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We give a non-technical review of some of the recent developments in our understanding

of the tachyon in string theory. We also illustrate the conjecture that open string theory

provides a complete description of the dynamics of unstable D-branes.
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In this brief review I plan to give a general overview of tachyons and

their significance in open string theory. I shall try to address the following

questions:

(1) What are tachyons?

(2) How do we deal with tachyons in quantum field theory?

(3) How do tachyons appear in string theory?

(4) How do we make sense of tachyons in string theory?

I shall end the review by describing an open string completeness conjecture

that arises out of the study of open string tachyons.

Let us begin with the question: What are tachyons? Historically tachyons

were described as particles which travel faster than light. If we use the

relativistic equation

v =
pc√

p2 + m2c2
, (1)

relating the velocity v of a particle to its momentum p, mass m and the

velocity of light c, then we see that tachyons can also be regarded as particles

with negative mass2, i.e. imaginary mass. Both descriptions sound equally

bizarre. On the other hand tachyons have been known to exist in string

theory almost since its birth, and hence we need to make sense of them.

Actually tachyons do appear in conventional quantum field theories as

well. Consider, for example, a classical scalar field φ with potential V (φ).

To simplify notation I shall from now on set the Planck’s constant ~ and

the velocity of light c to 1. In p-space and 1-time dimension labelled by the

time coordinate x0 and space coordinates xi (1 ≤ i ≤ p) the lagrangian of

the scalar field is

L =
1

2

∫
dpx[(∂0φ)2 − ∂iφ∂iφ − V (φ)] . (2)

Normally we choose the origin of φ so that the potential V (φ) has a min-

imum at φ = 0. In this case quantization of φ gives a scalar particle of

mass2 = V ′′(φ)|φ=0. This gives a positive mass2 particle. But now suppose

the potential has a maximum at φ = 0. Then V ′′(φ)|φ=0 is negative. Naive

quantization will give a particle of negative mass2. Thus we have a tachyon!

In this case however it is clear what we are doing wrong. When we identify

V ′′(0) as the mass2 of the particle, we are making an approximation. We

expand V (φ) in a Taylor series expansion in φ, and treat the cubic and

higher order terms as small corrections to the quadratic term. This is true

only if the quantum fluctuations of φ around φ = 0 are small. But if V (φ)
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has a maximum at φ = 0, then φ = 0 is a classically unstable point. Hence

we cannot expect the fluctuations of φ to be small. The remedy to this

difficulty is to find the minimum φ0 of the potential V (φ), and quantize the

system around this point. More precisely this means that we can expand

the potential around φ = φ0, and treat the cubic and higher order terms in

the expansion to be small. The mass2 of the particle now can be identified

as V ′′(φ0). This is positive since V (φ) has a minimum at φ = φ0. Hence the

theory does not have tachyons.

Thus we see that the existence of a tachyon in a scalar field theory implies

that the potential for the scalar field has a local maximum at the origin. In

order for the theory to be sensible at least in perturbation theory, the poten-

tial must also have a (local) minimum. Typically whenever the potential in a

scalar field theory has more than one extremum we can construct non-trivial

(possibly unstable) classical solutions which depend on one or more spatial

directions. For example consider a potential of the form V (φ) ∝ (φ2 − φ2
0)

2.

In this case V (φ) has a maximum at φ = 0 and a pair of minima at φ = ±φ0.

In this theory we can construct a domain wall solution where 1) φ depends on

one spatial coordinate x1, 2) as x1 → ∞, φ → φ0, 3) as x1 → −∞, φ → −φ0,

and 4) the total energy is minimized subject to these constraints. For this

configuration the energy density is concentrated around x1 ' 0. This gives

rise to a ‘codimension 1 defect’. For more complicated cases we can have

more complicated defects (of higher codimension). Examples of such defects

are vortices which are codimension 2 defects, ’t Hooft–Polyakov monopoles

which are codimension 3 defects, etc. In general for a codimension k defect

the energy density is localized around a subspace of dimension (p − k).

The lessons learned from the field theory examples may be summarized

as follows:

• Existence of tachyons in the spectrum tells us that we are expanding

the potential around its maximum rather than its minimum.

• The correct procedure to deal with such a situation is to find the

(global) minimum of the potential and expand the potential around

the minimum. The resulting theory has a positive mass2 scalar particle

instead of a tachyon.

• Associated with the existence of tachyons we often have non-trivial

space dependent classical solutions (defects).

We now turn to the discussion of tachyons in string theory. The con-

ventional description of string theory is based on ‘first quantized’ formalism

rather than a field theory. We take a string (closed or open) and quan-
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tize it maintaining Lorentz invariance. This gives infinite number of states

characterized by momentum ~p and other discrete quantum numbers n. It

turns out that the energy of the nth state carrying momentum ~p is given

by En =
√

~p2 + m2
n, where mn is some constant. This state clearly has the

interpretation of being a particle of mass mn. Thus string theory contains

infinite number of single ‘particle’ states, as if it is a field theory with infinite

number of fields.

Quantization of some closed or open strings gives rise to states with

negative m2
n for some n. This corresponds to a tachyon! For example, the

original bosonic string theory formulated in (25+1) dimensions has a tachyon

in the spectrum of closed strings. This theory is thought to be inconsistent

due to this reason.

Superstring theories are free from tachyons in the spectrum of closed

string. But for certain boundary conditions, there can be tachyon in the

spectrum of open strings even in superstring theories. Thus the question

is: Does the existence of tachyons make the theory inconsistent? Or does it

simply indicate that we are quantizing the theory around the wrong point?

The problem in analyzing this question stems from the fact that unlike the

example in a scalar field theory, the tachyon in string theory does not origi-

nally come from quantization of a scalar field. Thus in order to understand

the tachyon, we have to reconstruct the scalar field and its potential from

the known results in string theory, and then analyze if the potential has a

minimum.

It turns out that for open string tachyons we now know the answer in

many cases. On the other hand, closed string tachyons are only beginning

to be explored. Hence we shall focus mainly on open string tachyons in this

review.

There are five consistent, apparently different, superstring theories in 9-

space and 1-time dimension. We shall focus on two of them, known as type

IIA and type IIB string theories. Elementary excitations in this theory come

from quantum states of the closed strings. But besides these elementary

excitations these theories also contain ‘composite’ objects known as D-branes

or more explicitly Dirichlet p-branes.

A Dp-brane is a p-dimensional object. Thus for example D0-brane cor-

responds to a particle like object, a D1-brane corresponds to a string-like

object, a D2-brane corresponds to a membrane like object and so on. But

unlike the kinks and other defects in field theory which are associated with

classical solutions of the equations of motion of the fields, D-branes are de-

fined by saying what happens in their presence rather than by saying what
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they are. Consider, for example, a static flat Dp-brane in flat space-time,

lying along a p-dimensional subspace. The definition of a Dp-brane is simply

that fundamental strings can end on the p-dimensional hypersurface along

which the D-brane lies. This has been illustrated in Fig. 1.

D−brane

Open string

Figure 1. Fundamental strings (shown by dashed line) ending on a D-brane (shown by solid line).

Quantum states of a fundamental open string with ends on a D-brane

represent quantum excitation modes of the D-brane. D-branes need to satisfy

various consistency requirements, and as a result D-branes for different p

have different properties. For type IIA string theory, these properties are

summarized as follows:

(1) For even p, Dp-branes are oriented and are known as BPS D-branes

due to some special properties which they possess. For these branes,

the mass per unit p-volume, also known as the tension Tp of the brane,

is given by

Tp =
1

(2π)pgs

, (3)

in a unit in which the tension of the fundamental string is 1
2π

. We

shall use this unit throughout this review. gs is a dimensionless con-

stant known as the string coupling constant. We shall do most of our

analysis to lowest order in the perturbation expansion in gs.

It turns out that all open string states on a BPS D-brane have

mass2 ≥ 0. Hence there are no tachyons in the spectrum.

(2) For odd p, the Dp-branes are unoriented (non-BPS). The tension T̃p

of a non-BPS Dp-brane is given by

T̃p =

√
2

(2π)pgs

. (4)

Each such D-brane has one open string mode with mass2 = −1
2 . In
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other words, there is a tachyonic mode on each of these non-BPS Dp-

branes.

For type IIB string theory the situation is reversed. There are now ori-

ented (BPS) Dp-branes for odd p and unoriented (non-BPS) Dp-branes for

even p. The results that we shall discuss will be valid both for type IIA and

type IIB string theory. Whether we are talking about type IIA theory or

type IIB theory should be understood from the context. For example, if we

are referring to a non-BPS Dp-brane, then it should be understood that we

are talking about type IIA theory if p is odd, and type IIB theory if p is

even.

For oriented D-branes we define an anti-D-brane (D̄-brane) to be a D-

brane with opposite orientation. It turns out that a coincident BPS Dp-brane

D̄p-brane pair has two tachyonic modes, each of mass2 = −1
2 , from the open

strings with one end on the brane and one end on the antibrane (sectors (c)

and (d) in Fig. 2).

(a)

(b)

(c) (d)

D

D

Figure 2. The tachyon on a Dp-D̄p-brane pair comes from open strings whose two ends lie on

two different branes.

Since string theory is formulated in a way that is different from a field

theory, the method of analysis in string theory is very different from that in

a field theory. Nevertheless it is useful to use the language of field theory

to describe various situations in string theory. In particular, if we use the

analogy with field theory origin of tachyons, then for a non-BPS Dp-brane,

the dynamics of the single tachyonic mode should be described by a real

scalar field T with negative mass2 in p-space and one time dimensions. We

shall refer to T as tachyon field. For the Dp-D̄p system, the dynamics of

the pair of tachyonic modes should be described by a complex scalar field T

with negative mass2. Various results in string theory can be stated as if the

dynamics of the tachyon T is described by an effective potential Veff (T ) or
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more generally an effective action Seff (T ). We shall first state the main re-

sults in this language and then briefly mention the various stringy techniques

which are used to derive these results.

Let us begin by reviewing the properties of Seff (T ) and Veff (T ) which

follow from simple considerations. First of all it is known that Seff (T )

has simple symmetry properties. For example, for a non-BPS Dp-brane

Seff (−T ) = Seff (T ). On the other hand for a D-D̄ system, Seff (eiφT ) =

Seff (T ). The other property of that is obvious is that Veff (T ) has a maxi-

mum at T = 0, since the field T is tachyonic.




PSfrag replacements

Ep

T0
T

V

Figure 3. The tachyon potential on a non-BPS Dp-brane. The tachyon potential on a brane-

antibrane system can be obtained by revolving this diagram around the vertical axis, so that we

get a mexican hat potential.

The interesting questions the answers to which are not obvious are:

(1) Does Veff (T ) have a minimum?

(2) If it does have a minimum, then what kind of mass spectrum do we

get by quantizing the theory around the minimum?

(3) Do we get topological defects involving the tachyon?

etc. It turns out that the answers to many of these questions are now known.

These results can be summarized as follows:

(1) Veff (T ) does have a minimum at some value |T | = T0. Furthermore,

at this minimum [1, 2]

Veff (T0) + Ep = 0 , (5)

where Ep denotes the total energy density of the original system. Thus

Ep = T̃p for a non-BPS Dp brane, and Ep = 2Tp for Dp – D̄p system.

Thus at |T | = T0 the total energy density vanishes identically. This

situation has been illustrated in Fig. 3.
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(2) |T | = T0 configuration describes the closed string vacuum without

any D-brane [1, 2]. Thus around this minimum there are no physical

open string excitations. This is natural from the point of view of

string theory, since the total energy vanishes at T = T0, and hence we

can identify this configuration as vacuum without any D-brane. Since

there is no D-brane, there should be no open strings in the spectrum.

However, this result is very surprising from the point of view of a

normal field theory. Shifting the point around which we expand the

potential can make a negative mass2 state into a positive mass2 state,

but we do not normally eliminate the state altogether. On the other

hand here expanding the action around the minimum of the potential

not only gets rid of the original tachyon state, but also gets rid of the

infinite number of other open string states which were present.

PSfrag replacements

Ep

T0

T

V

−T0

x
p

Figure 4. Tachyonic kink solution representing a BPS D(p − 1)-brane.

(3) There are classical solutions of the equations of motion of T , repre-

senting lower dimensional D-branes [3–8]. For example, on a non-BPS

Dp-brane a kink as shown in Fig. 4 represents a D(p − 1)-brane. For

this solution the energy density is localized around a codimension 1

subspace (xp = 0) This looks like an ordinary kink solution in a field

theory, but there is an important difference. In a conventional field

theory, a defect lives on the space in which the field theory lives. Here,

at the bottom of the potential, the object (original Dp-brane) whose

dynamics the field theory describes disappears altogether. Neverthe-

less defects in the field can survive and describe non-trivial objects in

the (9+1)-dimensional space-time in which full string theory lives.

There are also other more complicated examples of ‘tachyonic de-
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fects’. For example, a vortex solution on a Dp-D̄p pair describes a

BPS D(p − 2)-brane [4]. On the other hand, a ’t Hooft–Polyakov

monopole on a pair of coincident non-BPS Dp-branes describes a non-

BPS D(p − 3)-brane [7]. In this way all D-branes can be regarded as

defects in the tachyon field living on D-branes of maximal dimension.

This gives a more conventional description of D-branes as defects in

the tachyon field. But more importantly this description gives a way

to classify Dp-branes based on a branch of mathematics known as K-

theory [5, 7]. Several new stable D-branes in various string theories

have been discovered using this general scheme.

So far we have only described the properties of static solutions of the

tachyon effective field theory. Let us now turn to dynamics, namely time

dependent solutions of the equations of motion. In the case of a conventional

scalar field, if we displace the field from its maximum and let it roll down

the potential, the scalar field will oscillate about its minimum. Energy-

momentum tensor Tµν for this solution will have the form

T00 = E , Tij = −p(x0)δij , Ti0 = 0 , (6)

where i, j refer to the spatial directions. Here E denotes the energy density,

and remains constant due to energy conservation. p denotes the pressure,

and will typically oscillate about an average value (0 for a conventional scalar

field) as the scalar field oscillates about its minimum. We can now ask: What

happens if we displace the tachyon field on a D-D̄ pair (or a non-BPS D-

brane) and let it roll down the hill? It turns out that in this case the energy

density remains constant as usual by energy conservation, but the pressure

goes to zero asymptotically instead of oscillating about 0. Thus the final

state is a gas of non-zero energy density and zero pressure [9, 10]. Another

important quantity that characterizes the system is the dilaton charge that

measures the coupling of the dilaton to the system. It turns out that the

final system also has zero dilaton charge.

Let me now say a few words about the various techniques which are used

to derive the various results that we have mentioned so far. We begin by

clarifying a point that may have been somewhat misleading. In stating the

various results we have represented the tachyon by a single scalar field. But

in reality it is inconsistent to deal only with the tachyon and not take into

account its coupling with infinite number of other fields representing the

massive string states. Thus in order to study the classical dynamics of the

tachyon field, we actually have to solve infinite number of coupled equations

involving infinite number of fields.
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There are various approaches to this problem, but I shall discuss only two

of them in some detail. We can use an indirect approach where we use the

fact that there is a one to one correspondence between solutions of equations

of motion in string theory and two dimensional conformal field theories. In

this approach we directly try to get a solution of the equations of motion

(describing the defect solutions or the time dependent rolling tachyon solu-

tion for example) by constructing the corresponding conformal field theory

in two dimensions. This avoids the need to find the tachyon potential or

its coupling to other fields. This procedure has been used to derive analyt-

ical results both for static and dynamical properties [4, 8–10]. In the direct

approach (based on string field theory) [11–17] we take into account the

coupling of the tachyon to all the other fields and try to solve the coupled

equations for all the fields using some approximation scheme, known as level

truncation. In this scheme, we include only fields below a certain fixed mass

(say M). This gives a finite number of fields, and the corresponding equa-

tions can be solved (numerically). Then we include more fields, with mass

below M ′ (M ′ > M) and repeat the procedure. If the procedure converges

as we go to larger and larger cut-off on the mass, then we are on the right

track. So far this procedure has been used to study only the static proper-

ties of the tachyon. In these applications the results converge rapidly to the

conjectured answers.

There are various other approaches all of which has been successful to

various extents in studying the properties of the tachyon. I shall only list

them here without giving any details:

(1) Renormalization group flow [18]

(2) Non-commutative geometry [19, 20]

(3) Boundary string field theory [21–23]

etc.

Whatever be the method used, some of the results stated earlier (e.g.

disappearance of open string states at the bottom of the tachyon potential,

asymptotic vanishing of pressure for the rolling tachyon solution etc.) cer-

tainly seem very strange from the point of view of a conventional scalar field

theory in which the action is given by the sum of a kinetic and a potential

term. We can now ask if it is possible to write down an (unconventional)

scalar field theory that can describe this apparently strange dynamics of the

tachyon. It turns out that the qualitative aspects of the tachyon dynamics

near the minimum of the potential is describable in terms of a non-standard
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action for the tachyon field T [24–26],

−
∫

dp+1xV (T )
√

1 + ηµν∂µT∂νT , (7)

where η is the diagonal matrix with eigenvalues (−1, 1, 1, . . . 1), and V (T ) is

the tachyon effective potential which in this parametrization has its minima

at T = ±∞ and its maximum at T = 0.

Various features of this theory makes this an attractive model for de-

scribing open string tachyon dynamics. First of all it has kink solutions with

zero thickness but finite tension describing a BPS D(p − 1)-brane, whose

world-volume theory is given by the Dirac–Born–Infeld action [27–32]. This

is the expected result in full string theory. The time dependent solutions

describing the rolling of the tachyon is best described in the Hamiltonian

formalism. The Hamiltonian for this system is given by [26, 33]

H =

∫
dpx

√
Π2 + (V (T ))2

√
1 + (~∇T )2 , (8)

where Π is the momentum conjugate to T . As the tachyon rolls down the

potential hill, V (T ) → 0. Thus at late time we can ignore the V (T ) term

in the Hamiltonian. It can be shown that in this limit the equations of

motion derived from the Hamiltonian (8) are identical to the equations of

motion of a pressureless non-interacting fluid (dust) with the identification

that |Π|
√

1 + (~∇T )2 is interpreted as the energy density ρ of the dust, and

−∂µT is interpreted as the local (p + 1)-velocity uµ of the dust particle [26].

Thus at late time the classical solutions in this field theory are in one to one

correspondence with the configurations of a system of non-interacting dust.

Since dust particles at rest correspond to a pressureless fluid, this automat-

ically explains the result as to why the solutions describing a homogeneous

rolling tachyon evolve into a system of zero pressure. It is also easy to explain

the vanishing of the dilaton charge. For a D-brane the dilaton charge is pro-

portional to the lagrangian. At late time V (T ) → 0. Furthermore, equations

of motion derived from the Hamiltonian (8) gives ηµν∂µT∂νT = −1. From

(7) we see that for such a configuration the lagrangian and hence the dilaton

charge vanishes. Finally, since a dust does not support propagating plane

waves (a compressed dust remains compressed for example), we expect that

quantization of this theory around the minimum of the potential does not

lead to particle like excitations. This is what happens for the open string

theory around the tachyon vacuum.

Although the qualitative features of the tachyon effective action given

above do not depend on the specific choice of the potential V (T ) as long
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as it is even, has a maximum at T = 0 and approaches zero as T → ±∞,

it turns out that the choice V (T ) ∝ sech(T/
√

2) also reproduces some (but

not all) of the quantitative aspects of tachyon dynamics on a non-BPS D-

brane [34–36]. Although originally the action (8) was proposed in order to

reproduce the results involving the open string tachyon without any first

principle derivation, a partial justification of the validity of this action has

been given in [37].

So far we have discussed the dynamics of the open string tachyon at the

purely classical level, and have ignored the coupling of the D-brane to closed

strings. Since D-branes act as source for various closed string fields, a time

dependent open string field configuration such as the rolling tachyon solution

acts as a time dependent source for closed string fields, and produces closed

string radiation. This can be computed using the standard techniques. For

unstable Dp-branes with all p directions wrapped on circles, we get the

following result [35, 38]:

(1) Total amount of energy carried by any single closed string mode is a

negligible fraction (∼ gs) of the total energy of the D-brane.

(2) Total amount of energy carried by all the closed string modes is infinite.

(3) For an emitted closed string of mass M , the typical momentum car-

ried by the string along directions transverse to the D-brane is of order√
M , and the typical winding charge carried by the string along direc-

tions tangential to the D-brane is of order
√

M .

Clearly since the D-brane has finite mass, the total amount of energy

radiated by the D-brane cannot be infinite. The most naive way to regularize

the divergence is to put an explicit cut-off on the energy of the emitted closed

string, the natural cut-off being of the order of the mass of the original D-

brane. Since this is of order 1/gs, the conclusions 1-3 above get modified

to:

(1) All the energy of the D-brane is radiated away into closed strings even

though any single closed string mode carries a small (∼ gs) fraction of

the D-brane energy.

(2) Most of the energy is carried by closed strings of mass ∼ 1/gs.

(3) The typical momentum carried by these closed strings along directions

transverse to the D-brane is of order
√

1/gs, and the typical winding

charge carried by these strings along directions tangential to the D-

brane is also of order
√

1/gs.

From this one would tend to conclude that the effect of closed string emis-
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sion should invalidate the classical open string results on the rolling tachyon

system discussed earlier. There are however some surprising coincidences:

(1) The classical open string results tell us that the final system associated

with the rolling tachyon configuration has zero pressure. On the other

hand closed string emission results tell us that the final closed strings

have momentum/mass and winding/mass ratio of order
√

gs and hence

pressure/ energy density ratio of order gs. In the gs → 0 limit this van-

ishes. Thus it appears that the classical open string analysis correctly

predicts the equation of state of the final system of closed strings into

which the system decays.

(2) The open string analysis tells us that the final system has zero dila-

ton charge. By analyzing the properties of the closed string radiation

produced by the decaying D-brane one finds that these closed strings

also carry zero dilaton charge. Thus the classical open string analy-

sis correctly captures the properties of the final state closed strings

produced during the D-brane decay.

These results suggest that the classical open string theory already knows

about the properties of the final state closed strings produced by the decay

of the D-brane [39, 40]. This can be formally stated as an open string com-

pleteness conjecture according to which the complete dynamics of a D-brane

is captured by the open string theory without any need to explicitly consider

the coupling of the system to closed strings.a Closed strings provide a dual

description of the system. This does not imply that any arbitrary state in

string theory can be described in terms of open string theory on an unstable

D-brane, but that all the quantum states required to describe the dynamics

of a given D-brane are contained in this open string theory.

At the level of critical string theory one cannot prove this conjecture.

However it turns out that this conjecture has a simple realization in a

non-critical two dimensional string theory. This theory has two equiva-

lent descriptions: 1) as a regular string theory in a somewhat complicated

background [41, 42] in which the world-sheet dynamics of the fundamen-

tal string is described by the direct sum of a free scalar field theory and

the Liouville theory with central charge 25, and 2) as a theory of free non-

a Previously this was called the open-closed string duality conjecture [40]. However since there

are many different kinds of open-closed string duality conjecture, we find the name open string

completeness conjecture more appropriate. In fact the proposed conjecture is not a statement of

equivalence between the open and closed string description since the closed string theory could

have many more states which are not accessible to the open string theory.
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relativistic fermions moving under a shifted inverted harmonic oscillator po-

tential − 1
2 q2 + 1

gs

[43–45]. Although in the free fermion description the

potential is unbounded from below, the ground state of the system has all

the negative energy states filled, and hence the second quantized theory is

well defined. The map between these two theories is also known. In partic-

ular the closed string states in the first description are related to the quanta

of the scalar field obtained by bosonizing the second quantized fermion field

in the second description [46–48].

In the regular string theory description the theory also has an unsta-

ble D0-brane with a tachyonic mode [49]. The classical properties of this

tachyon are identical to those discussed earlier in this review in the context

of critical string theory. In particular one can construct time dependent so-

lution describing the rolling of the tachyon away from the maximum of the

potential. Upon taking into account possible closed string emission effects

one finds that as in the case of critical string theory, the D0-brane decays

completely into closed strings [50].

By examining the coherent closed string field configuration produced in

the D0-brane decay, and translating this into the fermionic description us-

ing the known relation between the closed string fields and the bosonized

fermion, one discovers that the radiation produced by ‘D0–brane decay’ pre-

cisely corresponds to a single fermion excitation in the theory. This suggests

that the D0-brane should be identified as the single fermion excitation in

the matrix model [50–52]. Thus its dynamics is described by that of a sin-

gle particle moving under the inverted harmonic oscillator potential with a

lower-cutoff on the energy at the fermi level due to Pauli exclusion principle.

Given that the dynamics of a D0-brane is described by an open string

theory, we see from this analysis that in this theory, the single particle me-

chanics with inverted harmonic oscillator potential corresponds to the open

string theory describing the dynamics of the D0-brane. A consistency check

of this proposal is that the second derivative of the inverted harmonic oscil-

lator potential at the maximum precisely matches the negative mass2 of the

open string tachyon living on the D0-brane. This ‘open string theory’ clearly

has the ability to describe the complete dynamics of a single D0-brane, which

corresponds to single fermion excitations in the fermionic description. It is

possible but not necessary to describe the system in terms of the scalar field

obtained by bosonizing the second quantized fermion field. This corresponds

to the closed string description of the system. This result is completely con-

sistent with the open string completeness conjecture proposed earlier in the

context of critical string theory.
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We conclude by mentioning briefly the status of closed string tachyon

condensation. Clearly we would like to know if we can make sense of closed

string tachyon that appears in the original bosonic string theory. Existence

of the tachyon is the only thing wrong with this theory, and hence by mak-

ing sense of this tachyon we may make the theory consistent. For this we

need to 1) establish the existence of the minimum of the potential, and 2)

find an interpretation of the physics around this minimum. This is still an

unsolved problem. However some progress has been made in understanding

other kind of closed string tachyons which appear in superstring theories

in non-trivial background [53, 54]. In each case that has been understood,

the minimum of the tachyon potential always corresponds to some kind of

stable background. Thus the tachyon reflects the instability of the original

background to decay into the new background. Success of this analysis raises

hope that perhaps the tachyon in (25+1) dimensional bosonic string theory

may also be understood in a similar manner.
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