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AdS AND dS ENTROPY FROM STRING JUNCTIONS
or

THE FUNCTION OF JUNCTION CONJUNCTIONS∗
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Flux compactifications of string theory exhibiting the possibility of discretely tuning the

cosmological constant to small values have been constructed. The highly tuned vacua

in this discretuum have curvature radii which scale as large powers of the flux quantum

numbers, exponential in the number of cycles in the compactification. By the arguments

of Susskind/Witten (in the AdS case) and Gibbons/Hawking (in the dS case), we expect

correspondingly large entropies associated with these vacua. If they are to provide a

dual description of these vacua on their Coulomb branch, branes traded for the flux

need to account for this entropy at the appropriate energy scale. In this note, we argue

that simple string junctions and webs ending on the branes can account for this large

entropy, obtaining a rough estimate for junction entropy that agrees with the existing

rough estimates for the spacing of the discretuum. In particular, the brane entropy can

account for the (A)dS entropy far away from string scale correspondence limits.
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1. Introduction

One of the most interesting recent developments is the stabilization of mod-
uli and construction of large classes of de Sitter and anti de Sitter flux
compactifications [1,2,3]. These models include cases in which the size of
the compactification is hierarchically smaller than that of the (A)dS, by re-
alizing the mechanism suggested in [4] (see also similar works [5,6,7,8]). The
recent models of KKLT [3] are of particular interest, as they produce four di-
mensional de Sitter as well as anti de Sitter vacua in a relatively well studied
geometrical framework [9] admitting a low energy effective supersymmetric
field theory description.a

It is of interest to look for holographic duals of these new flux compacti-
fications. In the de Sitter case, such a description could teach us a lot about
the nature of dark energy (which in the real world is roughly seventy per-
cent of the observed universe) as modeled in existing constructions.b Even
in the AdS case the new examples provide an interesting challenge. For four
or fewer large dimensions, previous nonperturbative formulations such as
matrix theory [11] and AdS/CFT [12] examples obtained via near horizon
limits (such as AdS2×S2×X) have broken down due to infrared problems.

Unlike the flux compactifications on large Einstein spaces which have
played a role in the AdS/CFT correspondence [12], the new examples are not
(known to be) realized via a near horizon limit of any simple brane systems.
Nonetheless, there are general arguments suggesting a similar holographic
dual description. In the AdS case at least one expects a field theoretic dual
via the relation [13,14] mapping gravitational Feynman diagrams in AdSd+1

to conformally invariant Greens functions of a d-dimensional quantum field
theory. This dictionary does not depend on the existence of a larger theory
from which the AdS background is obtained as a near horizon limit.

In the dS case one also has a strong hint of a dual description, in that
the Gibbons–Hawking entropy [15] associated with the horizon suggests a
microphysical statistical mechanical origin that may well be associated to a
holographic dual theory. Steps toward such a duality proposal using analo-

a The space of models described in [1] should be taken into account in any attempt to bound the

number of vacua, and in comparing numbers of low energy SUSY vacua to vacua without low

energy SUSY. Ultimately it is quite possible that nonsupersymmetric nongeometrical noncritical

string backgrounds may be more generic than the better studied geometrical low energy SUSY

backgrounds of critical string theory.
b One may think about the problem of dark energy in string theory analogously to the problem of

understanding black hole physics in string theory. There is no sense in which we try to “explain”

the black hole mass independently of anything else, but we learn a lot about the physics of black

holes by understanding the microscopic origin of their entropy [10].
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gies to AdS/CFT have been made in [16] based on symmetries and the
structure of quantum field theory in the global de Sitter geometry, and in
[17] based on entropy counts and geometry of brane configurations realiz-
ing motion on the Coulomb branch of (A)dS flux compactifications of string
theory. In [18] some important issues were raised that need to be addressed
in any duality proposal in the dS case. In [19] some proposals based on
novel quantum gravity constructions have been made and investigated. In
my view, our best hope for finding a dual formulation if one exists is to study
the workings of explicit models.

In [17,20], a method for obtaining the dual theories for flux compactifi-
cations has been proposed, as summarized in [21] (see also [2]). The idea
is simply to deform the system to the Coulomb branch, which introduces
explicit brane domain walls [22] whose worldvolume content corresponds to
that of the dual field theory on its Coulomb branch. For the AdS case, the
solutions obtained by trading all the flux for branes in the infrared region
of the geometry have the property that the solution caps off in the infrared,
eliminating the AdS horizon. In the well understood AdS/CFT examples,
the brane degrees of freedom at the scale of the VEV in this solution [23]
account for the full set of degrees of freedom of the known dual field theory.
In general flux compactifications, we would like to understand if this is the
case.

In [17], we noted that the Bousso–Polchinski tuning available for flux com-
pactifications suggests dual field theories with entropy that is much greater
than quadratic in the flux (and therefore brane) quantum numbers. This
makes more pressing the question of whether the branes in a generic Coulomb
branch configuration can account for such a large entropy when the (A)dS
space is much larger than string scale in size. (When the (A)dS space is
string scale in size, there is a “correspondence point” (cf [24]) at which the
brane entropy scales like that of the (A)dS space if the brane entropy is
quadratic in the flux quantum numbers [17].)

In this note, we show that the best current estimates for the number of
flux vacua in the KKLT system [4,25,17,26] agrees with a simple estimate
of the number of degrees of freedom available on the branes realizing the
Coulomb branch of the system. That is, from an estimate of the number of
flux vacua, one obtains an estimate of the smallest cosmological constant and
therefore the largest (A)dS radius scale available in the models. Translating
this to an entropy using the Bekenstein/Hawking, Susskind/Witten, and
Gibbons/Hawking arguments, one can compare the result to an estimate of
the number of degrees of freedom available on brane domain walls in the



September 1, 2004 10:14 WSPC/Trim Size: 9.75in x 6.5in for Proceedings silverstein

AdS and dS Entropy from String Junctions 1851

Coulomb branch configuration. The latter count requires the inclusion of
string junctions and webs. We find that the two estimates agree within their
theoretical error bars, though both estimates are most reliably considered
as lower bounds. In this way we relate the statistics of flux vacua with the
statistical mechanics of individual flux vacua.

We further present a heuristic explanation of why this comparison works
(in our case and in the original case of AdS/CFT on the Coulomb branch)
based on the Susskind Witten analysis of entropy in AdS vacua as a function
of energy.

This result supports the idea that one can figure out the dual theory from
the information about its Coulomb branch available directly on the gravity
side, part of a program to determine the duals under current development
[20] (see also [2,27]).c It improves our understanding of the (A)dS entropy
discussed in [17] for the cases in which the cosmological constant is tuned to
be very small.

This note is organized as follows. In Section 2 we review the Bousso–
Polchinski style estimate for the number of KKLT flux vacua. In Section 3
we review the deformation of the system to the Coulomb branch via brane
domain walls and present our estimate for the number of degrees of free-
dom of the dual theory visible on the branes. We also present a heuristic
explanation of the agreement between Section 2 and Section 3 based on the
Susskind Witten analysis.

2. Statistics of Flux Vacua

The Bousso–Polchinski mechanism predicts exponentially many vacua as a
function of multiple input flux quantum numbers, as follows [4,25,17,26].
A systematic approach to the problem of counting flux vacua was recently
developed in [26]. The basic idea is the following. One expects a limit on
the strength of flux quantum numbers from back reaction on the geometry.
There are b3 RR flux quantum numbers Qi, i = 1, . . . , b3 and b3 NS flux
quantum numbers Ni, i = 1, . . . , b3. If one expresses the expected limitation
in the form

R2 ≡
b3∑

i=1

γiQ
2
i + αiN

2
i < R2

max (2.1)

c Other aspects of the analysis [20] include the relation between the vacua with fixed moduli on

the gravity side and the structure of renormalization group fixed points on the field theory side,

constraints on the quantum numbers on the two sides, and their structure under monodromies of

the compactification.
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for some order one coefficients αi and γi, then one obtains a total number
of vacua which is of order

Nvac ∼
R2b3

max

b3!
(2.2)

from the volume of the sphere in flux space containing the fluxes consistent
with (2.1). (This assumes that each choice of flux leads to of order one
vacua.)

In the KKLT models, this estimate may be given in terms of the quadratic
form

L ∼
∫

CY
H ∧ F (2.3)

as follows. Dimensional reduction on a space with flux produces contribu-
tions to the four dimensional effective potential from the flux kinetic terms
for the NS flux HNS and the Ramond flux FRR

Λflux ∼
∫

CY

1
l24

g4
s

V 2

√
g(|FRR|2 +

1
g2
s

|HNS |2). (2.4)

where we are in 4d Einstein frame and V is the compactification volume in
string units. This contribution takes the form

Λflux ∼
b3∑

i=1

(ciQ
2
i + aiN

2
i ) , (2.5)

where ai and ci are functions of the moduli, which in turn depend on the
fluxes, and Qi and Ni are the RR and NSNS flux quantum numbers on the
3-cycles in the compactification. (In asymmetric orbifold models such as
[1] the dependence of ai, ci on the moduli is eliminated for the geometrical
moduli by using asymmetric orbifolding to freeze them at the string scale.)

If we pick the maximum flux scale Rmax such that the moduli-dependent
coefficients ai and ci do not take extreme values in the solutions to the
equations of motion, then one can relate L to a positive definite quadratic
form for each point on the moduli space solving the equations of motion.

That is, in the no scale models [9] appearing in KKLT, the Gauss’ law
relation between L ∼

∫
H ∧F and orientifold 3-plane and D3-brane charge

1
2(2π)4(α′)2

∫
H ∧ F =

1
4
(NO3 −NO3)−ND3 + ND3 (2.6)

translates via supersymmetry into a relation between the orientifold +D3-
brane tension and L. In a zero energy vacuum of the no-scale approxima-
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tion [9] to the effective potential, this tension
∫

H ∧ F cancels the positive
terms (2.5) in the potential. So for every solution to the equations of motion
we wish to consider, a relation of the form∑

aiN
2
i + ciQ

2
i ∼ L ≤ R2

max (2.7)

holds, with ai and ci order one coefficients that depend on the fluxes. So
rewriting R2

max as Lmax we can rewrite (2.2) as

Nvac ∼
Lb3

max

b3!
. (2.8)

By integrating the number of vacua solving the equations of motion over the
flux choices and moduli space with a suppression factor introduced for large
fluxes to take into account (2.7), [26] found an estimate

Nvac ∼
(2πLmax)K

12πnn!K!
f(K) , (2.9)

where K = b3 is the number of independent complex fluxes in the compact-
ification, and where n = b3/2 − 1 is the complex dimension of the complex
structure moduli space of the Calabi-Yau threefold associated to the F the-
ory compactification. f(K) is an integral of flux-independent quantities over
a fundamental domain of the moduli space.

If we take these vacua to be distributed roughly uniformly between cos-
mological constants of ± 1

l24
(where l4 is the four-dimensional Planck length),

this predicts a minimum cosmological constant of magnitude

Λmin ∼
1

l24Nvac
(2.10)

corresponding to a maximum curvature radius L(A)dS of order

(Lmax
(A)dS)2 ∼ l24Nvac (2.11)

among the elements of the discretuum of vacua predicted by the estimate
(2.8)(2.9). This curvature scale in turn corresponds to an entropy of order

Smax ∼
(Lmax

(A)dS)2

l24
∼ Nvac (2.12)

as we will review in the next section. Taking the vacua to be uniformly
distributed is a nontrivial assumption, since the vacua could instead accu-
mulate around some particular values of the cosmological constant. We will
see that this naive assumption fits with what we find for the entropy, though
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a much more thorough analysis of the distribution of vacua will ultimately
be required.

This estimate, which may ultimately prove accurate as a count of the
number of vacua, appears at least to be a lower bound on this number.
For example, we expect more solutions to the equations fixing the complex
structure and dilation moduli at the no scale level than the DW = 0 so-
lutions so far counted [28]. In addition, when we saturate Gauss’ law with
some number of threebranes as well as fluxes, the number of vacua of the
threebrane theory comes into play and has not yet been estimated accurately
while at the same time fixing the moduli.d There are almost certainly other
classes of vacua such as [1] to be included in a full count as well, though the
corresponding entropies for these may be studied independently.

3. Statistical Mechanics of Flux vacua

Given an (A)dS vacuum of radius L(A)dS , we can associate a maximal entropy
of order Ld−2

AdS/ld−2
d to a region of the spacetime contained in a 2-sphere of

radius L(A)dS . In the dS case, this is simply the Gibbons Hawking entropy
[15]. In the AdS case, this follows from applying the Bekenstein/Hawking
entropy bound to AdS space, as was studied for AdS/CFT by Susskind and
Witten [29].

We will apply the Susskind–Witten analysis to the Coulomb branch con-
figurations of our flux vacua in the AdS case. Let us first briefly review
their analysis, generalizing trivially from the AdS5 × S5 context in which
they applied it. One begins with an AdSd/CFTd−1 dual pair, for which the
CFT has nCFT degrees of freedom and therefore of order E(d−2)nCFT states
in its spectrum as a function of energy scale E. Cut off this theory at a scale
of order 1/(LCFT δ) for some δ < 1, where LCFT is the size of the sphere
on which the CFT lives. The corresponding operation on the gravity side
is to place an infrared cutoff in global AdS at a sphere of area Ld−2

AdS/δd−2

surrounding the origin. Since precise coefficients are not obtained by this
analysis, for simplicity we may take δ somewhat smaller than but of order
1, so that the cutoff restricts us to of order one mode per degree of freedom
on the Sd−2 on which the CFT lives. The area of this Sd−2 in Planck units,
Ld−2

AdS/ld−2
d , bounds the entropy that can fit inside the sphere on the grav-

ity side. Susskind and Witten checked that this entropy is indeed N2 in the
gravity dual to the N = 4 U(N) super Yang-Mills theory, using the relations
LAdS ∼ LS5 ∼ (gsN)1/4ls.

d We thank S. Kachru for this caveat.
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Said differently, the cutoff requires each degree of freedom to be excited
with energy at most of order 1/LAdS . The total energy allowed below the
cutoff is then ET = nCFT /LAdS . From the corresponding gravity side cutoff
at a sphere of area Ld−2

AdS , we can independently identify this total energy
ET as the mass M

(LAdS)
BH of the largest black hole fitting within the region

bounded by this area. In the AdS5 × S5 case, these two formulas for the
energy scale of the cutoff agree, once we identify nCFT with N2. This result
is consistent with a naive extrapolation of the weak coupling relation nCFT ∼
N2 into the strong ’t Hooft coupling regime.

This analysis keeps track of the moding of states on the sphere as well
as the total entropy, and it illustrates a basic aspect of how the entropy is
distributed in the AdS/CFT dualitye: from the cutoff on the sphere, allowing
only of order one mode on the Sd−2 for of each of the nCFT = N2 degrees of
freedom, one obtains the entropy which is numerically equal to one degree
of freedom per Planck area but organized as nCFT = N2 degrees of freedom
per L3

AdS .
The Susskind–Witten analysis just reviewed was in the global AdS solu-

tion. We can apply it in the Poincare patch, corresponding to the CFT on
Minkowski space Md−1. We do this by enforcing the Bekenstein bound cor-
responding to black brane solutions extending in the Md−1 directions. This
leads again to N2 degrees of freedom per Ld−2

AdS area along the d− 2 spatial
directions of Md−1.

We would like to see how many of the nCFT degrees of freedom of the
system become manifest on its Coulomb branch. Let us first review how the
Coulomb branch arises from the gravity side point of view. It is obtained by
introducing brane domain walls separated radially from the horizon. This
reduces the flux in the bulk region on the side of the brane toward the horizon
(let us call this the “IR side” since it corresponds to the IR region from
the field theory point of view). The simplest such configuration, obtained
in [23] for the AdS5 × S5 case, is to trade all the flux in this region for
branes at a radial scale of order LAdS . There being no flux supporting the
compactification on the IR side of the branes, it shrinks down and caps off the
solution at a finite radius in the IR direction, removing the horizon. In the
solution [23], this region turns out to be smooth (in fact flat) ten dimensional
space. In a general flux compactification, we do not know the precise solution
but the absence of flux in this region means that the AdS horizon will be
removed generically. This corresponds to the fact that a generic Coulomb

e Emphasized for example by S. Shenker.
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branch configuration will lift most of the degrees of freedom of the theory to
a scale of order the scale set by the VEVs. Also in a generic system there will
be a potential on the Coulomb branch, so that the physical solutions are time
dependent. I expect this will not preclude the counting and identification of
degrees of freedom from the brane content on the gravity side.f

In the AdS5 × S5 case, we see N2 degrees of freedom from stretched
strings (“W bosons”) at the mass scale

〈φ〉 ∼ LAdS

l2s
(3.1)

of the VEVs of the diagonal scalar matrix elements. (There are also string
oscillation modes on top of these including some at of order this energy scale,
which have the same N scaling.) These are electric degrees of freedom from
the point of view of the spontaneously broken U(N) gauge group on the
manifest D3-branes of the [23] solution, and become massless as we return
to the origin of the moduli space. In this sense, the N2 degrees of freedom
have become manifest on the Coulomb branch directly on the gravity side
of the correspondence.

Let us clarify the energy scales involved in this analysis. We put the
Susskind–Witten cutoff originally at the radius LAdS corresponding to the
total energy scale N2/LAdS . Exciting the stretched string “W bosons” in-
dividually fits within this cutoff, so we can exhibit the count of degrees
of freedom by exciting them individually. But exciting all N2 of them at
the scale (3.1) would of course not fit inside the above cutoff, which as we
discussed allows states up to to a total energy scale corresponding to N2 de-
grees of freedom each excited only up to energy 1/LAdS . So if one wants to
apply the Susskind–Witten analysis to the system on the Coulomb branch,
including energies up to the scale

EC branch ∼ N2〈φ〉 (3.2)

we need a larger cutoff (smaller δ).
We can now ask in the more general flux compactifications of interest here

[3,1] whether the brane degrees of freedom continue to account for the black
hole entropy. That is, when we count the elementary degrees of freedom
nB on the brane domain walls replacing all the flux to the IR end of the
branes, at the mass scale of the VEV suggested by the geometry, is nB of
order Ld−2

AdS/ld−2
d ? We will see that for the KKLT models, at the level of the

estimate in section 2 this saturation holds as well in our case, when we take

f Another work that used off shell bubbles to illustrate a physics point is [30].
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into account string junction degrees of freedom living on the branes in the
Coulomb branch of that system.

The branes in the KKLT construction consist of D5 and NS5 branes
wrapped on b3 3-cycles of the compactification manifold of type IIB string
theory, as well as of order

∫
H∧F D3-branes ending on them according to the

Gauss’ law constraint (2.6). Qi D5 and Ni NS5 branes wrapped on the same
cycle Ci reduce to Ji (pi, qi) fivebranes where (pi, qi) = (Qi/Ji, Ni/Ji) are
relatively prime integers. We will be interested in the highly tuned situation
described in section 2 in which the size of the Calabi-Yau is much smaller
than the curvature radius of the AdS4. In particular, let us consider all the
length scales within the Calabi–Yau to be somewhat bigger than string scale
for control but not parametrically bigger as a function of the flux quantum
numbers. Similarly, let us consider a situation with gs somewhat smaller
than one but of order one.

The degrees of freedom on the branes consist of strings and string webs
(combinations of string junctions) which are at a mass scale of order

m〈φ〉 ∼
1
ls

(3.3)

which is the analogue of (3.1) in our system. The string and string web de-
grees of freedom can be electric from the point of view of the gauge group on
each bunch of branes. When the classical mass and binding energy formulas
are a good approximation, some string webs are stable at an energy scale
of order (3.3) by virtue of being the lightest degrees of freedom with their
quantum numbers. We will estimate the number of such degrees of freedom
nB coming from string junctions that we can reliably obtain ending on these
various branes, and see that they account for the entropy predicted on the
gravity side (2.9)–(2.12),

nB ∼ Nvac (3.4)

with Nvac given by (2.9).
We are interested in the number of degrees of freedom available on the

N5 >> b3 5-branes and N3 >> b3 3-branes obtained from the AdS4 so-
lution by trading all the flux in the IR region of the geometry for branes.
There will be multifundamental states arising from string webs (connected
combinations of string junctions) with multiple external strings ending on
the branes. String webs, discussed in many interesting papers such as [31]
(including one relating them to black hole entropy [32]) are combinations of
(p, q) strings connected through three-string junction vertices. They satisfy
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a basic charge conservation condition∑
I

(pI , qI) = 0 , (3.5)

where I runs over the strings entering any vertex (and therefore applies to
the sum over external strings entering a string web).

We will start by studying junctions with one endpoint on each set of
branes (indexed by their type and by the cycle they wrap or end on). This
will produce an entropy accounting for the gravity side prediction. We will
not analyze the details of the flux compactifications necessary to produce
Coulomb branch configurations with sufficiently stable solutions to (3.5). It
is clear that some such configurations exist, and our main goal is to explain
how large entropies of order Nvac (2.12)(2.9) can arise in any Coulomb branch
configuration of branes.

Before proceeding to the count of junctions, let us note two issues we
have not completely resolved. Firstly, junctions with more endpoints on
each bunch of branes, which could be viewed as bound states of lower junc-
tions, would lead to an entropy greater than the gravity side prediction
(2.9)(2.12) if such states were considered separately. Secondly, the junctions
we do consider with one endpoint on each bunch of branes can themselves be
viewed as bound states of strings. The question is what degrees of freedom
are elementary in the effective field theory at the energy scale determined by
the Coulomb branch VEVs. These issues are similar to those in a somewhat
similar situation in the black hole context in [32], where just the lowest junc-
tion connecting three sets of branes accounted for all the expected entropy.
There is a heuristic argument, along the lines of the arguments in [32], that
higher bound state junctions are less likely to constitute valid independent
effective fields than the basic junctions with one endpoint on each bunch of
branes, since the ratio of the binding energy of one constituent to the mass
of the bound state decreases as the number of endpoints increases. Because
of this, the lowest junctions are reliably counted but the higher ones are less
and less under control as we increase the number of endpoints, keeping the
size of the Calabi–Yau fixed. Another argument due to [32] is that in some
cases the lowest junction states connecting different bunches of branes (U(N)
factors in the brane system gauge group) can be related to elementary string
states in dual quiver theories. These are not proofs that only the lowest junc-
tions need be considered however, and leaves open the possibility that more
entropy is available in the system than the naive Bousso–Polchinski tuning
predicts. In any case, we will account for at least the [4,26] estimate with
the simplest controlled junction states, addressing the puzzle raised in [17].
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Let us study the junctions ending on the 3-branes and the fivebranes.
First consider the endpoints on the 3-branes. Consider a generic situation
where the ends of these 3-branes are distributed roughly uniformly over the
b3/2 pairs of dual intersecting A and B cycles contributing to the anomalous∫

H ∧ F 3-brane charge. Because of Gauss’ Law (2.6), there are of order
N3 ∼ L D3-branes, and so of order L/(b3/2) per pair of dual A and B cycles.
A junction with one end on each of the b3/2 groups of 2L/b3 D3-branes has

n3 ∼
(

2L

b3

)b3/2

(3.6)

ways to end on the threebranes. In our estimates we will account for the
L-dependence and not reliably keep track of the prefactor’s dependence on
b3 (which is much smaller than L in the regime of validity of the analysis),
though the strongest factorial dependence on b3 evident in (2.9) will arise
naturally also in our estimate.

If the junction also ends on the (p, q) fivebranes in all possible ways
(again with a single endpoint per bunch of branes), then there is another
factor in the entropy coming from the fivebranes, which we now compute.
Since we have of order N5/b3 (p, q) 5-branes per 3-cycle, we have of order
n5 ∼ (N5/b3)b3 ways the endpoints can end on fivebranes.

Let us relate this to the quantity L with respect to which the gravity side
estimate (2.9) is expressed. Noting that

2N5 ∼
b3∑

i=1

(|Qi|+ |Ni|) (3.7)

and recalling from section 2 that L ∼
∑b3

i=1(ciQ
2
i + aiN

2
i ) and using the fact

that on average Qi ∼ Ni ∼ N5/b3, we obtain the relation

L
1
2 ∼ N5

b3

√
2b3 . (3.8)

This translates the fivebrane factor in the entropy to

n5 ∼ (L1/2/
√

b3)b3 . (3.9)

Putting the threebrane and fivebrane factors together, we obtain

Sjunctions ∼ n3n5 ∼
(

L

b3

)b3

. (3.10)

The gravity side estimate (2.9) does not determine the function of K = b3

multiplying the LK/K! factor, though [26] offered some arguments that it
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was subdominant in its K dependence to the factorial in the denominator.
At this level, (3.10) from the lowest junctions with charge on all the sets of
branes agrees with the gravity side estimate (2.8)(2.9)(2.12).

Incidentally, one obtains the same estimate if one considers junctions
ending only on 5-branes if one decomposes the (p, q) 5-branes back into
separate D and NS 5-branes.

Having recovered the entropy directly on the branes of our system, a result
similar to that obtained above for the N = 4 SYM theory on its Coulomb
branch, it is interesting to ask if this is a coincidence or should have been
expected. The following is a heuristic argument for the agreement based on
the above Susskind–Witten analysis on the Coulomb branch.

Let us first consider the N = 4 super Yang-Mills theory. If we consider
the gravity side geometry out on the Coulomb branch in a configuration in
which all of the IR flux has been traded for branes [23], this corresponds
to a field theory configuration in which the off diagonal matrix degrees of
freedom have been lifted to the scale mφ of the VEVs. The density of states
of the system for energies E < N2mφ has a much slower growth with energy
than the undeformed CFT. This means that in the dual [23] solution for the
Coulomb branch, the black hole solutions saturating the entropy at a given
energy E0 < N2mφ contain parametrically fewer states (i.e. have entropy of
order N rather than N2) than those in the full AdS5 × S5 geometry at the
same energy scale E0.

If we now move the VEV scale mφ down in energy to somewhat below
E0/N

2, so that the branes go behind the black hole horizon, then the two
solutions (pure AdS and Coulomb branch) agree for energies above E0. In
particular, the branes contribute enough entropy to enhance the Coulomb
branch black hole density of states to that of the CFT at energy E0. This
makes it clear why the brane states saturated the order N2 entropy (up to
order one factors we do not control by these considerations).

Now in the more general flux compactifications of interest here, we are
again applying the procedure of trading all the IR flux for branes. This again
removes the flux stabilizing the compactification, and probably caps off the
solution in the IR. This again suggests that the black holes in the capped
off Coulomb branch solution will have parametrically fewer states than in
the full AdS geometry at a given energy scale. As in the above discussion
of the AdS5 case, pushing the branes back behind the horizon will produce
again a black hole saturating the entropy bound up to the energy scale E0. I
therefore find it very plausible that the branes in a KLT-like Coulomb branch
configuration in a general flux compactification will saturate the entropy
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and will provide a reliable indicator of the content of the holographic dual
theory. This bolsters considerably the case for obtaining the content of the
dual quantum field theory from the branes on the Coulomb branch of the
background [20].

There is a simple lesson from this analysis regarding the distribution
of the entropy. As emphasized above, in the Susskind–Witten analysis in
ordinary AdS/CFT, the entropy is organized as nCFT degrees of freedom
per L(A)dS area. Both in AdS and in dS flux compactifications, one can
obtain numerological agreement with the expected entropy in a situation
where the entropy is organized into one mode per string area per intrinsic
degree of freedom, rather than being organized into nCFT degrees of freedom
each excited by one mode per Ld−2

(A)dS area (as discussed in section 7 of [17]).
This estimate is based on there being of order Q2 degrees of freedom in
a system with Q branes coming from open string degrees of freedom. In
this paper, we have seen that because their number scales like larger than
quadratic powers of the flux (brane) quantum numbers, junction states can
account for the expected entropy njunction ∼ Nvac, arranged in the expected
way as njunction states per (A)dS area rather than as one per string area.

It will be very interesting to see if and how refinements of the statistical
analysis (keeping track of the specific configurations required to tune the cos-
mological constant to be very small) continue to lead to agreement between
the two sides of the putative duality. In this note we have not addressed any
aspect of the distribution of flux vacua admitting large numbers of degrees
of freedom, but have only seen that it is possible and very natural for string
junction states to account for the large entropy predicted for some vacua by
the Bousso–Polchinski mechanism.
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