get r2i α̇i = Ji=const, where the counterparts
of the integration constants vi are now the angular momenta in (4.7). Then
we end up with the following analogue of (4.17)

L =
1
2

3∑
i=1

(
ṙ2i −m2

i r
2
i −

J 2
i

r2i

)
+

1
2

Λ
( 3∑

i=1

r2i − 1
)
. (8.3)

Thus pulsating solutions (carrying also 3 spins Ji) are again described by a
special Neumann-Rosochatius integrable system [34]. Since the correspond-
ing conformal gauge constraints are also τ ↔ σ symmetric, they take the
form similar to (2.7), (2.8) or (4.19), (4.20): κ2 =

∑3
i=1(ṙ

2
i +m2

i r
2
i + J 2

i

r2
i
) and∑3

i=1miJi = 0. One may then look for periodic solutions of the above NR
system (8.3) subject to the above constraint, i.e. having finite 1-d energy.
The resulting class of pulsating string solutions deserves a detailed study.
In the simplest (“elliptic”) case reducing to a sine-Gordon type system we
may follow [35, 38, 71] and introduce, as for any periodic solitonic solution,
an oscillation “level number” N. In the case of the S5 pulsating solution
in [21, 38] the expansion of the energy at large level N � 1 appears to be
regular in λ

N2 and, moreover, the leading λ
N term in E can be matched onto

a particular anomalous dimension on the SYM side [16,21].
One would certainly like to go beyond comparison of particular string

states to particular SYM operators and to establish a more general relation
between the string sigma model and the dilatation operator on the SYM side,
implied by the emergence of similar integrable structures on the two sides [20,
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21]. The spin chain Hamiltonian may be associated (in the thermodynamic
limit) to an effective coset sigma model with the same global symmetries.
Then one may hope to relate this sigma model to (the J →∞ limit of) the
string sigma model by a kind of non-local duality transformation.‡

Finally, one would like also to extend the successes of checking the
gauge/string duality in the non-supersymmetric semiclassical sectors of
states from N = 4 SYM theory to less supersymmetric gauge theories. As
was already mentioned in the introduction, evidence of integrable structures
in the high-energy (near-conformal) limit of QCD appeared in [24–28], and
so the spin chain relation of the the one-loop dilatation operator of N = 4
SYM theory [22, 23, 33] should have generalizations to other N = 1, 2 su-
persymmetric theories (and not only in twist 2 sector [72]). On the string
side, while finding similar classical rotating string solutions in other less su-
persymmetric conformal AdS5 ×M5 (and non-conformal, see, e.g., [36, 73])
backgrounds in type IIB theory or its orbifolds is, in principle, straightfor-
ward, it is not clear if the string sigma model corrections to the leading terms
in the classical energy are again suppressed in the J →∞ limit. For exam-
ple, in the single S5 spin point-like string (BMN) case in the type 0 string
theory setting [74] there is a non-trivial one-loop string correction to the
energy of the twisted-sector states (which is non-analytic in λ

J2 but going to
zero when λ

J2 → 0) [75]. Similar corrections are expected also for extended
spinning string solutions, complicating direct comparison to perturbative
gauge theory results.
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