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LOW-DIMENSIONAL SISTERS OF SEIBERG–WITTEN

EFFECTIVE THEORY

A. V. SMILGA∗

SUBATECH, Université de Nantes,

4 rue Alfred Kastler, BP 20722, Nantes 44307, France

We consider the theories obtained by dimensional reduction to D = 1, 2, 3 of 4D super-

symmetric Yang–Mills theories and calculate there the effective low-energy lagrangians

describing moduli space dynamics — the low-dimensional analogs of the Seiberg–Witten

effective lagrangian. The effective theories thus obtained are rather beautiful and in-

teresting from a mathematical viewpoint. In addition, their study allows one to under-

stand better some essential features of 4D supersymmetric theories, in particular the

non-renormalization theorems.
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1. Introduction

Ian’s scientific style had two attractive features: (i) his works used, more

often than not, rather non-trivial modern mathematical constructions; (ii)

they were always based on a solid and clear physical idea. This text also

represents an exercise (a review of exercises) in “physical mathematics”,

involving an interplay between purely mathematical geometric constructions

and the simple physical notion of effective lagrangians.

Effective lagrangians/hamiltonians arise naturally in theories involving

two energy scales. Integrating out the “fast” variables (the degrees of free-

dom with large characteristic excitation energy), one obtains the effective

lagrangian involving only “slow” variables which describes the low–energy

dynamics. The classic example is the Born–Oppenheimer effective hamil-

tonian describing the dynamics of nuclei in a molecule, obtained after inte-

grating out the electronic degrees of freedom. The Euler–Heisenberg effective

lagrangian describing nonlinear soft photon interactions, the effective chiral

lagrangian for QCD, the Wilsonean renormalized effective lagrangian (where

modes with high frequency up to ΛUV are integrated out) all belong to this

class.

Another lagrangian in this class is the famous Seiberg–Witten effective

lagrangian [1]. Let us remind ourselves of its salient features. Consider the

pure 4D N = 2 supersymmetric Yang–Mills theory. The lagrangian written

in terms of N = 1 superfields is a

L =
1

g2
Tr

{
∫

d2θWαWα + 2

∫

d2θd2θ̄Φe−V Φ̄eV
}

(1)

In the bosonic sector, it includes the gauge field Aµ and a complex scalar φ

belonging to the adjoint representation of the gauge group,

g2L = −1

2
Tr{F 2

µν} + 2Tr{Dµφ̄Dµφ} − Tr{[φ̄, φ]2} + fermions (2)

The lagrangian is most economically expressed as (see e.g. [3])

L =
1

g2
Tr

∫

d2θd2θ̃W2 , (3)

a Our convention is close to that of Ref. [2], θ2 = θαθα θ̄2 = θα̇θα̇ ,
R

d2θ θ2 =
R

d2 θ̄ θ̄2 = 1. In

the following we will also use (σµ)αβ̇ = {1, τ}αβ̇ , (σ̄µ)β̇α = {1,−τ}β̇α. Our Minkowski metric

ηµν = diag(1,−1,−1,−1) differs in sign from Wess’ and Bagger’s conventions and we include an

extra factor of 2 in the definition of V .
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where W(xL, θα, θ̃α) is an N = 2 chiral superfield

W = Φ + i
√

2θ̃αWα − θ̃2

4
D̄2
(

e−V Φ̄eV
)

. (4)

The superfields V,Wα,Φ, Φ̄ live in ordinary superspace, (x, θ, θ̄). Besides the

chirality conditions, D̄a
α̇ W = 0, the superfield (4) satisfies the constraints

DaαDb
α W = D̄a

α̇D̄
bα̇ W̄ , (5)

where a, b = (no tilde, tilde) are the global SU(2) indices. The superfield

W can be naturally expressed in the framework of the harmonic superspace

approach (see the monograph [4] and also [5] ), but do not themselves depend

on harmonics in the chosen basis.

This theory has (infinitely) many different classical vacua. The super-

symmetric vacuum has zero energy. At the classical level, it has zero poten-

tial energy. Note that the potential commutator term in (2) vanishes when

[φ̄, φ] = 0, implying that φ belongs to the Cartan subalgebra of the cor-

responding Lie algebra. Factorizing over gauge transformations, this gives

r physical complex parameters (where r is the rank of the group) charac-

terizing the classical vacuum moduli space. When quantum corrections are

taken into account, one could in principle expect the appearance of a non-

trivial effective potential on the moduli space, such that the energy would

generically be shifted from zero. For supersymmetric theories, quantum cor-

rections vanish at any order of perturbation theory; for the N = 2 theory,

non-perturbative corrections to the effective potential also vanish. However,

corrections to the kinetic part of the lagrangian need not vanish and they do

not. The relevant slow variables are r complex parameters φA, mentioned

above, and their N = 2 superpartners involving fermions and also r Abelian

gauge fields. In the simplest SU(2) case, they can be combined into one

N = 2 superfield W = φ + . . . .b The effective Seiberg–Witten lagrangian

has the form

L =

∫

d4θF (W) + c.c. . (6)

When expressed in components, this gives a non-trivial metric on moduli

space. F (W) is a non-trivial, elliptic function taking account of the instanton

contributions, etc. Its asymptotic behavior at large W is simple, however:

F (W) = W2

4π2 lnW. This takes into account only the perturbative corrections,

which appear only at the one-loop level.

b No spinor or matrix indices here!
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This paper is devoted to evaluation of the effective lagrangians in the

theories obtained by the dimensional reduction of (2) and also by the di-

mensional reduction of N = 1 SYM theories.

Let us start by discussing the latter. In four dimensions, pure SYM the-

ories do not possess a vacuum moduli space. The number of quantum vacua

is finite, given by the dual Coxeter number (or, equivalently, the adjoint

Casimir operator cV ) of the gauge group [6]. However, a moduli space does

appear after dimensional reduction. Consider first the theory reduced to

(0 + 1) dimensions. In such a theory, new gauge invariants made of the spa-

tial components of the gauge potential appear. The simplest such invariant

is Tr{A2
i }. Indeed, the gauge transformation of Aa

i is reduced now to mul-

tiplication by a group matrix Oab and does not involve the derivative term.

The tree potential term ∝ Tr [Ai, Aj ]
2 vanishes when [Ai, Aj ] = 0, i.e. when

Ai belongs to the Cartan subalgebra. For SU(2), this means that Ai can

be gauge rotated to the form cit
3. The three variables ci characterize the

vacuum moduli space. For an arbitrary gauge group, the moduli space is

characterized by 3r parameters.

Consider now the reduction to (1+1) dimensions. Only two components

of Ai do not involve the derivative term in their gauge transformation law

and we have 2r physical moduli space parameters. When reducing to D = 3,

only one component of the vector potential for each unit of rank is left, but

there are also r Abelian gauge fields which are dual in three dimensions

to scalars, εijkFjk ↔ ∂iΨ. Thus, in three dimensions we have r + r = 2r

parameters in the vacuum moduli space.

For N = 2 theories, the counting is basically the same, only we have

to add 2r parameters associated with the scalar fields. In other words, the

corresponding effective lagrangians involve 5r bosonic degrees of freedom in

the 1D case and 4r degrees of freedom in the 2D and 3D cases.

The paper is organized as follows. In the next section, we describe the su-

persymmetric quantum-mechanical models representing effective lagrangians

for the theories obtained after reduction to (0 + 1) dimensions. They rep-

resent non-standard (so called symplectic) supersymmetric sigma models.

They are characterized by a mismatch between the number of bosonic and

fermionic degrees of freedom: for example, in the symplectic σ models of the

first kind (obtained from N = 1 theories), we have 3 bosonic and 2 fermionic

degrees of freedom for each unit of rank, while for symplectic σ models of

the second kind (obtained from N = 2 theories), we have 5r bosonic and

4r fermionic degrees of freedom. We hasten to mention that the number of

bosonic and fermionic quantum states is still equal, as dictated by supersym-
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metry. We will explain later why the existence of such an unusual N = 2

sigma model c (it is not Kähler !) does not contradict the no-go theorem

proven in [7].

In Sect. 3, we discuss 2-dimensional effective theories. The theories ob-

tained from N = 1 4D SYM represent conventional Kähler sigma models.

For extended SYM, the effective theories are more interesting since they en-

joy N = 4 supersymmetry, but are not hyper-Kähler, belonging to the class

of so-called twisted sigma models [8].

Sect. 4 is devoted to 3D effective theories. They are hyper–Kähler sigma

models. In the simplest SU(2) case, the corresponding target space is the

Atiyah–Hitchin manifold (the (0 + 1) version of this sigma model describes

also the dynamic of two BPS monopoles). In the SU(N) case, the tar-

get space represents a generalized Atiyah–Hitchin manifold associated with

the dynamics of N BPS monopoles. d For an arbitrary gauge group, the

corresponding hyper–Kähler manifolds (not studied by mathematicians pre-

viously) are obtained after certain factorizations (hyper–Kähler reductions)

of generalized AH manifolds.

In Sect. 5 we discuss the relationship between effective lagrangians in

different dimensions and discuss in detail the non-renormalization theorems

forD = 1, 2, 3 and their relationship to the conventional non-renormalization

theorems in four dimensions.

2. D = 1 : Symplectic Sigma Models

2.1. N = 1

Consider the simplest example, namely massless N = 1 4D SQED, with the

lagrangian

L =
1

2e2

∫

d2θW 2 +

∫

d4θ
[

S̄ eV S + T̄ e−V T
]

, (7)

(S, T are chiral multiplets carrying opposite electric charges) reduced to

(0 + 1) dimensions. The effective lagrangian (determined in [9]) depends on

the gauge potentials Ai(t) and their superpartners: the photino fields ψα(t),

α = 1, 2. The charged scalar and spinor fields represent fast variables that

c Our counting of N always refers to a number of minimal supercharge representations in a given

dimension. Thus, for D = 1, N counts the number of complex supercharges, for D = 4 it counts

the number of Weyl spinors, etc.

d To avoid confusion, we note that they are the standard monopoles of the O(3) Georgi–Glashow

model characterized by spatial position and a single U(1) phase.
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should be integrated over. Now Ai, the auxiliary field D and the spinor fields

ψα can be combined in a single N = 2 1D superfield [10] (see also [11]) e

Γk = Ak + θ̄σkψ + ψ̄σkθ + εkjpȦj θ̄σpθ +Dθ̄σkθ

+ i(θ̄σkψ̇ − ˙̄ψσkθ)θ̄θ +
Äk

4
θ2θ̄2 . (8)

The field (8) satisfies the constraints

D(αΓβγ) = 0 , D̄(αΓβγ) = 0 , (9)

where Γαβ = Γβα = i(σk)
γ

α εβγΓk and

Dα =
∂

∂θα
+ iθ̄α

∂

∂t
, D̄α =

∂

∂θ̄α
− iθα

∂

∂t
(10)

are the covariant derivatives. Actually, Γk are nothing but the spatial com-

ponents of the former 4D superconnections

Γµ =
1

4
(σ̄µ)β̇αD̄β̇DαV = Aµ + . . . , (11)

the covariant background derivatives having the form ∇µ = ∂µ − iΓµ [12].

In one-dimensional theory, Γk is gauge invariant,

δΓαβ ∼ (DαD̄β +DβD̄α)(Λ − Λ̄) = 0

as follows from the (anti-)chirality of Λ(Λ̄) and the 1D relationship

{Dα, D̄β} = 2iεαβ∂t.

The effective supersymmetric and gauge–invariant action is presented in

the form

S =

∫

dt

∫

d2θd2θ̄ F (Γk). (12)

By construction, it enjoys N = 2 supersymmetry. The lagrangian is ex-

pressed in components as follows

L =
h

2
ȦkȦk +

ih

2

(

ψ̄ψ̇ − ˙̄ψψ
)

+
∂kh

2
εkjpȦjψ̄σpψ

+
hD2

2
− D∂kh

2
ψ̄σkψ − ∂2h

8
ψ̄2ψ2 , (13)

e We follow the notations of Ref. [5],

θ̄α = (θα)†, θ̄θ = θ̄αθα, θ̄σkθ = θ̄α(σk) β
α θβ

and the indices are raised and lowered with the help of the invariant tensors εαβ = −εαβ .



September 1, 2004 4:8 WSPC/Trim Size: 9.75in x 6.5in for Proceedings smilga

Low-dimensional sisters of Seiberg–Witten effective theory 529

where

h(A) = −1

2
∂2F (A) . (14)

This is a supersymmetric sigma model with conformally-flat 3D target space,

ds2 = hdA2. However, it is not the conventional supersymmetric sigma

model associated with the de Rahm complex. The latter has only one pair

of complex supercharges (Q,Q†) ≡ (d, d†). When the target space represents

a Kähler manifold, one can define an extra pair of supercharges (three such

extra pairs for hyper–Kähler manifolds), but in our case the target space is

3–dimensional and definitely not Kähler.

One also notices that the number of bosonic and fermionic degrees of

freedom are not matched in the usual way: in a conventional sigma model

one has a complex fermion for each boson while the lagrangian (13) involves

three bosonic dynamic variables and only two fermionic ones. In field theory,

where each field is associated with an asymptotic quantum state, such a

mismatch would not be allowed by supersymmetry. But in supersymmetric

quantum mechanics, there are no problems with a mismatch of this kind:

for each nonzero eigenvalue of the hamiltonian we still have two bosonic and

two fermionic degenerate states |n〉 = Φn(A, ψα).f

A reader might be somewhat confused at this point. The widely-known

theorem [7] seems to assert that N = 2 sigma models can only be defined

on Kähler manifolds (and N = 4 models only on hyper–Kähler manifolds).

However, this theorem relies on two assumptions : (i) the theory considered

should be a real field theory with at least 2 spacetime dimensions and (ii) the

kinetic term should have the standard form ∝ gab∂µφ
a∂µφ

b. For quantum

mechanics, the first condition is not satisfied and there are no restrictions.

In a standard sigma model, fermions are vectors in the tangent space. In

our case, they belong to the spinor representation of SO(3) ≡ Sp(2). We

will call this model a symplectic sigma model of the first kind (see below for

the second kind).

In our case, the function F (Γk) has a particular form. At the tree level,

F (Γ) = Γ2/(6e2) and h = 1/e2. This gives the lagrangian of dimensionally-

reduced photodynamics. Let us evaluate the one-loop correction to the met-

ric. To this end, we need to calculate the loops of charged superfields S, T in

a gauge background. It is convenient to do this in components. We choose

f As is well known, vacuum states with zero energy need not be paired. In Ref. [13], we considered

SQM models with non-standard “weak” supersymmetric algebra. For such models, the exact

pairing is absent also for the first excited state. But the algebra of all models considered in this

paper is standard.
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the background Ai = Ci +Eit, ψα = 0 and calculate the charged scalar and

fermion loops. The corresponding contributions to the effective action have

the form

∆Seff = −i ln det
1
2 (−D2I + i

2σµνFµν)

det
1
2 (−D2I)

, (15)

where I is the 4 × 4 unity matrix and the identity

(i /D)2 = −D2I +
i

2
σµνFµν , (16)

σµν = 1
2 [γµ, γν ] , has been used. We observe that a non-zero correction is

due solely to magnetic interactions ∝ σµν Fµν . If the latter were absent, the

fermion and scalar contributions would exactly cancel. This feature is com-

mon to all supersymmetric gauge theories, both non-Abelian and Abelian

(see [14] for more details). This fact is related to another known fact, namely

that when the supersymmetric β function is calculated in an instanton back-

ground, only the contribution of the zero modes survives [15].

Figure 1. One-loop renormalization of the kinetic term in SQED. The internal lines are Green’s

functions of the operator (−D2) with constant Ai = Ci. The vertices involve the magnetic

interaction ∝ σ0i Ei.

To lowest order in Fµν (or Ei), the contribution (15) can be represented

by the graph in Fig.1. The constant background C gives a “mass” to the

charged fields and the Euclidean propagator has the form 1/(ω2 +C2). The

calculation gives

∆Seff = −i · iWick · i2 · 1

2
·
(

−1

2

)

·EjEk Tr{σ0jσ0k}
∫ ∞

−∞

dω

2π

1

(ω2 + C2)2
=

E2

4|C|3 , (17)

where the factor 1/2 is the power of the determinant and the factor −1/2
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comes from the expansion

ln det ‖I + α‖ = ln

[

1 − 1

2
Trα2 +

1

3
Trα3 + . . .

]

≈ −1

2
Trα2

(Tr α = 0 in our case). This immediately gives

e2h(C) = 1 +
e2

2|C|3 + . . . (18)

Let us discuss now non–Abelian theories. In the simplest case of the

group SU(2), the moduli space involves the variables ck = A3
k and their

superpartners, which are combined in the superfield Γ3
k. The effective action

again has the form (12), but the function F (Γ3) is now different. Like in

the Abelian case, it can be determined by calculating the loops of gauge

and fermion fields in an Abelian background Acl(t) = (Ci +Eit)t
3 (where C

stands not only for “constant”, but also for “Cartan”).

The graphs are conveniently calculated in the background gauge. We

represent Aµ = Acl
µ +Aµ, where Aµ is the quantum fluctuation and and add

to the Lagrangian the gauge-fixing term

− 1

2g2
(Dcl

µ Aµ)2 , (19)

where Dcl
µ = ∂µ − i

[

Acl
µ , ·
]

. The coefficient chosen in Eq. (19) defines

the “Feynman background gauge”, which is more convenient than others.

Adding (19) to the lagrangian and integrating by parts, we obtain for the

gauge–field–dependent part of the Lagrangian

LA = − 1

2g2
Tr
(

F 2
µν

)

+
1

g2
Tr
{

Aµ

(

D2gµνAν − 2i [Fµν ,Aν ]
)}

+ . . . , (20)

where the dots stand for the terms of higher order in Aµ. The ghost part of

the Lagrangian is

Lghost = −2Tr
(

c̄D2c
)

+ higher order terms. (21)

Now we can integrate over the quantum fields Aµ, c and over the fermions

using the relation (16). We obtain

δSeff = −i ln
(

det
1
4

(

−D2 I + i
2σµν [Fµν , ·]

)

det1/4
(

−D2I
)

det
1
2 (−D2 gµν + 2i [Fµν , ·])

)

. (22)

Again, the result would be zero in the absence of magnetic interactions. In

this case, besides the fermion loop, the gauge field loop should also be taken

into account. The non-zero commutators, [Fµν , Aν ], [Fµν , λα], imply that
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the quantum fields are charged with respect to the background, i.e. that

their color indices a acquire the values 1, 2.

The fermion loop gives the same contribution to Seff as in the Abelian

theory: the power of the determinant is now 1/4 rather than 1/2 (the theory

involves a Weyl, rather than Dirac, fermion), but this is compensated by

the extra color factor 2. One can be convinced that the gauge boson loop

contribution involves the factor -4 compared to the fermion one (the factor

−2, coming from the power of determinant −1/2 vs. 1/4, is explicitly seen

in (22) and another factor 2 comes from spin. This gives

g2hSU(2)(C) = 1 − 3g2

2C2
+ . . . (23)

One notices at this point that exactly the same graphs determine the one–

loop renormalization of the effective charge in the corresponding 4D theories.

The only difference is that, in four dimensions, we have to substitute
∫

dω

2π

1

(ω2 + C2)2
−→

∫

d2p

(2π)4
1

(p2 + C2)2
∝ ln

Λ

|C| .

In other words, the coefficients in (18), (23) are rigidly related to the one–

loop β function coefficients in the parent 4D theories. Indeed, the β function

in non–Abelian SYM theory with SU(2) gauge group involves the factor −3

compared to SQED. We will return to the discussion of this point in the last

section.

The metrics (18), (23) and the relation (14) allow one to restore the

corresponding prepotentials:

e2F SQED(Γ) = −Γ2

3
+
e2 ln |Γ|

|Γ| + ...

g2F SU(2)(Γ) = −Γ2

3
− 3g2 ln |Γ|

|Γ| + ... (24)

(we replaced Γ3 → Γ in the non–Abelian case). Consider now an arbitrary

simple, compact Lie group. The classical potential energy vanishes when

[Aj , Ak] = 0, which implies that Aj lies in the Cartan subalgebra (and is ef-

fectively Abelian). This gives 3r bosonic variables in the effective lagrangian.

They are supplemented by 2r Abelian gluino variables. These variables are

organized in r superfields ΓA=1,...,r defined as in Eqs. (8), (9). ΓA repre-

sent dimensionally-reduced Abelian superconnections. Thus, the effective

lagrangian has the form g
∫

d4θF (ΓA) and the only question is what the

g It is interesting that such a lagrangian describes also the dynamics of r extremal Reissner–



September 1, 2004 4:8 WSPC/Trim Size: 9.75in x 6.5in for Proceedings smilga

Low-dimensional sisters of Seiberg–Witten effective theory 533

function F (ΓA) is. Again, we choose an Abelian gauge field background and

perform the calculation over quantum fields. The latter must have non-zero

commutators with the background. They are classified according to the roots

of the corresponding Lie algebra. Actually, we have to add the contributions

of the loops corresponding to each such (positive) root. The result is (see [17]

for more details)

g2F (ΓA) = −
∑

j

[

2

3cV

(

Γ(j)
)2

+
3g2

|Γ(j)|
ln |Γ(j)|

]

, (25)

where Γj = αj(Γ
A) and αj are the roots. For example, for SU(3) we have

the sum of three terms with

α1(Γ
A) = Γ3 , α2(Γ

A) =
−Γ3 +

√
3Γ8

2
, α3(Γ

A) =
Γ3 +

√
3Γ8

2
. (26)

2.2. N = 2

The same program can be carried out for SQM models obtained by dimen-

sional reduction from N = 2 4D theories. Consider first Abelian theory.

N = 2 SQED has the same charged matter content as N = 1 theory, but

involves an extra neutral chiral multiplet Φ. The lagrangian acquires two

new terms

∆L =

∫

d4θ Φ̄Φ +

[√
2e

∫

d2θΦST + c.c.

]

. (27)

The lowest component of Φ gives two extra degrees of freedom in the vac-

uum moduli space, which thereby becomes 5–dimensional.h The vector su-

perfield V and the chiral superfield Φ can be unified in a single N = 4

(in SQM sense) harmonic gauge superfield and the effective lagrangian can

be formulated in the terms of the latter [5]. We use here a more conven-

tional approach, using N = 2 superfields. The effective action depends

on ΓJ = (Γ,
√

2 Re{Φ},
√

2 Im{Φ}) (interpreted as superconnection in the

“grandmother” 6D theory) and must have the form

S =

∫

dt

∫

d2θd2θ̄ K(Γ, Φ̄,Φ) . (28)

Nordström black holes (representing classical solutions in N = 2 4D supergravity) [16].

h The moduli can be represented as spatial components of the gauge potential in 6D SQED, from

which the N = 2 4D theory is obtained by dimensional reduction.
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Now N = 2 symmetry is manifest here. The action (28) is invariant under

the additional N = 2 supersymmetry transformations

δΦ̄ =
2i

3
εα(σk)

β
α DβΓk ,

δΦ =
2i

3
ε̄α(σk)

α
β D̄βΓk ,

δΓk = −iεα(σk)
β

α DβΦ − iε̄α(σk)
α

β D̄βΦ̄ , (29)

provided that

∂2K
∂Γ2

k

+ 2
∂2K
∂Φ̄∂Φ

≡ ∂2K
∂Γ2

J

= 0 , (30)

i.e. K is a 5–dimensional harmonic function [18]. Unifying A and φ, φ̄ in a

single 5-dimensional vector AJ and two spinors from the multiplets Γk and Φ

in a single 4–component complex spinor ηα lying in the fundamental (spinor)

representation of SO(5) ≡ Sp(4), we can write the following component

expression for the lagrangian [19]

L = h

[

1

2
Ȧ2

J +
i

2
(η̄η̇ − ˙̄ηη)

]

+
i

2
∂JhȦK η̄σJKη +

1

24

(

2∂J∂Kh− 3

h
∂Jh∂Kh

)

(η̄γJη η̄γKη − ηCγJη η̄γKCη̄) , (31)

where γK are 5–dim Dirac matrices, σJK = (1/2)(γJγK − γKγJ) and C is

the antisymmetric matrix of charge conjugation, CγT
J = −γJC. The metric

h is related to K by h = −(1/2)∂2K/∂A2.

The lagrangian (31) describes a sigma model defined on a conformally-flat

5–dimensional target space. We will call it a symplectic sigma model of the

second kind. A generalized symplectic model of the second kind depends in

this approach on r sets of N = 2 superfields ΓJ ≡ (ΓA,ΦA, Φ̄A). The action

S =

∫

dt

∫

d2θd2θ̄ K(ΓA
J ) . (32)

enjoys extended N = 4 supersymmetry, provided the following generalized

harmonicity conditions are satisfied [5]

∂2K
∂ΓA

I ∂ΓB
I

= 0 ,
∂2K

∂Γ
[A
I ∂Γ

B]
J

= 0 . (33)

In the Abelian case, the effective action has the form (31) with the same

metric h as in the N = 1 4D SQED case discussed above. Indeed, we can

choose the background with zero φ, in which case the effective action is given
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by the graph drawn in Fig.1. Now, O(5) invariance dictates that the metric

also has the form (18) in a generic background CJ with C2 being substituted

by C2
J . The prepotential can be chosen as

e2K = −R
2

3
+
ρ2

2
+

e2

R
ln
(

R+
√

R2 + ρ2
)

, (34)

where R2 = Γ2 and ρ2 = 2Φ̄Φ. Note that K need not be (and is not) O(5)

invariant.

In non-Abelian N = 2 SYM theory with SU(2) gauge group, the calcu-

lations are readily done in the same way as before. The only modification

is that there are now two Weyl fermions and an additional adjoint scalar.

The ghost determinant is canceled by the adjoint scalar determinant and we

obtain

δSeff = −i ln
(

det
1
2

(

−D2 I + i
2σµν [Fµν , ·]

)

det
1
2 (−D2 gµν + 2i [Fµν , ·])

)

. (35)

This gives the expression

g2h
SU(2)
N=2 (CJ) = 1 − g2

|CJ |3
(36)

for the metric. The respective coefficients in the correction in the Abelian

and non-Abelian cases conform with the respective coefficients in the corre-

sponding 4D beta functions.

The structure of the expressions (36) and (23) is similar, but there is

one essential difference. Eq. (36) contains no ellipsis! The expression for

the metric is exact: higher-loop corrections vanish. The proof of this non-

renormalization theorem is simple. Dimensional counting tells us that an

n–loop correction to the metric should be proportional to (AJAJ)−3n/2. But

this is not harmonic for n ≥ 2 and is excluded by supersymmetry require-

ments. We will discuss the relationship of this non-renormalization theorem

to the 4D non-renormalization theorem (in N = 2 theories two and higher

loop contributions to the beta function vanish) in Sect. 5.

We want to emphasize that the absence of the corrections to the metric

does not mean the absence of the corrections to the effective lagrangian. The

latter involves higher derivative corrections, which do not vanish either at the

one–loop or at the two- and higher-loop level [20]. Thus, the singularity of

the metric at A2
J = 0 has no great physical meaning: the effective lagrangian

involves uncontrollable higher–derivative corrections there anyway.
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The effective lagrangian can also be found for an arbitrary gauge group.

Again we have to sum over all positive roots. The prepotential is

g2K = −
∑

j

{

2

3cV

[

(

R(j)
)2

− 3

2

(

ρ(j)
)2
]

+

2g2

R(j)
ln

[

R(j) +

√

(

R(j)
)2

+
(

ρ(j)
)2
]}

, (37)

where
(

R(j)
)2

=
(

Γ(j)
)2

,
(

ρ(j)
)2

= 2Φ̄(j)Φ(j) and Γ(j) = αj(Γ
A), Φ(j) =

αj(Φ
A).

3. D = 2 : Kähler and Twisted Models

3.1. N = 1 : Unfolding the ring

Consider first Abelian theory. As was noted previously, in two dimensions

we have two, rather than three, moduli, representing the components of the

gauge potential in the reduced dimensions. The bosonic part of the effective

lagrangian can be evaluated in the same way as in the 1D case by calculating

the loop diagram in Fig.1. The only difference is that the loop integral is

now two–dimensional. We obtain

e2Lbos
eff =

(∂αAj)
2

2

[

1 +
e2

2πA2
j

+ . . .

]

, (38)

α = 1, 2 and j = 1, 2. This describes a sigma model on a 2–dimensional

target space. One can, of course, introduce the complex coordinate σ =

(A1 + iA2)/
√

2.

The full effective lagrangian involves, besides Aj , their supersymmetric

partners, which are two-component photino fields. We see that, in this

case, there is perfect matching between the number of bosonic and fermionic

degrees of freedom. Actually, the Alvarez–Gaume–Freedman theorem [7]

dictates that the only two–dimensional N = 2 supersymmetric theory with

standard sigma–model kinetic term like in (38) is the supersymmetric Kähler

sigma model. The Kähler potential K (L =
∫

d4θK ) can be recovered from

the metric. In the case under consideration, it can be chosen as

e2K(Φ̄,Φ) = Φ̄Φ +
e2

4π
lnΦ ln Φ̄ . (39)

Now, Φ is a chiral superfield that is related to the gauge–invariant super-

connections Γj in reduced dimensions in the following way. Consider the
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superfield Σ = (Γ1 + iΓ2)/
√

2. From the definition (11) and the 2D anti-

commutation relations between Dα and D̄α̇, we deduce that Σ satisfies the

constraints

D̄1Σ = D2Σ = 0 (40)

and represents a so-called twisted chiral multiplet. It differs from the stan-

dard one by a pure convention: Σ is obtained from Φ by interchanging θ2 and

θ̄2. This means that the change Φ → Σ, in any standard action involving Φ,

would not change anything except the sign due to the change of sign of d4θ.

For example, the tree Lagrangian is expressed as

e2L2d
tree = −1

2

∫

d4θ(Γ2
1 + Γ2

2) = −
∫

d4θΣ̄Σ ≡
∫

d4θΦ̄Φ. (41)

It is very instructive to derive the effective 2D lagrangian directly, eluci-

dating its relationship with the SQM effective lagrangian (13) discussed in

the previous section. To do this, consider the original theory, not on R2 and

not on R1, but rather on R1 × S1. By adjusting the length L of the circle,

one can interpolate between the 1D and 2D pictures [14].

The Lagrangian (13) was obtained after integrating out the charged fields

in 1D theory. Thinking in 1D terms, we now have an infinite number of

charged fields, representing the coefficients in the Fourier series

f(z, t) =

∞
∑

n=−∞

fn(t)einz/L . (42)

The relevant variables in the effective Lagrangian are still the zero Fourier

modes of the vector potential A ≡ (Aj=1,2, A3) and its superpartners. The

expression (13) is replaced by the infinite sum i

e21L =

[

1 +
∞
∑

n=−∞

δh

(

Aj , A3 +
2πn

L

)

]

(Ȧ2
j + Ȧ2

3) + other terms. (43)

In the limit L → 0, only one term in the sum survives and we reproduce

the previous 1D result (with δh = e2
1/(2|A|3)). But for large L � e

−2/3
1 ,

all terms are essential. In the limit L → ∞, we can replace the sum by an

integral,
∑

n −→ L
2π

∫

dA3. This integral depends on Aj , but not on A3: the

i The notation e1 indicates that we are dealing with the coupling constant in 1D theory,

[e1] ∼ m3/2.
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expression in square brackets in Eq. (43) gives

h̃ = 1 +
e22

2πA2
j

, (44)

with e22 = e21L. This agrees, of course, with (38). Actually, in the limit

L → ∞, the effective lagrangian cannot depend on A3. For large L, the

range where A3 changes is very small, 0 ≤ A3 ≤ 2π/L, and the eigenmodes

of the hamiltonian Ψn(A3) ∼ exp{inA3} with n 6= 0 acquire large energy

and decouple; only the mode n = 0 survives. To take this limit carefully,

we cannot just set A3 = 0 in Eq. (43), however, but should perform the

functional integral of eiS (S is obtained from Eq. (13) by substituting h̃ for

h) over
∏

t dA3(t) first. Doing this and integrating out also the auxiliary

field D, we arrive at the result

e22L2D =
1

2
gjkȦ

jȦk +
ih̃

2

(

ψ̄ψ̇ − ˙̄ψψ
)

+ ih̃ωab
j Ȧ

jψ̄σabψ +

1

8h̃

[

(∂j h̃)
2 − h̃(∂2h̃)

]

(

ψ̄
)2

(ψ)2 , (45)

where we have raised the index of the vector Aj indicating its contravariant

nature, gjk = h̃δjk, σ
ab = i

2ε
abcσc = i

2ε
abσ3 (a, b = 1, 2 ) is the generator of

rotations in the tangent space, and

ωab
i =

1

2

[

δa
i ∂

b log (h̃) − δb
i ∂

a log (h̃)
]

(46)

is the spin connection on a conformally flat manifold with the natural choice

of the zweibein, ea
j =

√

h̃δa
j .

In deriving (45), we went over from the lagrangian L1D to the 2D la-

grangian density L2D = L1D/L . (Normally, L1D is a spatial integral of

L2D, but we have dealt up to now only with the terms depending on zero

spatial Fourier modes, in which case the spatial integral is reduced to mul-

tiplication by L.)

The lagrangian (45) coincides with the standard lagrangian of the Kähler

supersymmetric sigma model [21] in the QM limit. In particular, the co-

efficient of the 4–fermion term represents a 2D scalar curvature.j The full

(1 + 1) effective lagrangian could be obtained by taking into account the

j Incidentally, although the bifermion term in (13) can be interpreted in terms of a 3D spin con-

nection, the 4–fermion term (before or after integrating out D) is not expressed in terms of 3D

curvature.
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higher Fourier harmonics ∝ exp{inz/L} of Aj(z, t) and ψα(z, t) in the back-

ground.

The result (39) can be readily generalized for an arbitrary non–Abelian

gauge group. The Kähler potential depends on r complex chiral superfields

ΦA and has the same sum–over–the–roots structure as the 1D prepotential

in Eq. (25),

g2K(ΦA) =
∑

j

[

2

cV
Φ̄(j)Φ(j) − 3g2

4π
ln Φ̄(j) lnΦ(j)

]

, (47)

where Φ(j) = αj(Φ
A).

3.2. N = 2 : Twisted Sigma Model

We start again by analyzing the Abelian theory. The effective lagrangian

now involves two complex bosonic variables

σ = (A1 + iA2)/
√

2, φ = (A4 + iA5)/
√

2 . (48)

The one–loop calculation brings about a non-trivial metric in the target space

(σ, σ̄, φ, φ̄). This metric can be related to the SQM 5–dimensional metric by

integrating the latter over A3 in the same way as the Kähler metric (38) was

obtained from the metric of the SQM model in the N = 1 case:

e2 ds21+1

∣

∣

N=2
=

(

1 +

∫ ∞

−∞

dA3

2π
δh0+1

)

=

[

1 +
e2

4π(φ̄φ+ σ̄σ)

]

(2dσ̄dσ + 2dφ̄dφ) . (49)

We expect the effective action to have a σ model form. One might worry at

this point, because the metric (49) is not hyper-Kähler (the Ricci tensor and

the scalar curvature do not vanish), while the hyper-Kähler property of the

metric was shown to be necessary in order for the standard (1+1) σ model

to enjoy N = 4 supersymmetry [7]. In our case, N = 4 supersymmetry is

present but the metric is not hyper-Kählerian, and this seems to present a

paradox. The resolution is that the σ model to hand is not standard [19].

Indeed, the bosonic part of the Lagrangian involves, besides the standard

kinetic term h
(

∂ασ̄∂ασ + ∂αφ̄∂αφ
)

, the ”twisted” term ∝ εαβ∂ασ∂βφ and

∝ εαβ∂ασ̄∂βφ̄. To understand where the twisted term comes from, consider

a charged-fermion loop in the background

σ = σ0 + στ τ + σzz, φ = φ0 + φτ τ + φzz (50)
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(τ is the Euclidean time). The contribution to the effective action is ∝
ln det ‖D‖, where D is the 6–dimensional Euclidean Dirac operator, which

can be written in the form

D = i
∂

∂τ
+ γ3

∂

∂z
− i(γ1A1 + γ2A2 + γ4A4 + γ5A5) . (51)

Now, if A4 and A5 were absent, we could write D = γ4(iγ̃µDµ) , with

µ = 1, 2, 3, 4; D4 =
∂

∂τ
, D3 =

∂

∂z
, D1,2 = −iA1,2; γ̃4 = γ4, γ̃1,2,3 = −iγ4γ1,2,3

and then use the squaring trick

det ‖D‖ = det ‖iγ̃µDµ‖ = det 1/2

∥

∥

∥

∥

−D2 +
i

2
σ̃µνFµν

∥

∥

∥

∥

, (52)

with F14 = −∂A1/∂τ , etc. The effective action would be proportional to

Tr{σµνσαβ}FµνFαβ

∫

d2p

4π2

1

(p2 + 2σ̄σ)2
∝ F 2

µν , (53)

which gives the renormalization of the kinetic term, while the twisted term

does not appear. The squaring trick also works in the case where A4,5 are

non-zero, but do not depend on τ, z. Then 2φ̄φ is just added to −D2 in

Eq. (52) and to 2σ̄σ in Eq. (53), leading to Eq. (49). But in the generic case,

the fermion determinant cannot be reduced to det1/2 ‖ − D2 + i
2σµνFµν‖.

The basic reason for this impasse is that one cannot adequately “serve” six

components of the gradient with only five γ matrices.k As a result, the extra

twisted term in the determinant appears.

We need not perform an explicit calculation here, as the twisted and all

other terms in the Lagrangian are fixed by supersymmetry. The twisted

N = 4 supersymmetric σ model was constructed almost 20 years ago [8].

At that time it did not attract much attention. Recently, there has been

a revival of interest in the GHR model: it arose in some string–related

problems [22,23]. It also arises as the effective (1+1) Lagrangian in the case

under study.

It was shown that, for the N = 4 supersymmetric generalization to be

possible, the conformal factor in the metric h(σ̄, σ, φ̄, φ) should satisfy the

harmonicity condition

∂2h

∂σ̄∂σ
+

∂2h

∂φ̄∂φ
= 0 . (54)

k By the same reasoning, the squaring trick does not work for Weyl 2–component fermions in 4

dimensions: the three Pauli matrices that are available in that case are not enough to do the job.
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Obviously, (49) satisfies the condition everywhere except at the origin. The

relationship between (54) and the 5–dimensional harmonicity condition for

the metric in the effective SQM model (31) is also obvious. Indeed, integrat-

ing a D–dimensional harmonic function over one of the coordinates, like in

(49), we always arrive at a (D − 1)–dimensional harmonic function.

To construct the full action, consider, along with the standard chiral

multiplet Φ satisfying the conditions DαΦ = 0, a twisted chiral multiplet Σ,

which satisfies the constraints (40). As we have seen, the action (depending

on only Σ̄ and Σ) can be expressed in terms of standard chiral multiplets.

However, one can write non-trivial Lagrangians involving both Φ and Σ. The

twisted σ model is determined by the expression

L =

∫

d2θd2θ̄ K(Φ̄,Φ; Σ̄,Σ) , (55)

where the prepotential K satisfies the harmonicity condition,

∂2K
∂Σ̄∂Σ

+
∂2K
∂Φ̄∂Φ

= 0 . (56)

The condition (56) is required if we want the theory to be N = 4 supersym-

metric. This is best seen by expressing the lagrangian in components [19] and

observing that the lagrangian is symmetric under interchange of fermionic

variables entering the twisted and untwisted multiplets only for harmonic

K. The composition of this discrete symmetry and N = 2 supersymmetry,

which is manifest in (55), brings about two extra supersymmetries, mixing

φ and σ with the fermion components of “alien” N = 2 multiplets.

One of the possible choices for K (two functions K and

K′ = K + f(σ̄, φ) + f̄(σ, φ̄) + g(σ, φ) + ḡ(σ̄, φ̄)

result, up to a total derivative, in one and the same lagrangian.) leading to

the metric (49) is [23, 24]

e2K = Σ̄Σ − Φ̄Φ +
e2

4π

[

F

(

Σ̄Σ

Φ̄Φ

)

− lnΦ ln Φ̄

]

, (57)

where

F (η) =

∫ η

1

ln(1 + ξ)

ξ
dξ (58)

is the Spence function. This gives, besides (49), a twisted term

Ltwisted = − e2

4π(σ̄σ + φ̄φ)

[

σ

φ̄
εαβ(∂ασ̄)(∂β φ̄) +

σ̄

φ
εαβ(∂ασ)(∂βφ)

]

(59)
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in the lagrangian. The twisted term is a 2–form F . Its external derivative

dF can be associated with the torsion. The above–mentioned freedom to

choose K corresponds to adding to F the external derivative of the 1-form

generated from the functions f, f̄ , g, ḡ. The torsion is invariant under such

a change.

Consider now a generic non–Abelian case. For a simple Lie group of rank

r, the effective lagrangian is

L =

∫

d2θd2θ̄ K(Φ̄A,ΦA; Σ̄A,ΣA) , (60)

where A = 1, . . . , r and the expression for K is derived exactly in the same

way as in previous cases. We have

g2K =
∑

j

{

2

cV

[

Σ̄(j)Σ(j) − Φ̄(j)Φ(j)
]

− g2

2π

[

F

(

Σ̄(j)Σ(j)

Φ̄(j)Φ(j)

)

− lnΦ(j) ln Φ̄(j)

]}

, (61)

where Σ(j) = αj(Σ
A), etc. The prepotential (61) satisfies a generalized

harmonicity condition

∂2K
∂Σ̄A∂ΣB

+
∂2K

∂Φ̄A∂ΦB
= 0 (62)

for all A,B.

4. D = 3 : Kähler and Hyper–Kähler Models

4.1. N = 1 : Dual photon

The effective lagrangian for 3D, N = 2 (in 3d sense) SQED depends on

only one gauge-invariant superconnection in the reduced dimension Γ3. Its

component expansion (in Wess–Bagger notation) is

Γ3 = A3 −
1

2
εµραFµρ θσαθ̄ −Dθσ3θ̄ +

1

4
(∂2A3)θ

2θ̄2 + fermion terms ,(63)

where Fµρ is the 3D electromagnetic field (µ, ρ = 0, 1, 2). The bosonic terms

in the effective lagrangian are

L =

∫

F(Γ3)d
4θ = h(A3)

[

1

2
(∂µA3)

2 − 1

4
FµρFµρ +

D2

2

]

, (64)

where h = −F ′′/2.
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It is convenient at this stage to perform a duality transformation. To this

end, write the functional integral corresponding to the lagrangian (64) in

the form
∫

∏

dF dΨ exp

{

i

∫

d3x

(

L +
1

2
εµραFµρ∂αΨ

)}

. (65)

Integrating this over
∏

dΨ brings about the Bianchi constraints εµρα∂αFµρ =

0, which are solved by the standard relation Fµρ = ∂[µAρ]. But let us instead

do the integral in Eq. (65) over
∏

dF first. We are left with

∏

dΨexp

{

i

∫

d3x

[

h

2
(∂µA3)

2 +
1

2h
(∂µΨ)2

]}

. (66)

The integrand in the exponent is the dual lagrangian (the bosonic part

thereof). The scalar field Ψ is the dual photon.

Let us now introduce the field

B = −F ′(A3)

2
, (67)

so that ∂µB = h ∂µA3. Introducing a complex variable φ = (B + iΨ)/
√

2,

we can write Ldual in the Kähler form
∫

d4θK(Φ̄,Φ). The relation between

the Kähler potential K and the function F can be inferred from Eq. (67).

For the effective lagrangian of 3D SQED, the particular form of the metric

and prepotentials F , K can be found via the “unfolding the ring” procedure.

We have to integrate the one–loop correction to the 2D metric in (44) over

one of the components Aj , in the same way as we earlier integrated the

correction to the 1D metric to derive (44). We obtain

e2h3D = 1 +
e2

4π|A3|
+ . . . (68)

(with 3–dimensional charge e). The metric is singular at A3 = 0. This point

separates two completely independent sectors in the moduli space (and in

the theory !) with positive and negative A3. We will assume for definiteness

that A3 is positive. The prepotential entering (64) can be recovered from

the metric as

−e2F(Γ3) = Γ2
3 +

e2

2π
Γ3 ln Γ3 + . . . . (69)

The Kähler potential depends only on ∆ = (Φ̄ + Φ)/
√

2 and is given at the

one–loop level by a similar formula, namely

K = e2
[

∆2 +
1

2π
∆ln∆

]

. (70)
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The generalization to the non–Abelian case is straightforward. The gener-

alized Kähler potential is

K(∆A) = g2
∑

j

{

2

cV
(∆(j))2 − 3

2π
∆(j) ln∆(j)

}

+ . . . , (71)

where ∆A = (Φ̄A + ΦA)/
√

2 and ∆(j) = αj(∆
A).

This is not yet the end of the story, however. Considerations of su-

persymmetry alone do not exclude the presence of a superpotential ∼
Re
∫

d2θ F (∆A) on top of the Kähler potential in the effective lagrangian.

Indeed, such a superpotential is generated in non-Abelian 3D theories by

a non-perturbative mechanism [25]. The mechanism is roughly the same

as the known instanton mechanism for generating a superpotential in 4D

N = 1 SYM theory with matter [26]. In three dimensions, instantons are

t’ Hooft–Polyakov monopoles. They have two fermion “legs” (zero modes)

which lead to generation of gluino condensate. The superpotential can be

recovered from the condensate. In the simplest SU(2) case, it has the form

F (∆) ∼ g4 exp
{

−2
√

2πΦ
}

. (72)

The superpotential (72) lifts the degeneracy of the valley. Actually, the

scalar potential U ∼ exp
{

−2
√

2π(φ+ φ̄)
}

corresponding to the superpo-

tential (72) (the exponent 2
√

2π(φ + φ̄) = 4πA3/g
2 is nothing but the 3D

instanton action) does not have a minimum at a finite value of φ (as it does

not in the massless N = 1 supersymmetric QCD — this is a typical “run-

away vacuum” phenomenon). In 4-dimensional SQCD, this can be cured by

giving a mass to the matter fields: the supersymmetric vacuum would then

occur at a finite value of φ. But in the framework given here, the form of

the lagrangian of the descendants is dictated by the original 4D theory and

we have to conclude that the 3D N = 1 sister simply does not exist as a

consistent theory.

In principle, this could also happen in the 2D N = 1 theory, where the

appearance of the superpotential is also not excluded by the symmetry con-

siderations. Moreover, non-perturbative instanton solutions also exist in the

2D case [27, 28]. They appear in any 2D gauge theory involving only ad-

joint fields, due to the non-triviality of π1(gauge group), by the same token as

ordinary BPST instantons in four dimensions appear, due to non-triviality

of π3(G). Now, π1[SU(N)] = 0, but if only adjoint fields are present, the

gauge group is globally SU(N)/ZN and involves N − 1 topologically dis-

tinct non-contractible loops and, correspondingly, N − 1 different types of

instantons.
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However, these instantons do not generate a superpotential in this case

for two reasons.

• The minima of the classical action are realized on delocalized con-

stant gauge field strength configurations (like in the Schwinger

model). The non–Abelian 2D instantons do not know about the

scalar fields (unlike the monopoles) and cannot lift the degeneracy

on the moduli space.

• As was shown in [28], the instantons involve N − 1 pairs of fermion

zero modes for each fermion flavor. In our case, there are two flavors

and an instanton involves altogether 4(N − 1) instanton legs, which

is too many to generate the fermion condensate and superpotential.

4.2. N = 2 : Taub–NUT, Atiyah–Hitchin and their Relatives

The effective lagrangian here involves 4r moduli: three components of the

vector-potential in reduced dimensions and a dual photon for each unit of

the rank. One way to derive the effective lagrangian is to first determine the

effective lagrangian for the theory defined on R2×S1 (it represents a twisted

sigma model involving an infinite sequence of the Fourier modes associated

with the circle) and unfold the circle as was explained in detail in Sect. 3.

When the length L of the circle becomes large, we can replace the sum over

the modes by the integral. In the Abelian case, we obtain [29]

e23L =

(

1

2
+

e2

8π|A|

)

[

(∂µA)2 + (∂µτ)
2
]

− ie
2

4π
ω(A)εµν∂µτ∂νA , (73)

where g2
3 = g2

2L is the 3–dimensional gauge coupling constant, µ = 1, 2 (we

have not yet added excited Fourier modes of the slow variables), and ω(A) ≡
ω(A) = cosθ dφ is a 1-form which coincides with the Abelian connection

describing a Dirac monopole in the space of A. The variables A live on R3,

whereas the variable τ lives on the dual circle, 0 ≤ τ ≤ 2π/L. The second

term in Eq. (73) comes from the twisted term (59).

When L is very large, the size of the dual circle is very small which

would normally imply that the excitations related to nonzero Fourier modes

of τ become heavy and decouple. This is exactly what happened when

we reconstructed the 2D effective Lagrangian from the 1D one in Sect. 3

according to this method. But in the case under consideration, it would not

be correct just to cross out the terms involving ∂µτ : The presence of the

twisted term ∝ εµν prevents us from doing it.
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To understand this, consider a trivial toy model,

L =
1

2
(ẋ2 + ẏ2) +Bxẏ =⇒ H =

1

2

[

p2
x + (py −Bx)2

]

, (74)

where x ∈ R1, while y is restricted to lie on a small circle, 0 ≤ y ≤ α.

The lagrangian (74) describes a particle living on a cylinder and moving

in a constant magnetic field . Now, if the magnetic field B were absent,

the higher Fourier modes of the variable y would be heavy and the low–

energy spectrum would be continuous, corresponding to free motion along x

direction. When B 6= 0, for each Fourier mode of the variable y, we obtain

the same oscillatory spectrum. Only the position of the center of the orbit,

and not the energy, depends on p
(n)
y = 2πn/α.

Thus, we cannot suppress the variable y in the Lagrangian (74). Likewise,

we cannot suppress the variable τ in Eq. (73). What we can do, however,

is to trade it with another variable using the duality trick. Performing the

same transformations as in the N = 1 case, we arrive at the lagrangian of a

sigma model living on a target space with the metric

ds2 =

(

1 +
e2

4π|A|

)

dA2 +

(

dΨ − e2

4πω
)2

(

1 + e2

4π|A|

) . (75)

The dual variable Ψ describes the dual photon.

We want to emphasize that the effective lagrangian thus obtained rep-

resents a conventional sigma model — the twisted term disappears after

the duality transformation. A conventional N = 4 sigma model must be

hyper–Kähler. Indeed, the metric (75) describes a well-known hyper–Kähler

Taub–NUT manifold [30].

Consider now SYM theory and let us start with the case of SU(2). The

result is immediately written down by substituting −2g2 for e2 in all above

formulae. The metric thus obtained (Taub–NUT with negative mass term)

is also hyper–Kähler. However, in contrast to the regular Taub–NUT met-

ric, it is singular at |A| = 2π/g2 and represents an orbifold. Note that

the singularity occurs at small values of |A|, where the Born–Oppenheimer

approximation is not valid. As was explained earlier, we cannot neglect

higher–derivative terms in the effective lagrangian in this region. Moreover,

the very notion of the effective lagrangian makes no sense any more. Still,

the presence of a singularity in the double–derivative part of the lagrangian

is somewhat irritating.

Remarkably, the singularity actually disappears when one takes into ac-

count non-perturbative effects associated with instantons (coinciding with
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’t Hooft–Polyakov monopoles). Instantons bring about corrections to the

metric of the form ∼ exp{−4πn|A|/g2} (n is the topological charge). They

are irrelevant asymptotically, but are very important for small values of |A|:
their re-summation gives a smooth hyper–Kähler Atiyah–Hitchin metric. l

There exists an explicit expression for the AH metric. It involves elliptic

functions and is not so simple. An interested reader may look it up in [33]

where it is shown that its asymptotics coincide with Taub–NUT and that

the corrections to these asymptotics are exponential.

Another remarkable fact is that the same AH metric describes the low–

energy dynamics of two BPS monopoles [34]. In this case, the vector A

acquires the meaning of the monopole separation r and Ψ of their relative

phase. The (smoothened) singularity occurs when the distance between the

monopoles is of the same order as the size of the monopole cores. The clas-

sical trajectories of the monopoles represent geodesics on the AH manifold.

In the same way as before, we can write the effective lagrangian for an

arbitrary gauge group,

g2L =
1

2
(∂µA

A)(∂µA
B)QAB +

1

2
JA

µ Q
−1
ABJ

B
µ , (76)

where

QAB = δAB − g2

2π

∑

j

αA
j α

B
j

|A(j)| ,

JA
µ = ∂µΨA +

g2

2π

∑

j

ω(A(j))∂µA
(j)αA

j , (77)

A(j) = αj(A
A) ≡ αA

j AA.

These are asymptotic expressions for the metric. They involve singulari-

ties and their structure is complicated. However, re-summation of instanton

corrections should patch up these singularities. The result of such a re-

summation gives a smooth hyper–Kähler manifold. Let me give arguments

in favor of this conclusion.

(i) Consider first the unitary groups [35]. The Cartan subalgebra of

SU(N) consists of traceless N ×N diagonal matrices. As far as the effective

lagrangian (76) is concerned, we have four such matrices: diag (A1, . . . ,AN )

and diag (Ψ1, . . . ,ΨN ),
∑

m Am =
∑

m Ψm = 0. There are N(N − 1)/2

l This was the conjecture of Ref. [31], confirmed by direct evaluation of the one-instanton con-

tribution to the metric in Ref. [32]. (Multi-instanton contributions need not be calculated. The

Hyper-Kähler nature of the metric fixes them once the one–instanton contribution is known.)
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positive roots, αml(A) = Am − Al,m < l = 1, . . . , N . Substituting it in

Eq. (76), we obtain the metric

ds2 = AmldAmdAl +A−1
mlΛmΛl , (78)

where A is the following N ×N matrix:

Amm = 1 − g2

4π

∑

l 6=m

1

|Am −Al|
(no summation over m),

Aml =
g2

4π|Am −Al|
, (m 6= l) , (79)

and

Λm = dΨm +
g2

4π

∑

l 6=m

ω(Am −Al) .

This metric happens to describe the dynamics of N well–separated BPS

monopoles [34]. Am ≡ rm and Ψi are interpreted as the positions and

phases of individual monopoles. The condition
∑

m rm = 0 (and similarly

for phases) means that the trivial center of mass motion is separated out.

The classical dynamics is described by the following equations of motion m

r̈l −
g2

4π

N
∑

m6=l

r̈lm

rml
+
g2

8π

N
∑

l 6=m=1

2 [ṙml × rml] · ṙml − rml(ṙ
2
ml)

r3ml

− g

4π

∑

m6=l

(qml)ṙml ×
rml

r3ml

+
1

8π

∑

m6=l

q2mlrml

r3ml

= 0 ,

ql = gA−1
lm



Ψ̇m +
g2

4π

∑

n6=m

ω(rnm)ṙnm



 = const , (80)

where rml = rm−rl, qml = qm−ql. The equations of motion for the effective

lagrangian (76) have a similar form, with time derivatives being replaced by

∂µ (and r by A).

The metric (78) is singular for certain small values of the distances be-

tween the monopoles |rml|. These singularities can be patched, however, and

with all probability are patched by the instanton corrections. A conjecture

m Here g is interpreted as the monopole magnetic charge. The equations (80) are classical as far

as the variables rl are concerned, but the quantization of the dynamic variables Ψl has already

been carried out. The spectral parameters ql are quantized to (integer)/g and are interpreted as

the electric charges of the corresponding dyons.
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of existence and uniqueness can now be formulated: there is only one smooth

hyper-Kähler manifold of dimension 4(N−1) ( a generalized Atiyah–Hitchin

manifold) with the asymptotics (78). (I bet there is, though, as far as I

know, this has not yet been proven mathematically in an absolutely rigorous

way.) An explicit expression for the generalized AH metric is not known.

(ii) Sp(2r). There are r long positive roots αm(r) = rm and r(r − 1)

short positive roots αml(r) = (rm±rl)/2 (m < l = 1, . . . , r ; rm are mutually

orthogonal and linearly independent). The metric reads

ds2 =
∑

m

(drm)2 − g2

4π

∑

±

∑

m<l

(drl ± drm)2

|rl ± rm| − g2

2π

∑

m

(drm)2

rm
+ phase part

≡ Qmldrmdrl + phase part . (81)

The full metric is restored from Eqs. (76, 77).

An important observation is that the corresponding effective Lagrangian

(the QM version thereof) is obtained from the effective Lagrangian de-

scribing the dynamics of 2r + 1 BPS monopoles numbered by the integers

j = −r, . . . , r by imposing the constraints

r−r + rr = · · · = r−1 + r1 = 2r0 = 0 ,

Ψ−r + Ψr = · · · = Ψ−1 + Ψ1 = 2Ψ0 = 0 . (82)

We are allowed to impose these constraints because they are compatible with

the equations of motion (80). The corresponding metric is hyper-Kähler. It

has to be, due to N = 4 supersymmetry, absence of the twisted term and

the theorem [7]. One can also prove it more directly, reproducing the result

(81) by the hyper-Kähler reduction procedure worked out in [36].

(iii) SO(2r + 1). The system of roots is the same as for Sp(2r), only

the long and short roots are interchanged: there are now r(r− 1) long roots

(rm ± rl)/
√

2 and r short roots rm/
√

2. The metric reads

ds2 =
∑

m

(drm)2 − g2

2π
√

2

[

∑

±

∑

m<l

(drl ± drm)2

|rl ± rm| +
∑

m

(drm)2

rm

]

+ phase part . (83)

This metric is obtained from the Gibbons-Manton type metric for 2r BPS

monopoles numbered by the integers j = −r, . . . , r, j 6= 0 by imposing the

constraints

r−r + rr = · · · = r−1 + r1 = 0 ,

Ψ−r + Ψr = · · · = Ψ−1 + Ψ1 = 0 (84)
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and rescaling ds2 and g2. The constraints (84) are compatible with the

equations of motion.

Note that we obtained the effective Lagrangian for Sp(2r) out of that

for SU(2r + 1) and not SU(2r), as one could naively expect in view of the

embedding Sp(2r) ⊂ SU(2r). Likewise, the moduli space for SO(2r + 1) is

obtained out of SU(2r) and not SU(2r + 1). This is due to the fact that

magnetic charges are coupled to co-roots rather than roots.

The effective lagrangian for SO(2r) can also be readily written. It can also

be interpreted in monopole terms and the corresponding manifold is related

to a generalized AH manifold for the system of 2r monopoles by hyper–

Kähler reduction accompanied by a certain mass deformation (suppressing

interactions between certain monopoles) [29].

The constraints (82), (84) have the form of “mirrors” in the monopole

configuration space. In the Sp(2r) case, the mirror passes through one of the

monopoles while in the SO(2r+1) case it does not. Such “mirrors” appeared

earlier in string–related problems and were christened orientifolds [37]. For

me, they just represent graphical pictures describing the embedding of the

symplectic and orthogonal groups into unitary ones.

(iv) G2. This is the simplest exceptional group. There are three long (

r1 − r2, r1 − r3, r2 − r3) and three short (r1,2,3) positive roots (the constraint

r1 + r2 + r3 = 0 being imposed). The metric reads

ds2 =
3
∑

m=1

dr2
m − g2

2π

(

3
∑

m>l=1

(drm − drl)
2

|rm − rl|
+ 3

3
∑

m=1

dr2
m

|rm|

)

+ . . . . (85)

It can be obtained out of the metric for Sp(6)

ds2 =
3
∑

m=1

dr2
m − g2

4π

(

∑

±

3
∑

m>l=1

(drm ± drl)
2

|rm ± rl|
+ 2

3
∑

m=1

dr2
m

|rm|

)

+ . . . (86)

by rescaling and imposing the [compatible with Sp(6) equations of motion]

constraints

r1 + r2 + r3 = 0 , Ψ1 + Ψ2 + Ψ3 = 0 . (87)

This “3–fold mirror” is (or could be called) an orientifold of new type. Again,

we obtained Leff for G2 out of Leff for Sp(6), though G2 is embedded not

into Sp(6), but into the dual algebra SO(7).

The effective Lagrangian for F4 can be related to the moduli space of

26 monopoles. (26 is the lowest dimension of a unitary group in which F4

can be embedded. This follows from the fact that the representation 26 of
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F4 has the lowest dimension.) E6 can be embedded into SU(27) and hence

the corresponding effective Lagrangian is related to the moduli space of 27

monopoles. Now, the shortest representation in E7 has the dimension 56 and

we need at least 56 monopoles in this case. Finally, E8 ⊂ SU(248) and for

this we need 248 monopoles. The moduli space of 248 monopoles can also

be used as a universal starting point to describe the dynamics of F4, E6 and

E7, if one follows the chain of embeddings F4 ⊂ E6 ⊂ E7 ⊂ E8 ⊂ SU(248).

The explicit formulae we have written refer to the asymptotic region

where non-perturbative effects are suppressed. The corresponding metrics

involve singularities at small |r(j)|. As for the SU(N) case, a reasonable

conjecture is that these singularities are sewn up by instantons for any simple

Lie group, giving a unique smooth hyper-Kähler metric with the asymptotics

ds2 = drAQABdr
B + . . . . (88)

It is natural to conjecture that this metric is obtained from the multi-

monopole Atiyah-Hitchin metrics by the same hyper-Kähler reduction pro-

cedure as above. To the best of my knowledge, hyper–Kähler manifolds thus

obtained have not been studied before by mathematicians.

5. Non–renormalization Theorems

There are several proofs of the well–known fact that two– and higher–order

corrections to the β function in the 4D N = 2 supersymmetric Yang–Mills

theory vanish. We will discuss here two such proofs: (i) diagrammatic (his-

torically, this was the first) and (ii) the one following from holomorphy.

Supergraphs. The diagrammatic proof is based on the technique of

supergraphs. The simplest non-renormalization theorem states that all loop

corrections to the superpotential (the term
∫

d2θF (Φi) in the lagrangian, Φi

are chiral superfields) vanish. We refer the reader to the textbooks [2,12,38]

for its proof, recalling in more detail how it is done for gauge couplings

(following Refs. [39]), the subject of our interest here.

Consider for simplicity SQED.n We explained above [see Eq. (15)] how the

one–loop correction to the effective action in any dimension can be evaluated.

It does not vanish here. The effective charge in N = 1 theory is given by

1

e2phys

=
1

e20
+

1

4π2
ln

ΛUV

m0
+ . . . , (89)

n The generalization to the non–Abelian case is relatively straightforward, but it involves some

subtleties associated with infra-red singularities of the theory [39, 40] which we do not discuss

here.
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where m0 is the bare charged field’s mass.

1 2

Figure 2. Two-loop contribution to the effective action. Solid lines are chiral field superpropa-

gators 〈ΦΦ̄〉 evaluated in the classical gauge background and the dashed line is the propagator of

the (quantum part of the) vector superfield V . The bar on the solid line marks the Φ̄ end.

The relevant two–loop graph is drawn in Fig. 2 (there are actually two

such supergraphs giving the same contribution with the superfields S or T in

the loop). According to the supergraph Feynman rules [12, 38], each vertex

involves the integral
∫

d8z =
∫

d4x d2θd2θ̄ and the whole contribution of the

graph in Fig. 2 is
∫

d4x1 d
2θ1d

2θ̄1K, where

K =
i

2

∫

d8z2〈Φ1Φ̄2〉〈Φ2Φ̄1〉〈v1v2〉 .

Here Φ stands for charged chiral superfields S, T , v is quantum vector su-

perfield and 〈Φ1Φ̄2〉, 〈v1v2〉 are quantum superpropagators evaluated in the

external background Vcl. Now, 〈v1v2〉 does not depend on the external field

or its gauge. The charged field propagators are gauge–dependent:

〈S1S̄2〉 → eiΛ1〈S1S̄2〉e−iΛ̄2 , (90)

〈T1T̄2〉 → e−iΛ1〈T1T̄2〉eiΛ̄2 .

The point is, however, that the integrand K is gauge–independent and should

thereby be locally o expressed via the gauge–invariant superfieldWα. But Wα

is a chiral superfield and the integral over d2θ̄ of any function of W vanishes.

Therefore
∫

d2θd2θ̄K = 0, Q.E.D. The same reasoning applies also to an

arbitrary multi-loop graph.p

o Locality follows from the presence of an infra-red cut-off (non-zero mass) in the theory.

p To be precise, the integrand could depend on both W and W̄ , in which case the integral
R

d2θd2 θ̄ K

need not vanish. One can be convinced, however, that such contribution is a supersymmetric gen-

eralization of higher derivative ∼ F 4 terms in the Euler–Heisenberg effective lagrangian. Such

corrections to the effective lagrangian are indeed present, but this does not affect the renormal-

ization of the gauge coupling.
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We hasten to comment that this does not mean that multi-loop contri-

butions to β function in N = 1 supersymmetric QED vanish. Higher loops

appear when expressing m0, entering Eq. (89), into mphys. As was already

mentioned above, the physical mass is renormalized in spite of the fact that

the mass term in the Lagrangian is not. Indeed, the physical mass is defined

as the pole of the fermion propagator ∝ 1/(Z/p−m0), where Z describes the

renormalization of the kinetic term

∝
∫

d2θd2θ̄
(

S̄eV S + T̄ e−V T
)

.

We have m0 = Zmphys which leads to an exact relation expressing the charge

renormalization via the matter Z factor,

1

e2phys

=
1

e20
+

1

4π2
ln

Λ

mphys
− 1

4π2
lnZ . (91)

In particular, using knowledge of Z at the one–loop level

Z = 1 − e20
4π2

ln
Λ

mphys
, (92)

we obtain the two–loop renormalization of the charge

1

e2phys

=
1

e20
+

1

4π2
ln

Λ

mphys
+

e20
16π4

ln
Λ

mphys
+ . . . . (93)

Now, N = 2 supersymmetric electrodynamics involves an extra neutral

chiral superfield Υ. The Lagrangian involves its kinetic term and the extra

superpotential term ∝
∫

d2θΥST . The latter is not renormalized: this is

the standard F term non-renormalization theorem. The point is that this

superpotential term is related by extended supersymmetry to the charged-

field kinetic term. Hence, non-renormalization of the superpotential implies

in N = 2 theory non-renormalization of the kinetic term, which implies the

absence of the mass renormalization. In other words, in N = 2 theory,

mphys = m0 and hence only the first term in the β function survives. All

N = 2 theories with vanishing 1–loop contribution to the β function are

finite. The N = 4 SYM theory belongs to this class.

The proof just given uses the formalism of N = 1 supergraphs. N = 2

symmetry is used indirectly via the requirement of equality of renormaliza-

tion factors for the standard kinetic and superpotential terms. One can also

define and calculate supergraphs in N = 2 (harmonic) superspace. In this

case, the absence of the corrections is manifest [4].



September 1, 2004 4:8 WSPC/Trim Size: 9.75in x 6.5in for Proceedings smilga

554 A.V. Smilga

Holomorphy. An alternative elegant proof comes from the analysis of the

Seiberg–Witten effective lagrangian. As was mentioned in the beginning,

N = 2 supersymmetry dictates the form (6) for the effective lagrangian,

where F (W) is an holomorphic function of the N = 2 superfield (4) (the

Abelian version thereof). Consider this function for large W. Going around

the large circle ( multiplying W by e2iπ ), we should obtain the same theory.q

Knowing that, asymptotically,

Leff ∼ Re

∫

d4θ
1

2g2(W)
W2 (94)

(This is written for non–Abelian SU(2) theory. The same expression with

e2(W) substituted for g2(W) holds in N = 2 SQED), only two possibilities

are allowed: (i) g2(W) is a constant (this possibility is realized for N = 4

non–Abelian gauge theories) or (ii) . g−2(W) involves a term ∼ lnW, which

corresponds to one–loop renormalization. When multiplying W by e2iπ,

the logarithm is shifted by an imaginary constant. This gives a change

∼ Im
∫

d4θW2 in the lagrangian, which is a total derivative (θ term). In

Abelian theory, the θ term is never relevant. In non–Abelian theory it might

have been relevant, but it is not in this case: one can be convinced that

multiplying W2 by e2iπ amounts to the shift θ → θ + 4π.

The higher–order coefficients β2, β3, etc should vanish. Were, e.g.,

β2 nonzero, the coefficient g−2(W) in Leff would involve the contribution

∼ ln |1 + c ln(ΛUV/W)|, which is not holomorphic and not allowed. On the

other hand, nothing prevents the function f(W) from having contributions

∼ W−n, which vanish asymptotically. Indeed, f(W) does involve such con-

tributions brought about by instantons [1].

We have seen that low-dimensional sisters of 4D N = 2 have similar

properties: the perturbative corrections to the effective lagrangians vanish

beyond one loop. In sect. 2.2 we explained why: extended supersymmetry

dictates a special form for the prepotentials. In 1D, resp. 2D theories, the

prepotentials in (28), resp. (55) living in RR5, resp. RR4 must be harmonic

functions of their arguments . For 3D theories, extended supersymmetry

requires the metric to be hyper–Kähler. In the asymptotics, the metric (75)

involves a harmonic function 1 + e2/(4π|A|) living in RR3. A more detailed

analysis shows that the harmonicity follows from the hyper–Kähler nature

of the metric (i.e. extended supersymmetry) and from its U(1) isometry

corresponding to shifting the phase Ψ (this isometry shows up in the asymp-

q Actually, it is sufficient to multiply W by eiπ . It is W2 rather than W which has direct physical

meaning, the lowest component of W2 coinciding with the true moduli u = Trφ2.
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totics). Actually, in the cases when such an isometry is present, the Kähler

potential of a hyper–Kähler metric can be obtained from a certain 3-dim

harmonic prepotential by a Legendre (physically – by duality) transforma-

tion [24, 29]. r

Now, in 4D theories the moduli space is RR2 ≡ CC1 and harmonicity

there is the same as analyticity ! In other words, the proof of the 4D non-

renormalization theorem based on holomorphy has direct low–dimensional

counterparts. Nonrenormalizability is a family property of all sisters.

What about the diagrammatic proof ?

The 4D diagrammatic proof quoted above involved two parts: (i) the

N = 1 non-renormalization theorem and (ii) the N = 2 relationship be-

tween the kinetic and superpotential terms. This relationship holds also in

low dimensions, but there is no N = 1 non-renormalization theorem any-

more. Indeed, the theorem was based on the the fact that the 4D effective

lagrangian had the form
∫

d2θW 2, while the two- and higher-loop super-

graphs suggested the form
∫

d2θd2θ̄ X(W, W̄ ), which could be only recon-

ciled if X = 0. But in low dimensions, the effective lagrangian does not

have a chiral form, but instead represents an integral
∫

d2θd2θ̄ of a local

density depending not on W , but rather on superconnections Γk in reduced

dimensions [see e.g. Eq. (12)]. This can well be reconciled with what follows

from the diagram in Fig. 2.

Indeed, direct component calculations of the two–loop corrections to the

effective action in the D = 1, N = 1 Abelian theory showed that they do

not vanish [42]. One obtains instead of Eq. (18)

e2h(C) = 1 +
e2

2|C|3 − 3e4

4|C|6 + . . . (95)

for the metric. In addition, the two–loop contribution is not related to any

Z-factor, unlike in four dimensions: the latter just cannot be defined in

quantum mechanics.

In Ref. [42], the result (95) was obtained after rather cumbersome calcu-

lations where the contribution of several graphs was added. Using the N = 1

supergraph technique, only one graph in Fig. 2 should be evaluated and the

calculation is rather simple [40]. In N = 2 theory, a similar graph with the

exchange of Υ field should be added. It has exactly the same structure and

r The full Atiyah–Hitchin metric, which involves, besides one loop, also non-perturbative instanton

corrections does not have this isometry and cannot be expressed via a 3-dim harmonic function.

It can be expressed, however, via certain more complicated generalized harmonic functions [41].

Their physical meaning is yet to be revealed.
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gives exactly the same contribution, but with the opposite sign. The cancel-

lation is manifest. Unfortunately, this simple cancellation pattern does not

hold at the 3–loop level and higher. Again, one obtains zero after adding

up several different supergraphs. In other words, it is hardly possible to

prove non-renormalization of N = 2 theories using the formalism of N = 1

supergraphs.

On the other hand, it is very reasonable to suppose that the diagram-

matic proof of non–renormalizability based on the technique of harmonic

supergraphs [4] can be extended to low dimensions. This question is cur-

rently under study.

6. Conclusions

To make distinction with the Introduction where main results concerning

the nature and character of different sisters were outlined in words and the

main body of the paper where the relevant formulae were written, we give

here the same information in the form of a table.

Table 1. Pure SYM: the family of effective theories.

N = 1 N = 2

D = 1 Symplectic σ model of the first kind Symplectic σ model of the second kind

D = 2 Kähler σ model Twisted σ model (GHR)

D = 3 Kähler σ model with superpotential. Run-

away vacuum

Hyper–Kähler σ model

D = 4 No moduli space. Discrete vacua SW effective theory
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