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The three string vertex for Type IIB superstrings in a maximally supersymmetric plane-

wave background can be constructed in a light-cone gauge string field theory formalism.

The detailed formula contains certain Neumann coefficients, which are functions of a

momentum fraction y and a mass parameter µ. This paper reviews the derivation of

useful explicit expressions for these Neumann coefficients generalizing flat-space (µ =

0) results obtained long ago. These expressions are then used to explore the large µ

asymptotic behavior, which is required for comparison with dual perturbative gauge

theory results. The asymptotic formulas, exact up to exponentially small corrections,

turn out to be surprisingly simple.
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1. Introduction

A maximally supersymmetric plane-wave background in ten dimensions is
an exact solution of Type IIB superstring theory [1]. Moreover, the string
theory in this background is tractable, despite the fact that the background
contains a nonvanishing RR field, provided that one uses the light-cone gauge
Green–Schwarz (GS) formalism [2]. In that approach the world-sheet theory
consists of free massive bosons and fermions. Thus it is trivial to read off
the complete spectrum of the noninteracting theory.

The string states and their interactions are holographically dual to certain
operators and their correlation functions in N =4 super Yang-Mills theory
in a suitable limit [3]. However, this paper will only consider the string side
of the story and not discuss the duality.

The string interactions are encoded (using the formalism of light-cone-
gauge string field theory) in a cubic interaction vertex. The three-string
vertex has been formulated by Spradlin and Volovich [4, 5] and explored
further by other authors [6]. These results generalize the flat-space light-
cone gauge field theory results of [7, 8] to the plane-wave geometry. For
recent reviews see [9–13].

This paper reviews work that makes the formulas for the Neumann coef-
ficients that enter in the interaction vertex more explicit. These coefficients
are defined in the first instance in terms of the inverse of a certain infinite
dimensional matrix. The first step is to express this inverse matrix in terms
of a certain infinite component vector [14,15]. The next step is to derive an
expression for this vector in terms of a certain scalar quantity and then to
derive an explicit formula for the scalar [16]. Having obtained useful expres-
sions for the Neumann coefficients (and hence the three superstring vertex),
one can then explore the large µ (large curvature) limit, which is required
for making contact with dual perturbative gauge theory computations.

2. Review of Basic Formulas

The type IIB superstring in the maximally supersymmetric plane-wave back-
ground is described in light-cone gauge by a free world-sheet theory. The
eight bosonic and eight fermionic world-sheet fields each have mass µ, a
parameter that enters in the description of the plane-wave geometry and
the RR five-form field strength. The mass term has two important conse-
quences. One is that it leads to a mixing of left-movers and right-movers.
The other is that the zero modes are also described by harmonic oscillators
of finite frequency. Altogether, a convenient labeling of the bosonic lower-
ing and raising operators arising from quantization of the free world-sheet
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theory is aI
m and aI†

m , where m runs from minus infinity to plus infinity and
I = 1, . . . , 8. These satisfy ordinary oscillator commutation relations

[aI
m, aJ†

n ] = δmnδIJ . (1)

There are also fermionic oscillators bα
m and bα†

m , which will not be discussed
in this paper.

The spectrum of the free string theory is described by the light-cone
Hamiltonian

H2 =
∞∑

m=−∞
ωmNm , (2)

where Nm is the number of excitations of level m oscillators

Nm =
8∑

I=1

aI†
maI

m + fermionic terms , (3)

and the frequencies are given by

ωm =
√

m2 + µ2α2 . (4)

The second term in the square root is actually (α′µp−)2, but we define
α = α′p−. (In flat space, we used the symbol p+ rather than p−, but in
curved space a subscript is more natural, since momenta are conjugate to
coordinates that are defined with superscripts.) The physical spectrum is
given by the product of all the oscillator spaces subject to one constraint

∞∑
m=−∞

mNm = 0 . (5)

In flat space this constraint reduces to the usual level-matching condition
for left-movers and right-movers.

The three-string interaction vertex for type IIB superstrings in flat space
was worked out in [7,8] and generalized to the plane-wave geometry in [4–6].
The formula can be written rather elegantly in terms of functionals, but to
make its meaning precise and easily applicable to specific external states, it is
desirable to expand it out in terms of oscillators. A convenient notation uses
a tensor product of three string Fock spaces, labeled by an index r = 1, 2, 3.
Then the three string interaction vertex contains a factor

|VB〉 = exp
(

1
2

3∑
r,s=1

∞∑
m,n=−∞

8∑
I=1

aI†
mrN̄

rs
mnaI†

ns

)
| 0 〉 . (6)
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The quantities N̄ rs
mn, called Neumann coefficients, are the main objects of

concern in this paper.a The three string vertex also contains a similar ex-
pression |VF 〉 made out of the fermionic oscillators and a “prefactor” that is
polynomial in the various oscillators. We will not consider either of these in
this paper. Suffice it to say that they are made out of the same basic objects,
so that the results described here for the the bosonic factor are applicable
to them as well.

In describing the Neumann matrices, it is convenient to consider sepa-
rately the cases in which each of the indices m, n are either positive, negative
or zero. Henceforth, the symbols m,n will always denote positive integers.
Negative integers will be indicated by displaying an explicit minus sign. One
result of [4], for example, using matrix notation for the blocks with positive
indices, is

N̄ rs = 1− 2(CrC
−1)1/2A(r)T Γ−1

+ A(s)(CsC
−1)1/2 . (7)

Here Cmn = mδmn and (Cr)mn = ωrmδmn, where

ωrm =
√

m2 + (µαr)2 . (8)

The definitions of A(r) and Γ+, and other expressions that appear here, are
collected in Appendix A.

The blocks with both indices negative are related in a simple way to the
ones with both indices positive by

N̄ rs
−m−n = −

(
UrN̄

rsUs

)
mn

, (9)

where

Ur = C−1(Cr − µαr) . (10)

In the case of N̄33 these are the only nonvanishing terms. For the other
Neumann coefficients the other nonvanishing terms are

N̄ rs
m0 =N̄ sr

0m =
√

2µαs εstαt

[
(CrC

−1)1/2A(r)T Y
]
m

, r = 1, 2, 3 , s = 1, 2 ,

(11)

N̄ rs
00 = (1 + µαk) εrtεsu√αtαu , r, s = 1, 2 , (12)

N̄ r3
00 = N̄3r

00 = −
√

αr , r = 1, 2 . (13)

a Their definition here differs from that used in [7,8] by factors of
√

mn. The definition given here

is more natural for the µ 6= 0 generalization.



September 7, 2004 19:12 WSPC/Trim Size: 9.75in x 6.5in for Proceedings schwarz

Three -String Vertex 1735

Here we have introduced (see Appendix A)

Y = Γ−1
+ B , (14)

k = BT Γ−1
+ B , (15)

y = −α1/α3 , (16)

and (setting α3 = −1)

α = α1α2α3 = −y(1− y) . (17)

The asymmetry between string number three and the other two strings is a
reflection of the fact that the µ dependence of the formula breaks the cyclic
symmetry that is present in the flat space case.

To make the formulas useful for comparison with the dual gauge theory,
it would be helpful to have explicit formulas for the various matrix multipli-
cations and inversions that appear. The quantities that we especially would
like to evaluate explicitly are the matrix Γ−1

+ , the vector Y = Γ−1
+ B, and the

scalar k = BT Γ−1
+ B. In the case of flat space (µ = 0) the results are known.

Specifically

N̄ rs
mn = − m n α

mαs + nαr
N̄ r

mN̄ s
n for µ = 0 , (18)

where

N̄ r
m =

√
m

αr
fm(−αr+1/αr) emτ0/αr for µ = 0 , (19)

fm(γ) =
Γ(mγ)

m! Γ(mγ + 1−m)
, (20)

and

τ0 =
3∑

r=1

αr log|αr| . (21)

In particular, still for µ = 0, Γ−1
+ = 1

2(1− N̄33), Ym = −N̄3
m, and k = 2τ0/α.

3. Factorization Theorem

In this section we will derive the generalization of Eq. (18) that holds for the
plane-wave geometry. The method of derivation is a fairly straightforward
generalization of the one used for flat space in [7]. We begin by defining

Γ̃+ =
3∑

r=1

A(r)U−1
r A(r)T , (22)
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which differs from the Γ+ by the replacement of Ur by U−1
r . Then we consider

the product

Γ+ C−1 Γ̃+ =

(
U3+

2∑
1

A(r)UrA
(r)T

)
C−1

(
U−1

3 +
2∑
1

A(s)U−1
s A(s)T

)
.

(23)
Using various identities given in Appendix A, this simplifies to

Γ+ C−1 Γ̃+ = U3C
−1Γ̃+ + Γ+C−1U−1

3 − 1
2

α1α2BBT . (24)

The next step is to use Eqs. (A.12) and (A.8) to deduce that

Γ̃+ = Γ+ + µαBBT . (25)

Substituting this into the previous equation and multiplying left and right
by Γ−1

+ gives

C−1U−1
3 Γ−1

+ + Γ−1
+ U3C

−1 = C−1 +
1
2

α1α2Y Y T + µαZY T , (26)

where we have defined

Z = (1− Γ−1
+ U3)C−1B . (27)

The next step is to eliminate Z from Eq. (26). This is achieved by
multiplying the equation on the right with the vector B. This gives a linear
equation for Z, whose solution is

Z =
1

1 + µαk

(
C−1U−1

3 − 1
2
α1α2k

)
Y . (28)

Substituting this back into Eq. (26) and simplifying gives the formula

{Γ−1
+ , C3} = C +

1
2

α1α2

1 + µαk
CU−1

3 Y Y T CU−1
3 . (29)

In terms of components

(Γ−1
+ )mn =

m

2ωm
δmn +

y (1− y)(ωm − µ)(ωn − µ)YmYn

2[1− µy(1− y)k](ωm + ωn)
, (30)

where

ωm = ω3m =
√

m2 + µ2 . (31)
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This result be recast as a formula for the Neumann coefficient matrix
N̄33

mn. The result is

N̄33
mn = −mnα1α2

1 + µαk

N̄3
mN̄3

n

ω3m + ω3n
, (32)

where

N̄3
m = −

[
(C−1C3)1/2U−1

3 Y
]
m

. (33)

Some further simple manipulations give the generalization [14,15]

N̄ rs
mn = − mnα

1 + µαk

N̄ r
mN̄ s

n

αsωrm + αrωsn
, (34)

where

N̄ r
m = −

[
(C−1Cr)1/2U−1

r A(r)T Y
]
m

. (35)

This is the desired generalization of the flat-space formula Eq. (18). However,
we still require a generalization of Eq. (19) as well as an explicit formula for
k. Note that combining Eq. (35) with Eq. (11) gives

N̄ rs
m0 = N̄ sr

0m = −
√

2µαsε
stαtUrN̄

r
m , r = 1, 2, 3 , s = 1, 2 . (36)

4. Determination of Y and k

To complete the explicit determination of the Neumann matrices, and thus
the three string vertex, we need useful formulas for

(Γ−1
+ )mn , Ym = (Γ−1

+ B)m , k = BT Γ−1
+ B

as functions of y and µ. In view of of Eq. (30), if we knew Ym and k we
would know (Γ−1

+ )mn. The strategy that we will use for obtaining them is
to derive first-order differential equations (in µ) and input the known values
at µ = 0 as initial conditions. Using the various definitions and identities in
Appendix A, Ref. [16] derived the differential equation

∂Ym

∂µ
=
[
1
2

∂F

∂µ

(
1− µ

ωm

)
− µ

ω2
m

]
Ym , (37)

where

F (µ, y) = log [1− µy(1− y)k(µ, y)] . (38)

The derivation of Eq. (37) is sketched in Appendix B.
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Equation(37) has the solution

Ym(µ, y) =
m

ωm
exp

[
1
2

∫ µ

0

∂F

∂µ

(
1− µ

ωm

)
dµ

]
Ym(0, y) . (39)

Thus, since Ym(0, y) is known, if we knew F (µ, y), we would know k(µ, y)
and Ym(µ, y) and hence all the Neumann coefficients. Since, we have one
fewer equations than unknowns, we need to input one additional piece of
information. One that is easy to obtain and does the job is the asymptotic
formula

Ym ∼ m

2µ
Bm + O(µ−2) (40)

for large µ. Combining this condition with Eq. (39) implies that

exp
{

1
2

∫ ∞

0

∂F

∂µ

(
1− µ

ωm

)
dµ

}
=

Bm

2Ym(0)
. (41)

Taking the logarithm, integrating by parts, and substituting the known value
of the right-hand side gives∫ ∞

0
(m2 + µ2)−3/2F (µ, y) dµ = G(m, y), (42)

where

G(z, y) =
2τ0

z
+

2
z2

log
(

Γ(1 + z)
Γ(1 + zy)Γ(1 + z(1− y))

)
. (43)

This formula must hold for m = 1, 2, ... and 0 ≤ y ≤ 1. The inverse inte-
gral transform, which does not seem to exist in the mathematical literature,
determines F (µ, y). Ref. [16] proves that for a function G(m, y) that is holo-
morphic in the right half m plane and vanishes at infinity in that half plane,
the inverse integral transform that solves the integral equation Eq. (42) is

F (µ, y) = − iµ2

π

∫ π

0
cos θ G(−iµcos θ, y) dθ . (44)

The proof is sketched in Appendix C. Using this, one can show that for our
specific choice of G(m, y) in Eq. (43)

F (µ, y) = 2µτ0 + 2
3∑

r=1

φ(µαr) , (45)
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where

φ(x) =
∞∑

n=1

[
log

(√
n2 + x2 + x

n

)
− x

n

]
. (46)

We now have sufficiently explicit formulas to construct large µ asymptotic
expansions.b Large µ corresponds to small λ′ = 1/µ2, which is the effective
coupling constant in the dual gauge theory [3]. Differentiating Eq. (46)
twice, introducing a contour integral (Sommerfeld-Watson) representation
of the series, and integrating by parts one can show that

φ′′(x) = −x
∞∑

n=1

1
(x2 + n2)3/2

= −1
x

+
1

2x2
− π

∫ ∞

1

z dz√
z2 − 1

1
sinh2(πxz)

.

(47)
Integrating back, this allows us to deduce that

F (µ, y) = − ln[4πµy(1− y)] + J(µy) + J(µ(1− y))− J(µ) , (48)

where

J(x) =
2
π

∫ ∞

1

ln(1− e−2πxz)
z
√

z2 − 1
dz . (49)

Note that J ∼ exp(−2πx) for large x.

5. Asymptotic Behavior

We can now derive asymptotic results that include all inverse powers of µ

and have leading corrections of order exp[−2πyµ] (if y ≤ 1/2). For example,

F (µ, y) ≈ − ln[4πµy(1− y)] . (50)

The amazing thing is that a remarkably simply expression captures the result
to all finite orders in 1/µ and therefore one can easily read off predictions
for the dual gauge theory that are valid (at this order of nonplanarity) to
all orders in perturbation theory! The exponentially suppressed corrections
encoded by the J functions correspond to nonperturbative effects in the
dual gauge theory. What these effects are, however, is mysterious. They
don’t seem to be related to instantons or any other familiar nonperturbative
phenomena.

b This analysis was initiated in [17] and completed in [16].
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Combining Eqs. (50) and (38) one finds that

k(µ, y) ≈ 1
µy(1− y)

− 1
4πµ2y2(1− y)2

. (51)

Similarly, substituting Eq. (50) in Eq. (39) gives

Ym(µ, y) ≈
√

µ + ωm

2µ

m

2ωm
Bm , (52)

or in matrix notation

Y ≈ 1
2
√

2µ
U

1/2
3 C3/2C−1

3 B . (53)

From this it follows that

N̄ r
n ≈

(−1)r(n+1)

2πy(1− y)

√
|αr|

2µnωrnUrn
srn , r ∈ {1, 2, 3} , (54)

where

s1m = s2m = 1, s3m = −2 sin(πmy). (55)

The asymptotic expansions of the Neumann matrices are then given by sub-
stitution in Eqs. (34) and (36).
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Appendix A. Useful Definitions and Identities

The light-cone momenta in the minus direction that appear in the three-
string vertex are defined to be αr/α′, r = 1, 2, 3. For the process in which
string #3 splits into strings #1 and #2, we take α1, α2 > 0, α3 < 0. Mo-
mentum conservation implies that α1 + α2 + α3 = 0. We also define the
momentum fraction carried by string #1 to be y = −α1/α3, which satisfies
0 < y < 1. It follows that 1−y = −α2/α3 is the momentum fraction carried
by string #2. It is sometimes convenient to set α3 = −1, which can always
be achieved by a suitable Lorentz boost. Only then does the mass parameter
µ have an invariant meaning.
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The matrices A
(r)
mn, which appear in the Neumann coefficients, are given

by

A(1)
mn =

2
π

(−1)m+n+1√mn
y sin (mπy)
n2 −m2y2

, (A.1)

A(2)
mn =

2
π

(−1)m√mn
(1− y) sin (mπy)
n2 −m2(1− y)2

, (A.2)

and A
(3)
mn = δmn. The indices m, n range from 1 to infinity. Additional

quantities that we need are

Bm =
2α3

πα1α2
(−1)m sin (mπy)

m3/2
(A.3)

and

Cmn = m δmn . (A.4)

These quantities are all µ independent and were defined already in the flat
space analysis.

The infinite matrices A
(r)
mn and the infinite vector Bm satisfy a number of

useful relations, which we record here

A(r)T CA(s) = −α3

αr
C δrs , r, s = 1, 2 , (A.5)

A(r)T C−1A(s) = −αr

α3
C−1δrs , r, s = 1, 2 . (A.6)

The symbol T means matrix transpose. Some additional useful identities
are

3∑
r=1

1
αr

A(r)CA(r)T = 0 , (A.7)

3∑
r=1

αrA
(r)C−1A(r)T =

α

2
BBT , (A.8)

where we have introduced

α = α1α2α3 . (A.9)

Additional matrices that involve the mass parameter µ of the plane-wave
geometry, introduced in [4], are

(Cr)mn = ωrmδmn =
√

m2 + µ2α2
r δmn (A.10)
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and

Ur = C−1(Cr − µαr) . (A.11)

Note that

(Ur)−1 = C−1(Cr + µαr) = Ur + 2µαrC
−1 . (A.12)

A crucial construct is the infinite matrix

Γ+ =
3∑

r=1

A(r)UrA
(r)T . (A.13)

Explicit formulas for the inverse of Γ+ are a main goal of our work. Related
quantities that also are needed are the infinite vector

Y = Γ−1
+ B (A.14)

and the scalar

k = BT Γ−1
+ B . (A.15)

Appendix B. Derivation of the Differential Equation

This appendix sketches the derivation of Eq. (37), which we copy here

∂Ym

∂µ
=
[
1
2

∂F

∂µ

(
1− µ

ωm

)
− µ

ω2
m

]
Ym . (B.1)

The matrix Γ+ =
∑

r A(r)UrA
(r)T, introduced in Appendix A, only de-

pends on µ through the dependence of Ur on µ. Its derivative can be written
in the form

∂Γ+

∂µ
= −1

2
αBBT + µN , (B.2)

where

N =
3∑

r=1

α2
rA

(r)C−1C−1
r A(r)T . (B.3)

It follows that
∂Y

∂µ
=

1
2

kαY − µΓ−1
+ NY . (B.4)

The product NY can be recast in the form

NY = g1C
−2
3 B + g2B , (B.5)
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where we define the coefficients g1 and g2 to be the scalar quantities

g1 =
2 (1 + µαk)

2 + µαk + µ2αk1
, (B.6)

g2 =
(α

2

) αk2 + µαkk1 + 2k1

2 + µαk + µ2αk1
, (B.7)

and
ki = BTC−i

3 Y . (B.8)

The above equations imply that

∂k

∂µ
= BT ∂Y

∂µ
=

1
2

αk2 − µg2k − µg1k2. (B.9)

This is not very useful as it stands, since there is no other apparent way
to determine k2. (k1 could be determined, but that will turn out not to be
necessary.) Substituting the equation for NY and an identity for [C−2

3 ,Γ−1
+ ]

deduced from Eq. (29), one can recast Eq. (B.4) in the form

∂Y

∂µ
= (F0 + F1C

−1
3 + F2C

−2
3 ) Y , (B.10)

where the scalar functions Fi are given by

F0 =
1
2

αk − µg2 +
1
2

µg1
α

1 + µαk
(k1 − µk2) , (B.11)

F1 = −1
2

µg1
α

1 + µαk
(k − µ2k2) , (B.12)

F2 = −µg1 +
1
2

µ2g1
α

1 + µαk
(k − µk1) . (B.13)

Using the equations above to eliminate g1, g2, k1, and k2, we find

F2 = −µ, F1 = −µF0, F0 =
α

2
1

1 + µαk
(k + µk′) . (B.14)

This allows us to rewrite Eq. (B.10) in the desired form Eq. (B.1).

Appendix C. The Integral Transform

The analysis in Sec. 4 of the text required solving the following integral
equation for f(x)

g(w) =
∫ ∞

0

f(x)
(x2 + w2)3/2

dx , (C.1)
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where g(w) is a given function that is holomorphic in the right-half plane
and vanishes at infinity in that half plane. We claim [16] that the unique
solution is

f(x) = i
x2

π

∫ π

0
g(ix cos θ) cos θ dθ . (C.2)

The proof that elimination of f from Eqs. (C.1) and (C.2) gives g = g

is a consequence of elementary integration. This proves the existence of
a solution. The proof of uniqueness requires that elimination of g should
give f = f . After making changes of variables and deforming integration
contours, one can argue that this requires the identity

δ(y − y′) =
√

y

4πi

∫
C

dz√
1 + z

1
(zy + y′)3/2

, (C.3)

where y, y′ > 0. The contour can be taken to be the unit circle |z| = 1, in
the counterclockwise sense, starting and ending at the point z = −1. It is
an elementary application of Cauchy’s theorem to show that this integral
vanishes for y < y′ and for y′ < y. That it is has the right singularity at
y = y′ can be verified by showing that the Laplace transform of both sides
give an identity.
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