September 3, 2004 10:12 WSPC/Trim Size: 9.75in x 6.5in for Proceedings semenoff

BLACK HOLES AND THERMODYNAMIC STATES
OF MATRIX MODELS

GORDON W. SEMENOFF

Department of Physics and Astronomy, University of British Columbia,
Vancouver, British Columbia V6T 1Z1, Canada

Some recent work on the thermodynamic behavior of the matrix model of M-theory on
a pp-wave background is reviewed. We examine a weak coupling limit where computa-
tions can be done explicitly. In the large N limit, we find a phase transition between
two distinct phases which resembles a “confinement-deconfinement” transition in gauge
theory and which we speculate must be related to a geometric transition in M-theory.
We review arguments that the phase transition is also related to the Hagedorn transition
of little string theory in a certain limit of the 5-brane geometry.
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In Memory of Ian Kogan

1. Prologue

Tan Kogan was a great and devoted friend and I will miss him dearly. Part
of his journey from the Soviet Union to Oxford passed through Vancouver
where he spent a few years. I have great memories of that time.

Among lan’s very broad range of scientific interests was a continuing
fascination with critical behavior of string theory at high temperature. One
universal characteristic of strings is that their density of states increases
exponentially at large energies,

p(E) = E*eP/Tu (1)

The constant Ty is called the Hagedorn temperature. A consequence of this
large density of states is that, depending on the exponent, a, string theory
has either an upper limiting temperature or a phase transition.

Perhaps my favorite of all of Ian’s scientific works is an old result [1],
(found independently in [2]) about an interpretation of the Hagedorn tem-
perature in string theory. In that work he noted an analogy between the
Hagedorn behavior of strings and the Kosterlitz—Thouless phase transition
for the unbinding of vortices in the world-sheet sigma model. He interpreted
the latter in string theory as a disintegration of the worldsheet by conden-
sation of vortices. The phase transition occurred when a wrapped mode of
the string becomes tachyonic. To this day, this remains a common way in
which Hagedorn temperatures are identified in string theory. Characteristic
of Tan’s work, this very original and fascinating idea seemed well ahead of
its time, In all likelihood, its full import has yet to be realized.

Tan’s interest in the high temperature behavior of strings continued
throughout his career. Some of his recent work explored the use of the
AdS/CFT correspondence to understand the phase structure of string the-
ory at high temperatures [3-5].

In this Paper, which I dedicate to Ian, I will discuss some of my own
recent work on similar topics. But before I begin a discussion of my own
work, let me pause to recall Ian’s work on the Hagedorn transition.

1.1. Hagedorn transition of string theory.

As an illustration of this beautiful idea, let us consider the closed Bosonic
string theory at a finite temperature T'. As usual, such a theory is described
by quantization on a Euclidean target space, where the time direction is
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identified with period 5 = 1/T,
X%z,2) ~ X%2,2) + 8. (2)

The action of the string theory is

/ dodt 0, X" 0, X* . (3)

4o

If the variable X© is periodic, we can think of this as a sigma model with
target space S', a continuum version of the two dimensional X-Y-model.
It is known that this model has two phases. One is a conformal invariant
phase which normally describes string theory. The other is a gapped phase
which does not have long ranged correlations. They are separated by the
Berezinski—Kosterlitz—Thouless phase transition. This phase transition oc-
curs if the parameter 3/ Va! is adjusted in such a way that the simplest
periodic interaction that one could add to (3)

21X
/dadTu2 cos - (4)

g

becomes a relevant operator. This radius is not universal, but in the weak
coupling limit, it has the value 3. = mv/o/. We will discuss later how this is
related to Hagedorn.

The effect of compactification of is to discretize the momentum of the
compactified coordinate,

P’ =2mn/B.
Another result of compacitification is to introduce wrapping modes,
X1, 0 +27) = X1, 0) +wp,

where w is an integer corresponding to the number of times that the string
worldsheet wraps around the time circle.

The equation of motion for XV is solved by decomposing it into a holo-
morphic and anti-holomorphic part,

X%z, 2) = XP(2) + X%(2). (5)

The left- and right-moving bosons are operators defined by the mode
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expansions:

X2 = —zalenz—H\/»Zan -, (6)
XR<>—mR—zapRlnz+Z\f2““-—” )

n#0

Here, we use the notation z = e77%, z = ¢77%. The non-vanishing commu-
tators are
[xLupL] = 1/2 ) [$R)pR] = 2/2 ’ (8)
[,y Q] = MOpypn [Qms ] = MOt - (9)

The equal-time commutation relation in Fuclidean space-time is
[(X°(7,0),0-X°(1,0")] = 2n6(c — o). (10)

A representation of this algebra is constructed beginning with the vac-
uum, which is annihilated by all positively moded oscillators with fixed mo-
mentum and wrapping number,

an |0,n,m) =0, @&,|0,n,w)=0, n>0, (11)
2
(pL +PR) ‘0771’7 ’LU> =N |Ovna w> ) (12)
B
B
(pr — pr) |0, n,w) = —%_O/w |0, n, w) (13)

and creating excited states using the negatively moded oscillators. These
states obey the mass-shell and level-matching conditions

Ar?a/n? (2 ~
2 1 _ 2
moa = 72 +47720/w +2(N+ N -2), (14)
0O=nw+N—-N. (15)

The Hagedorn phase transition occurs when the first winding mode of
the string becomes tachyonic. Its lowest mass state has n = 0 and w = +1.
It has no excited oscillators, N = 0 = N. The mass shell condition for this
state is

/2 A

A2 «
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As we raise the temperature from zero, or lower § from infinity, these two
states become massless when 8 = Gy where

By =4mVd! . (16)

Tan’s observation also related this appearance of massless states, and
a wrapping mode becoming tachyonic with the Berezinsky—Kosterlitz—
Thouless phase transition in the S! sigma-model. This occurs when the
vertex operator

V(z,2) =: 2 (X2EHXR(2)/5 a7

becomes a relevant operator. A relevant operator is one of conformal di-
mension (1,1). Simple computation reveals that V(z,z) has dimension
(w20’ /5%, w20’ /%) which is type (1,1) when 3 = . = mv/o/. How is this
related to Hagedorn?

We can see from the spectrum, that it exhibits T-duality. We can inter-
change the wrapping number w and the momentum integer n if, at the same
time, we replace 3 with 472a//3. It is interesting that (3. where Kosterlitz—
Thouless occurs is T-dual to Bg. It is the place where the first quantized
momentum states, with n = £1, whose mass increases as we decrease 3 (or
decrease the temperature), become massless. This means that, if we insist on
lowering 3 from infinity, rather than increasing it from zero as in the usual
BKT analysis, we encounter a BKT transition at the same temperature as
the Hagedorn transition where the T-dual vertex operator

V(Z,Z) — . Pi(XL()-XR(3)) /210 (18)
becomes relevant. These are just the combination of vortices that Kogan
described as condensing in his original paper — the vortices of the right and
left-moving fields if his vortex configuration

oni;m(f_z") (19)

zZ—2p

had opposite vorticities.

The Hagedorn behavior is universal for non-interacting string theories.
One might wonder what happens when string interactions are turned on.
For sure, simple string theories are theories of quantum gravity, and finite
temperatures states in gravitational systems are well known to generally
be unstable to collapse to black holes. In the remainder of this essay, 1
will review some modern attempts to interpret the Hagedorn transition as
a symptom of this collapse. Generally black hole collapse will happen at a
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much lower temperature than Hagedorn. We think of it as a first order phase
transition, where the finite temperature, hot graviton state competes in free
energy with the Hawking radiating black hole state, but there is still an en-
ergy barrier between, making the phase transition first order. The Hagedorn
transition would occur at a higher temperature, where, if we superheated the
hot graviton gas, it would eventually become unstable to fluctuations. This
instability is described by just the extra tachyons which appear in the spec-
trum.

2. Motivation

The basic degrees of freedom of string theory and M-theory are thought
to be known and encoded in the BFSS [6] matrix model. The model is
supersymmetric matrix quantum mechanics with action

S = /dtTr

where i, 7 = 1,...,9 and all degrees of freedom are N x N Hermitian matrices.

€
2R

(DX + 2o (X3 X9 1 5Dy + Zgrixt )|, (20)
4€pl Epl

This is a gauge invariant theory with covariant time derivative D = % —
i[A,... . The gauge theory coupling constant is given in terms of the null

compactification radius R and the eleven dimensional Planck length ¢, (or
the ten dimensional ITA string coupling g, and string length 5 = Vo' ) by

R 3
g%’M = <€2> = gsfg ) Epl = g;/ggs , R= gsfs . (21)
pl

This model has three uses. It is conjectured to describe a discrete light-
cone quantization of M-theory [6] where R is the compactification radius
of the light-cone, there are N units of light-cone momentum and ¢, is the
Planck length of 11-dimensional supergravity. Secondly, and historically a
little earlier [7], with parameters suitably re-identified, it describes the low
energy dynamics of a collection of N DO-branes of type ITA superstring
theory. Finally, it is a matrix regularization of the light-cone action for the
11-dimensional supermembrane [8].

One motivation for understanding the behavior of matrix models such
as the BFSS model at finite temperature comes from the conjecture that
their finite temperature states are related to black hole states of type ITA
supergravity [9,10]. This idea was studied in a series of papers by Kabat and
Lowe [11]. They begin with the Beckenstein—-Hawking entropy of a black DO0-
brane solution of ITA supergravity — the area of its even horizon in Planck
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units. They convert the entropy to the free energy, which they then write in
terms of gauge theory parameters to obtain

TS 3/5
F/T = —4.115N? ( 5 N) . (22)
9y m

A derivation of (22) from the matrix model would be an important result, a
first principles computation of non-extremal black hole entropy using string
theory. However, one would expect to find (22) in a low temperature and
therefore strong coupling limit of the matrix model, making it inaccessible
to perturbation theory. A variational technique was applied and claimed
approximate agreement with the formula over some range of temperature
[11].

The formula (22) is remarkable in three respects. First, it has the correct
dependence on N and the 't Hooft coupling 932, uN to be the leading order
of the 't Hooft limit of the gauge theory. If it could be derived in a pertur-
bative expansion, it would obtain contributions only from planar Feynman
diagrams. This means that the 't Hooft limit should be part of the limit-
ing process that would extract the classical physics of black holes from the
matrix model.

Secondly, the scaling with N in (22) is as if this O-dimensional gauge
theory were in a de-confined phase. This is particularly true if we assume
that we are taking the 't Hooft limit. The use of the word “deconfined” in a
theory where there is no spatial extent over which particles can be separated
must be justified carefully. The gauge theory has a Gauss law constraint so
that quantum states of the Hamiltonian must be singlets under the gauge
symmetry. The gauge field in (20) enforces this constraint. The number
of singlets at a given energy do not scale like N2, rather they are of order
one. As an example of this, consider a matrix harmonic oscillator with
Hamiltonian

d

H = ZwTr(a;rai) (23)
i=1

and matrix-valued creation and annihilation operators with algebra

|k a2h] = 6Y6aatie. (24)
States are created by afjb operating on a vacuum |0 >. To get a state with
energy F = nw we must act with n creation operators.
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The analog of gauge invariance is to require a physical state condition of
invariance under the unitary transformation

al = walul ,
where
ue U(N)/U(1).

We assume that the vacuum state is invariant under this gauge transform.
Then, physical states are created by operating with invariant combinations
of creation operators. In the limit N — oo all such combinations are traces

[Tr (aj)}m [Tr (a;fla;[z)} ” [Tr (a};la};azg)}ng ...|0), (25)

where the energy is
E=wni+2n2+3ng+...).

The number of these traces with a fixed energy, E, does not scale like N2
as N — oo, instead it approaches a constant as NV is taken large. Thus for
normal thermodynamic states, one would not expect the free energy to be
of order N2.

However, the number of independent traces does increase rapidly with
E. It has been shown [12] that, in the large N limit, the oscillator has a
Hagedorn-like density of states at high energy,

1
p(E) ~ E eE/TH 3
where the Hagedorn temperature is
Ty =w/Ind.

A similar result has been found for weakly coupled Yang—Mills theory [13—
15].

At temperatures higher than Ty, the thermodynamic canonical ensemble
does not exist. It could be made to exist by keeping N large but finite. That
would cut off the exponential growth in the asymptotic density of states at
some large energy. Then we could consider a temperature that is greater
than Ty. Both the energy and entropy would be dominated by states at
and above the cutoff scale. Then, the divergence of the free energy ~ N?
occurs as we take the limit N — oo at constant temperature (noting that
the Hagedorn temperature does not depend on NN).

As we shall show in the following, a behavior like this can indeed by
found in the matrix model. In more conventional terms, it occurs as a large
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N Gross—Witten type of phase transition [16,17] which is familiar in unitary
matrix models. It is this behavior that we call “deconfinement”. At this
deconfinement transition, limy_o, F/N? jumps from being zero to of order
one.

In an adjoint gauge theory such as (20), there is an order parameter for
confinement, the Polyakov loop [18,19]. It is the trace of the holonomy of
the gauge field around the finite temperature Euclidean time circle,

P= %Tr (eifA) . (26)

This operator gets a nonzero expectation value when a gauge theory is de-
confined. An interesting question is whether it has a nonzero expectation
value in the BFSS matrix model. In such a low dimensional theory, it can
only have a nonzero expectation value when NN is infinite. Indications from
weak coupling computations [20] are that it has.

The third remarkable fact about (22) is, though this formula is thought to
apply to the black hole only for a range of temperatures [21], the expression at
low temperature is reminiscent of critical scaling with a critical temperature
T = 0 and a simple, rational critical exponent.

In spite of the simplicity of these interesting features, there is no analytic
derivation of the formula (22) from the matrix model. One of the difficul-
ties in finding a derivation is the intractability of the model itself. These
difficulties are well-known from previous attempts to analyze its thermody-
namics [20].

Before we continue with the matrix model, we comment that, if we
analyze the thermodynamics of M-theory in the rest frame, we would
form the partition function with a Boltzman distribution using the energy
E = %(P* +P),

Z = Z e_N/me_F/ﬂT, (27)
N

where the matrix model free energy is defined by
e F/IT = Ty e H/IT, (28)

In (27) we have traced over the eigenstates of the light-cone momentum.
This gives the sum over matrix model partition functions for each N with
the exponential factor e V/AT .
pendent on the nature of the large N limit. If there is a sector of the matrix
model where this limit is like (22), because of the negative sign, the sum

over N diverges. It is tempting to associate this with the non-existence of

The convergence of the sum is clearly de-
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thermodynamics of a theory of quantum gravity on asymptotically flat space
— because of the Jeans instability the space is unstable to collapse to black
holes. If there were a phase where the free energy did not become negative
and with magnitude growing faster than N, it would be a stable phase.

There are several known behaviors of matrix models in the large N limit.
For example, there is the Dijkgraaf—Verlinde—Verlinde [22] limit of matrix
string theory. That is a strong coupling limit which kills the off-diagonal
degrees of freedom of the matrices. The remaining, diagonal degrees of
freedom are N in number and it can be shown explicitly [23-25] that the
free energy is negative and is proportional to N. Of course, this is just the
correct behavior for a string theory, there will be a Hagedorn temperature
where the large N terms in the sum in (27) go from being exponentially
suppressed to growing exponentially. There are other versions of matrix
string theory [26-29] based on two dimensional Yang-Mills theory where one
would expect a similar behavior.

Another limit where we have a quantitative estimate of the large N be-
havior is the 't Hooft limit where N is taken to infinity at the same time
as gy is taken to zero. Technically this would be done by re-defining
A = ¢g&,,N and holding X fixed as when we sum over N in (27). Then,
the phase transition that we discuss here is somewhat more violent than the
Hagedorn behavior in string theory. The matrix part of the free energy at
large N changes from a negative constant to a negative constant times N2.
The linear in N exponent of the momentum part doesn’t compete with the
N2-growth of the matrix model contribution.

3. PP-Wave matrix model

Recently a variant of the matrix model which is conjectured to describe a
discrete light cone quantization of M-theory on a pp-wave background has
been formulated [30]. It is a 1-parameter deformation of (20),

1 . R o _ R - .
S = [drte | SH (DX 4 G (X XIP 4 0D+ g G0
2R 46, C
2 2
H 2 H i’ \2 [ . be ya ybyc
———— (XY — —(X")" — =) — ipue X X°X 29
where the indices a, b, .. = 1,2,3 and ¢/ = 4, ...,9. This matrix model reduces

to the BFSS model if we put the parameter u to zero and can be considered
a one-parameter deformation of it. The main difference between the two is
that the action in (20) has (super)symmetries identical to those of the resid-
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ual invariance of 11-dimensional Minkowski space in light-cone quantization
whereas (29) has symmetries appropriate to a pp-wave spacetime.
The matrix model in (29) has the great advantage that, unlike (20), it
can be analyzed in perturbation theory [31]. In (20), the classical potential
~ —Tr ([X?, X7]?) has flat directions, any set of matrices which are mutu-
ally commuting have zero energy. The behavior of the degrees of freedom in
flat directions must be understood at the outset of an honest quantum me-
chanical treatment of the theory. In (29), these flat directions are removed
by the mass terms. Perturbation theory is accurate in the limit where the
mass gap u is large.
The pp-wave space which is a maximally supersymmetric solution of 11-
dimensional supergravity is
2 2
ds* = da'dx’ — 2detdx™ — <'l;(x“)2 + gfi(xl/)2> dotdx™
with an additional constant background 4-form flux
Fii93=p.

This space is known to support a spherical membrane solution,
3

14
xT =pTr, 27 =const., +/(z%)%= %pﬂt

and a spherical transverse 5-brane

. +
T =ptr, z~ =const., (2")®= ﬂil %

These objects are conjectured to make their appearance in the solutions
of the matrix model. The membrane is found immediately in semiclassical
quantization. The classical potential is (hereafter we set £,; = 1 and measure
all dimensional quantities in Planck units)

R 2 1 , LN\ 2
V=T [(“X“ e x X)) + 5 (i[x7, x77)

3R
+ (z [Xi’,xa])2 + (%)2 (Xi’)Z] . (30)

It is minimized by
X =0, g:%ﬁ, (31)

where J¢ is an N-dimensional representation of the SU(2) algebra, [J?, J*] =
ie?cj¢. In addition, the classical solution for gauge field must obey the
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equation
[Aclv gl] =0.

If J* is an irreducible representation of SU(2), by Schur’s Lemma, Aq = 0.
The gauge symmetry is realized by the Higgs mechanism. When the repre-
sentation is reducible, there are gauge fields which commute with the con-
densate. This part of A remains undetermined and must still be integrated
over, even to obtain the leading order in the semi-classical approximation to
the partition function.

The configurations in (31) are fuzzy spheres, which are matrix regular-
izations of the membranes. The 5-branes on the other hand do not seem to
appear in the perturbative states of the matrix model. It has been conjec-
tured [32] that the 5-branes indeed appear as the large N limit is taken in a
certain way.

First of all, J® need not be an irreducible representation, but can contain
a number of irreducible components,

To get a (multi-)membrane state, the large N limit is taken by holding the
number of representations fixed and sending the dimension of each of the
representations to infinity.

To get a five-brane state on the other hand, we hold the dimensions of
the representations fixed and repeat them an infinite number of times to get
the large N limit.

An important difference between these limits is in the realization of the
gauge symmetry. In the classical sectors, the gauge symmetry is partially
realized by the Higgs mechanism, with the residual symmetry being that
which interchanges representations of the same size. In a membrane state
the residual gauge group thus has finite rank, whereas in a 5-brane state its
rank always goes to infinity. The single 5-brane state is X* = 0 whereas
the state with k coincident 5-branes has the k-dimensional representation
repeated N/k — oo times. A state with k non-coincident 5-branes has
largest representation k-dimensional and a number of smaller representations
all repeated an infinite number of times.

The effective coupling constant which governs a semi-classical expansion
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about one of the classical ground states is

3
A= (?)R> n,
w

where n is the rank of the residual gauge group. The 5-brane limit is where
we are required to take the weakest coupling limit. It is the conjecture of
Ref. [32] that the membranes and all other degrees of freedom decouple in
this limit and it isolates the internal dynamics of the 5-brane.

4. Perturbative expansion

Now, let us consider a perturbative expansion of the pp-wave matrix model
at finite temperature. The partition function is the path integral

Z = / [dA][dX][dp]e o ArLAX W]

where L is the lagrangian with Euclidean time and § = 1/T is the inverse
temperature. The bosonic and fermionic variables have periodic and an-
tiperiodic boundary conditions, respectively

A(r+8) = A1), X'(1+8)=X"(1), ¥(1+5)=—u(r).

Since the fermions are antiperiodic, these boundary conditions break super-
symmetry. Of course this is expected at finite temperature.

We begin by fixing the gauge. It is most convenient to make the gauge
field static and diagonal,

d
7Aab = O, Aab = Aa(sab .
dr

The remaining degrees of freedom of the gauge field are just the time-
independent eigenvalues A,.
The Faddeev—Popov determinant for this gauge fixing is

det’ <-j7( - % (A, — Ab))> : (32)

where the boundary conditions are periodic with period 8. The prime means
that the zero mode of time derivative operating on periodic functions is omit-
ted from the determinant. The Faddeev—Popov determinant for diagonaliz-
ing the gauge field is the familiar vandermonde determinant,

H|Aa_Ab“

a#b
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Together the two determinants are

I det’ (—i) det (—ddT +i(A, — Ab)> ;

aFb

where the prime on the determinant indicates that the static mode is omit-
ted.?

If we expand about the classical vacuum corresponding to the single
5-brane, X§ = 0 = Xél, we find the partition function in the 1-loop ap-
proximation is

det/ (—d/d7) det (—Dgyp) det® (=D + &
Z:/dAa et’ (—d/dr) det (—Dap) det” ( "+4), (33)

i, det?/? (—ng + %2) det? <_D2b + g%)

where Dy, = % — (A, — Ap). Using the formula

d .. Pw
det <_d7' +w> = 251nh7

with periodic boundary conditions and
d
det <_d7 + w) = 2cosh %

with antiperiodic boundary conditions, we can write

1/2 1 — iB(Aa—4b)] 1 —Bu/A+iB(Aa—Ap)]8
2 Ao L
S J-1/2 ™ atb []_ —e Bu/3+iB(Aa Ab)] [1 —e Bur/6+iB(Aq Ab)]
(34)
The factor of 1/N! is the volume of the residual discrete gauge group which
permutes the eigenvalues. When N is finite, it might be possible to do this
integral using the method of residues.

However, to apply to the 5-brane, we require the integral when N — oc.
There are N integration variables A, and the action, which is the logarithm
of the integrand is generically of order N? which is large in the large N limit.
For this reason, the integral can be done by saddle point integration. This
amounts to finding the configuration of the variables A, which minimize the

a Using zeta-function regularization, det’ (7%) =p.
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effective action
Ser =Y <_ In [1 — eP(Aa=40)] _ g [1 4 = BH/4+iB(Aa—40)]
a#b
+3In[1-— e—ﬂﬂ/3+iﬁ(Aa—Ab)] +6In[1— e—ﬁu/6+iﬂ(Aa—Ab)]) . (35)
To study the behavior, it is illuminating to Taylor expand the logarithms in
the phases (this requires some assumptions of convergence for the first log)
(0]
1 — §(—)tle—nbu/d _ 3o—nBu/3 _ ge—nBu/6 .
ER . ¢ ¢ I Tee942. (36
n

n=1

Each term contains the modulus squared of a multiply would Polyakov loop
(26). When a coefficient becomes negative, the loop condenses. In fact, as
we raise the temperature from zero (and lower § from infinity), the first
mode to condense is n = 1. This occurs when

To = 1’12 In3 ~ 0758533 .

The condensate breaks a symmetry under changing the phase of the loop
operator.

5. A closer look at the phase transition

At temperatures greater than Ty the eigenvalues A, distribute themselves so
that they are clustered near a particular point on the unit circle. To examine
the possibility, we consider the equation of motion for the eigenvalues,

w(e®2) + w(e® 2) 4 8w(—r32) + 8w(—r"32)
= 3w(rtz) + 3w(r™*2) + 6w(r?z) + 6w(r—2z), (37)

where r = %#/12 and the resolvent is defined as
z+ eZﬂA
N Z 2 — ezﬁA <38)
s0 w(z) is holomorphic for z away from the unit circle and has asymptotic
behavior, w(co) = 1 and w(0) = —1. In the large N limit the poles in
w(z), which occur at the location of the elements eP4a  coalesce to form
a cut singularity on a part or perhaps all of the unit circle. w(z) remains
holomorphic elsewhere in the complex plane.
We must remember that equation (37) is valid only when z is one of the
gauge field elements e??4a. In that case, the sum in (38), which turns into
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an integral in the large N limit, must be defined as a principal value. In (37)
this is gotten by averaging over approaching the unit circle from the inside
and from the outside.

It is easy to find one exact solution of (37). If we consider the case where
¢'B4a are uniformly distributed over the unit circle, so that the sum in (38)

is symmetric under z — ez we can average over the symmetry orbit to get

wolz) = {_11 b (39)
The result is certainly holomorphic everywhere away from the unit circle
and is discontinuous on the entire unit circle.

The resolvent (39) is always a solution of (37) for any value of r. This is
the symmetric, confining solution of the matrix model, where the Polyakov
loop operator, whose expectation value is a particular moment of w(z) for
large z, vanishes. We would expect that this confining solution is only stable
if the temperature is low enough. At some critical temperature it becomes
an unstable solution and there should be other solutions which have lower
free energy.

The confining phase which we discuss above is stable when r > 3 or
r < 1/3. When r = 3 or » = 1/3, we can find a l-parameter family of
solutions,

_[-1-az |z <1,
wiz) = { 1+a/z |z] > 1. (40)

This is an acceptable solution when |a| < 2.P If we plug it into Eq. (37) and
assume that r > 1, we obtain

Brt48r246r2-1)(z2—1/2)=0 (41)

which is solved when r = 3. If we assume r < 1 we find an equation which
is solved by r = 1/3.

To examine the phase transition further, we expand about r = co. We
expect the transition to occur at r = 3 which is not really large, but we will
see that corrections are of order 1/r%, at the 1-percent level.

bHere, a/2 is the expectation value of the Polyakov loop operator which must be less than one.
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The asymptotic expansions of the resolvent is

1
w(z) =1 +2lennn, (42)
w(z)=-1-2 Z 2" (43)
n=1

where

| X
= infBAq
= ;e

are the expectation values of the Polyakov loop operator for n windings. If
we assume that r > 1, an asymptotic expansion of the equation (37) is

0o
_ 6 3 8 _

w(60+2) + w(eo Z) =2 E <’I“2” + m + ’1”3”) (nnz " n*nzn) . (44)

n=1

Remember that this equation is valid only when z is inside the cut discon-
tinuity of w(z) which is assumed to occur on a segment of the unit circle.

In the large r limit, the right-hand-side of this equation can be approx-
imated by the leading terms. It is then similar to the equations for the
eigenvalue distributions in adjoint unitary matrix models which have been
solved in the literature [17,34, 35].

It is easy to find a solution of (44) if we truncate the right-hand-side by
retaining only the n = 1 term. Consider the semi-circle distribution of Gross
and Witten [16] ¢

waelz) = — (1 - z) _ (1 + i) V1+2tz+22.  (45)

T+t \z (1+1)

This function has a cut singularity on the unit circle between branch points
24 = —t +iy/1 — t2 where we take t in the range —1 <t < 1. When t — 1

¢The spectral density is defined by p(8) = % z]zV:I 6(0 — BAg). It is normalized so that
ffﬂ dfp(0) = 1 In the large N limit, it becomes a continuous function of § with support on

some or all of the interval [—7, w]. An example is the semicircle distribution, which is given by

cos §1/2(1+1)—4sin?§, 0<sind < /1F,
1+t )
0, /5 <sing <1.

1
psc(‘g) = {Qﬂ(H—t)

To get (45) we integrate

z —

b Z<‘r€i0
wse(2) :/ 40 25 puct®).
—
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the endpoints of the cut touch each other and the cut covers the whole unit
circle. This is the where the Gross-Witten phase transition occurs in their
unitary matrix model. [16] In their case, it is a third order phase transition.
In the present case it is a first order phase transition. The solution that we
found above, when r = 3, is just a special case of the semicircle (45) when
t=1.

Let us explore wg.(z) a little more. First we note that it obeys

wse(1/2) = —wse(2)

(with the appropriate change in the sign of the square root). This means
that the n, = n_, = n;, for all n. We can expand for small z,

3—t  (1-1t)2 5 (A—-t)2%5t+1) 4

wse(2) = —1— 5 AT Ty A 3 224 ... (46)
from which we identify
3—t (1—1t)? (1—t)%(5t+1)
1o y M 4 y 12 4 y 113 16 ( 7)

We see that, there is a critical point at ¢t = 1. At that point, 9y = 1,
n+1 = 1/2 and )51 = 0. This is precisely the value of ¢ for which the edges
of the cut meet, so that the cut covers the entire unit circle. This is also
precisely the exact solution (40) which we found when r = 3, here with the
special value a = 1/2.

In fact, the semicircle distribution gives a good approximation to the
solution when 7 is slightly less than 3. For z in the cut,

_ 2 1
Wee(€972) + wee(e¥2) = 17 (z - z) .
If, for the moment, we truncate the right-hand-side of (44) to the term with
n = 1, we see that the equation is solved by the semi-circle distribution when

4
A+ -1t

Also, remembering that ¢ falls in the range — 1 < ¢t < 1, we get the critical
value of r, rqi = 3 by setting ¢ = 1. (48) has a solution only when r <
Terit = 3 (and, here we have assumed r > 1).

When r = 3, the n = 2 term on the right-hand-side of (44), which we have
ignored, contains (87"3 +3r 4 4 67’_2) = .086. Thus, we see that, to an
accuracy of about ten percent, the semicircle distribution is an approximate

=8 +3rt+6r7?). (48)

solution of the model for temperatures just above the critical temperature.
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5.1. Systematic improvement of the semicircle

It is clear what has to be done to improve this approximation. We can begin
with an Ansatz for the resolvent which has a single cut singularity placed
on the unit circle

K
w(z) = Z <an (27" =2") = by (2" — 27" V1 + 2tz + 22> . (49)

n=1

To get the general solution, we should consider all orders by putting K — oo.
An approximate solution is found by truncating at some order K. We will
see below that this approximate solution is good near the phase transition.
The coefficients in (49) must be arranged so that, in an asymptotic expansion
in small z,

(1) all of the poles of order 1/2%,...,1/z cancel and w(0) = —1 so, the
asymptotic series then has the form

w:—1—2n1z—2ngz2—... .

This gives K +1 conditions that the 2K +1 parameters (a, b,, t) must
obey.

(2) From the above expansion, we determine the moments in terms of the
parameters

nl(anvbnat)7 nQ(arubnat)a cee nK(anvbTL?t)‘

(3) Then we use the equation (44), with the right-hand-side truncated to
order K to get K conditions

ar = f(r)m (am bn,t), (50)
ag = f(rH)nz(an, bu,t), (51)
ag = f(rK)nK(an, b, t), (52)

where f(r) = (T% + % + 1%) This gives K further equations which
completely determine the 2K + 1 parameters of the solution.

For example, if we choose K = 2, requiring that the poles cancel and
w(0) = —1 yields the three conditions

1
as—by=0, a;—b —thy =0, b1(1+t)+52§(1—t2):1.
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We can use these equations to eliminate by, a1, as

b 75—1bJr 1 375—1b+ 1
= alr =
1 9 2 1—|—t’ 1 9 2 1—|—t7

as = by .
Then, we can calculate the first and second moments by considering an
asymptotic expansion of w(z). We get

(t+1)3by — 2(t — 3)
3 :

m=
b2 3, 1 2
=——Bt—-5)(1+¢ —(1—t¢
= =22 (3= 5)(1+ 1) + 11 1)
and finally, using (50) and (51), we get the equations
3t—1 1 (t+1)3bg — 2(t — 3)
b =
g 2t =10 ( 8 !

b 1
by=f(r?) (== (Bt—5)1+)>+=(1—1)?).
16 4
Of course, we already know that these equations are solved at the critical
point by by = 0,t = 1,7 = 3 — f(r) = 1. If we consider a value of r
somewhat less than the critical value,

f(ry=1+e€.
In this case,
187 2be
2 — -
1) = 3187 T 162
We get
—1-2/e
and
1
b2 = i? €.
2000

This demonstrates that, close to the phase transition, the semicircle dis-
tribution gives an accurate description of the de-confined phase and this
description can be systematically corrected. It would be interesting to ex-
plore this further to determine precise thermodynamic properties of that
phase. The next term in the series on the right-hand-side of (44) which we
have ignored, since we truncated to order 2, is proportional to f(r®) with
r ~ 3, which suggests that in the vicinity of r = 3, the error is less than
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one percent. However, we caution that this is the case only for r close to 3.
When r = 2, f(r®) = .11.

5.2. High temperature limit

Another limit we could consider is the high temperature limit where r — 1.
In that case, we expect that the values of e¥4a are concentrated near a
point. In fact, the case where they are at a single point

zZ+mn

w(z):z—n

is a saddle point for all values of r. However, for r # 1 it has infinite positive

energy, crossing over to infinite negative energy when r = 1. To see that it
is a solution, we note that, in this case the eigenvalue support is at z = 7
and therefore the variable in (37) is . Then w(e’tn) + w(e’™n) = 0. Also
w(r*n) +w(=n) = 0 and (37) is solved. It is easy to see from the action that
this solution is unstable for all values of r except r = 1.

5.3. Free energy

This shows the nature of the phase transition. At the critical point, it
will turn out that the free energy is continuous, but the expectation of the
Polyakov loop is equal to a and is ambiguous. Just below the transition, the
theory is approximately described by the semi-circle distribution for which
the Polyakov loop is 1/4. So we see that it jumps in value from 0 to 1/4 at
the phase transition. It is for this reason that we expect the transition to be
of first order. Indeed, by examining the free energy, we see that it is given
by

1
V=73 Z (—ln(za—zb)—8ln(za—r3zb)+3ln(za—r4zb)—|—6ln(za—r2zb)) .
a#b
(53)

For the symmetric solution, where py(6) = %,
Y =0.
When r is large, we can expand to get
1 6 8 3\ 24
7%]\72% [_1n\1—za/zb| — <ﬂ+r3+r4> %Jr} . (54)
a

If we keep only the first term in the large r expansion (note that there is
another term which competes with 1/r* which we ignore for now), this is
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approximately an adjoint unitary matrix model of the kind solved in the
literature [34]. It is solved by the semicircle distribution or the symmetric
distribution. The free energy is

0 >3,
TN B T
(55)

The value of the Polyakov loop is

1 ) 0 r>3,
TreZ§A>:{1 : (56)
<N L1+ /1-75) r<s.

5.4. Symmetry restoration?

Because of the low dimensionality of the system that we are discussing, the
symmetry breaking which occurs in the de-confined phase could be destroyed
by quantum fluctuations. In fact, it would generally be the case in theories
with local interactions.

For example, if N is finite, symmetry breaking is not possible. The phase
transition that we have discussed here can only occur when N is infinite.
Mathematically, we can think of large N as the analog of a large volume
limit in a statistical mechanical system. If N is large but not infinite, the
symmetry is not broken in a mathematical sense but the decay rate of a
non-symmetric state is exponentially suppressed in the volume, in this case
~ N

The deconfined solution has a spectral density p(#). Because of symmetry
of the problem under replacing 6 by 6+constant, there would be a zero
mode of the linear equation for the fluctuations of p(6), with wave-function
() ~ d%p(@). This mode would provide the motion which would restore
the symmetry. However, in the case of the semi-circle distribution, because
of the square-root singularity at the edge of the distribution, this function
is not square-integrable, and therefore not normalizable.

6. A stack of 5-branes

The fluctuation spectrum of the matrices about a stack of k£ 5-branes is
known. If, rather than the trivial vacuum, we had chosen the one where the
k-dimensional representation of SU(2) is repeated N/k times, the residual
gauge invariance would be SU(N/k). The gauge field would have a classical
solution with k x k unit matrices times gauge fields A, representing the whole
blocks. The spectrum is known [32,33] and we can again get an estimate of
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the Hagedorn temperature [12]
Tri(k = 00) = .073815..40 .

We see that the temperature is reduced only slightly in this case. We take
this as evidence that the Hagedorn temperature in this weak coupling limit
is insensitive to the number of 5-branes. This seemingly contradicts the k-
dependence of the Hagedorn phase transition of little string theory which
has been computed using holography and which behaves like To ~ Vk.

An explanation for this contradiction can be found in the limit that we
are using. It is a large N ’'tHooft limit and a further expansion in weak
't Hooft coupling. In this limit, if we were to translate the parameters of
our model to those that would describe the NS five-brane in type II string
theory, the radius of the spherical five-brane would be

r2

=~ A4

This means that we are expanding about a small, highly curved five-brane,
whereas the usual holographic result for the Hagedorn temperature is for a
large flat 5-brane. This is a similar difficulty as the one which appears in
the AdS/CFT correspondence in general. There, the analog of the matrix
model, which is maximally supersymmetric Yang-Mills theory, can be readily
analyzed only in the weak coupling limit using an asymptotic expansion in A.
Supergravity and holography give tools which compute the strong coupling
limit, where A is large. Thermodynamic quantities like the free energy in
particular were computed in both theories and they do not agree with each
other for this reason.

7. Discussion

The phase transition in the matrix model is a peculiar one. Closer analysis
reveals that it is of first order. It is easy to see from (45) that the expectation
value of the Polyakov loop operator is zero in the symmetric phase but is
non-vanishing in the high temperature phase and approaches a non-zero
value there even as the critical point is approached from above. However,
at this critical point, there is no co-existence region where one phase is
meta-stable and the other is stable, as is normally the case for first order
phase transitions. To see this, note that the potential the phase transition
occurs where the potential becomes unstable to perturbations. Normally,
in a first order behavior, there are two competing vacua, both of which are
perturbatively stable in the transition region and as parameters are varied
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one or the other gets lower free energy and is preferred. Then they cross
there is a phase transition. In the present case, the perturbative instability
occurs at the same place as the phase transition.

There is a question as to whether this is an artifact of the approximation
that we have done here, i.e. if we expanded the effective action for eigenvalues
to higher loop order the phase transition might be more conventional.

Indeed, in other unitary matrix models applied to non-Abelian Coulomb
gases [34, 35|, where the eigenvalues live on a higher dimensional space (a
D =1 or even D > 1 unitary matrix model) there is a coexistence region.

A similar problem afflicts weakly coupled four-dimensional supersymmet-
ric Yang-Mills theory [15]. In that case, Witten argued using AdS/CFT that,
in the strong coupling limit of planar Yang-Mills theory, there should be a
de-confining phase transition, identified with the Hawking-Page phase tran-
sition of supergravity on asymptotically anti-de Sitter space [36]. Hawking-
Page is a normal first order phase transition where there is the possibility
of metastable phases. At weak coupling, the analysis looks very similar to
what we have done here for the matrix model and the phase transition has
the same nature. Aharony et.al. have conjectured that the effect of higher
loop corrections (3-loops) to the effective action in Yang-Mills theory would
indeed change the phase transition to a more conventional one.

Finally, in the matrix model that we have analyzed, there is the question
of whether the phase transition that we have found has anything to do with
collapse to black holes. The subject of black holes on pp-wave backgrounds
is a murky one which is presently being sorted out. In any case, the physics
described by classical gravity should appear at a strong coupling limit, rather
than the weak coupling limit that we have analyzed. It is tempting to
conjecture that, if there were black holes, collapse to black holes at finite
temperature is what our phase transition would describe if it persists at
strong coupling.

There is the further question of whether our phase transition is related
to the Hagedorn behavior that is seen in the string spectrum on pp-wave
backgrounds [37-43]. This behavior of course occurs in weakly string theory
which is a limit of the M-theory. It there were such a relationship, it would
be interesting to ask whether it is related to the formation of black holes in
ten dimensional supergravity near a pp-wave background [44,45].

Of course of the conjectured relationship with the 5-brane is valid, then,
indirectly, the Hagedorn phase transition of little string theory is related to
horizon formation in the 5-brane geometry. In that case, our phase transition
and its thermodynamics indeed describes the black hole, again in a limit
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which is far away from previous analysis of such objects. Note that we
do not analyze the relative stability of membranes and five-branes. This
question has been addressed in recent interesting papers [46,47]

It is also interesting to ask whether the phase transition that we have
identified is related to recent work which studied phase transitions for sta-
tistical systems of random walks on discrete groups like the permutation
group. [48,49]
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