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THE QUEST FOR UNIFICATION

G. G. ROSS

The Rudolf Peierls Centre for Theoretical Physics

1 Keble Road, Oxford OX1 3NP, UK

The Standard Model partially unifies the strong, electromagnetic and weak interactions,

suggesting a common origin for them. A more fundamental theory, a Grand Unified

theory or a string theory, can complete this unification and explain many of the features

which in the Standard Model are put in by hand. However many possible implemen-

tations of such a theory have been suggested. We emphasize the importance of the

prediction for gauge coupling unification in distinguishing between these implementa-

tions and how it can select a particular string profile. We discuss how the superstring

can extend the unification to include gravity leading to a testable relation between the

gravitational and Standard Model interactions. A calculation of the threshold effects to

be expected from the superheavy modes shows that the relation given by the weakly

coupled heterotic string is in good agreement with experiment. We discuss the resulting

profile of the supersymmetric extension of the Standard Model which is consistent with

these unification predictions. Its phenomenological implications should be testable by

future precision experiments looking for rare flavor changing processes and also more

directly by direct supersymmetric particle searches at the Large Hadron collider.
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1. Introduction – towards a final theory

Although the Standard Model can rightly be considered to be a triumph of

20th century physics, providing as it does a remarkably successful theory of

the strong, weak and electromagnetic interactions, many consider it to be

only a step on the way to a final “Theory of Everything”.

The reason is that the Standard Model appears incomplete with much

of its structure put in by hand. For example, there is no explanation for

the choice of the local gauge group SU(3) × SU(2) × U(1) on which it is

based. There is partial unification of the fundamental forces in the sense

that they are all mediated by gauge bosons and that the photon and Z boson

are linear combinations of the SU(2)×U(1) neutral gauge bosons. However

this unification is incomplete because the three separate gauge group fac-

tors require three separate gauge coupling constants. These couplings are

parameters of the Standard Model which must be put in by hand to fit

the observed strengths of the strong, electromagnetic and weak interactions.

The matter sector looks even more contrived with no explanation for the

complicated multiplet assignments of the quarks and leptons, for the fact

that the charged weak interactions are purely left-handed and for the large

number of additional parameters needed to specify the Yukawa couplings of

the theory which lead to the quark and lepton masses and mixing angles.

Finally the scalar sector, needed to generate the masses of the weak bosons

and the fermions, introduces further parameters and also leads to the so

called “hierarchy problem”, the problem of explaining why the electroweak

breaking scale, which is related to the scalar masses, is so much smaller than

the other fundamental scale in the theory - the Planck scale some 1016 time

the electroweak breaking scale. The problem arises because in a theory with

a large fundamental scale radiative corrections drive the SM Higgs scalar

mass close to the scale. Since the electroweak breaking scale is proportional

to the Higgs mass the weak gauge bosons are also driven to be superheavy.

Attempts to solve the hierarchy problem fall into three classes.

One possibility is that the scalars, and possibly other states of the Stan-

dard Model, are composite with a scale of compositeness close to electroweak

breaking scale. In this case the radiative corrections involving very massive

states, perhaps even at the Planck scale, are small due to the cutoff in the

relevant form factors at the composite scale. It has proved very hard to real-

ize a composite explanation in a way that does not lead to observable effects

in conflict with experimental limits although our inability to solve strongly

coupled theories means the composite solution may still be viable. However

composite theories do not offer obvious answers to the complexity found in
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the Standard Model.

A second possibility is that scalars are light due to a new symmetry, su-

persymmetry [1]. Supersymmetry (SUSY ) does offer some hope that the

theory may become simpler at a high scale because the low energy scalar

sector is protected by supersymmetry against large corrections coming from

a new and more unified theory applicable at a high scale. The prototype

unified theory is a Grand Unified theory (GUT ) based on the simple group

SU(5), a rank 5 group with just the neutral generators needed to accommo-

date those of the rank 5 Standard Model [2]. In SU(5) the states of a single

family are accommodated in just two representations, a 5 and a 10. Thus

the representation content of the Standard Model is simplified and there is a

(partial) unification of quarks and leptons. Moreover some of the features of

the Standard Model structure are explained from the structure of the 5 and

10. These representations are such that the charged weak interactions are

purely left-handed because for these representations only the left-handed

quark and lepton states are doublets of the electroweak SU(2). Moreover

SU(5) has only a single gauge coupling constant and the couplings of the

Standard Model are related in a definite way. As we shall discuss this leads

to detailed testable predictions. Of course SU(5) is not the only possibil-

ity. An even more attractive Grand Unified group is SO(10) because the 15

fermions fermions of a single family fit into a 16 dimensional representation.

The 16th state is a right-handed neutrino which restores the left-right sym-

metry between quark and leptons. Moreover the presence of a right-handed

neutrino states leads to an elegant mechanism for generating small neutrino

masses - the so-called see-saw mechanism.

These facts strongly support the idea of an underlying unification but its

implementation may differ in detail. A particularly attractive possibility is

provided by the (weakly coupled) heterotic string in which there is a stage of

Grand Unification but it may occur only at the level of the full 10 dimensional

theory. Below the compactification scale, in 4 dimensional space, the theory

may be just that of the (supersymmetric) Standard Model. However the

underlying unification still ensures that quark and leptons should belong to

complete GUT representations and preserve the GUT connection between

gauge couplings. As we shall discuss it also leads to a testable prediction

relating the strength of gravity to those of the gauge interactions. If this

prediction should prove to be correct it will provide the first quantitative

evidence for unification of all the fundamental forces including gravity.

The third possible explanation of the hierarchy problem, motivated by

considerations of theories in more than three space dimensions, is that the
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hierarchy problem is absent because there is no fundamental scale much

higher than the electroweak scale [3] or that if there is a higher scale it is

protected from us by a “warp factor” [4] in the higher dimensions. Surpris-

ingly present experimental measurements do not directly exclude new space

dimensions with a size as large a 0.1 mm. It has been speculated that such

theories could also accommodate a more fundamental unified theory capa-

ble of simplifying the structure of the Standard Model, although as we shall

discuss, the detailed predictions may differ from the original GUT or string

predictions..

Of course only experiment can tell us whether any of these ideas are re-

alized in nature. We do know that the original formulation of the Standard

Model is not correct because there is now significant evidence for neutrino

masses. Restoring the symmetry between quarks and leptons by adding a

right handed neutrino provides a very elegant way to generate these masses

by the see-saw mechanism [5]. In this case the neutrino masses are anoma-

lously light due to the large Majorana mass of the right handed neutrinos.

The latter are the only states which can acquire such a Majorana mass as

they are the only Standard Model singlet fields. The observed smallness of

the neutrino masses then implies the Majorana mass must be very heavy

giving support to the idea of an underlying high scale of new physics. Un-

fortunately, while this is the most elegant explanation, it is not the only way

to explain small neutrino masses and cannot by itself distinguish between

the candidate unified theories.

Unified theories do yield one quantitative prediction going beyond the

Standard Model which does offer some hope for distinguishing between the

different possibilities. This is the prediction for gauge coupling unification.

As pointed out by Georgi, Quinn and Weinberg [6] the continuation of the

gauge couplings to high energies using the renormalization group equations

with beta functions calculated using just the Standard Model states shows

that the couplings approach each other, perhaps suggesting an underlying

unification. Of course this conclusion rests on having an underlying the-

ory to normalize the U(1) gauge coupling and the original investigations

assumed that the underlying unified gauge group is SU(5). Since the orig-

inal analysis was performed the couplings have been measured to a high

accuracy and now the couplings are more that ten standard deviations from

the minimal SU(5) prediction. Due to the hierarchy problem, however, non-

supersymmetric GUTs with a high unification scale are inconsistent with

perturbative unification so perhaps one should not be surprised at the fail-

ure of gauge unification in the original calculation. In fact the modified
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SU(5) calculation, including the supersymmetric contributions to the beta

functions, has been known for 20 years [7]. Originally it gave a worse pre-

diction for the weak mixing angle than non-supersymmetric version but the

improved measurements of the gauge couplings have steadily gone towards

the SUSY prediction and now the agreement is at better than the 1% level!

It is largely because of the success of this prediction that so much attention

has been paid to the study of SUSY phenomenology.

The fact that the prediction is for a single number has stimulated some

to speculate that the simple SUSY prediction is an accident. We take the

contrary view that nature is not so perverse and that the result is our first

quantitative the indication of what lies beyond the SM. Taking this to its

limit leads us to ask what the very precise prediction implies for the nature

of the underlying unified theory. As we shall argue it leads to a remarkable

precise determination of the nature of the underlying “Theory of Everything”

and its low energy implications.

We start with a review of the precision of the prediction relating the gauge

couplings and demonstrate the it is even better than the 1% level. If one is to

maintain this level of accuracy in the presence of high scale threshold effects

the nature of the underlying (string) theory is severely restricted. We use

this condition to determine the profile of such an underlying string theory. In

such a theory there is a new prediction relating the gauge coupling unification

scale to the string scale or the Planck scale which determines the strength of

gravity. Such a prediction if verified would be the first quantitative evidence

for unification of the fundamental forces including gravity. Initial studies

suggested the prediction coming from the weakly coupled heterotic string,

while qualitatively encouraging, failed in detail. We discuss the possible ex-

planations for this failure and emphasize that the calculation of the heavy

threshold effects, in particular those due to the breaking of the underlying

GUT at the compactification scale, is crucial. We describe a new calculation

of the threshold effects coming from Wilson line braking and show that, in-

cluding their effects, the resulting prediction for the unification scale given

by the weakly coupled heterotic string can be in excellent agreement with

experiment. Finally we consider the profile of the supersymmetric extension

of the Standard Model (SSM) that emerges from an underlying string theory

in which the accuracy of the gauge coupling unification prediction is main-

tained. The most significant low-energy phenomenological signals coming

from such a theory are flavor changing neutral currents, close to the present

experimental limits, and the new Higgs and supersymmetric states required

for the SSM. We briefly discuss the expectation for the spectrum of such
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states and their characteristic signals.

2. Gauge coupling unification

The unification of gauge couplings remains the most significant piece of

quantitative evidence for physics beyond the Standard Model. At the two

loop level the RGE equations for the SM gauge couplings [8] have the solution

for αi(µ), evaluated at the scale µ, given by

α−1
i (µ) = α−1

s +
bi

2π
ln

[
MX

µ

]
+

1

4π

3∑

j=1

bij

bj
ln

[
αs

αj(µ)

]
, (1)

where bi (bij) are the one (two) loop beta functions. Given the multiplet

content of the SM the beta functions are completely determined. The nor-

malization of the U(1) gauge coupling, g1, of the SM is dependent on the

details of unification so in general we have α1 = g2
1γ

2/4π where γ is to be

determined by the underlying unified theory.

What is the implication of Eq. (1) for the gauge couplings? There are

three unknown constants, namely the value of the universal coupling, αs, the

unification scale, MX , and the U(1) normalization, x. As there are only 3

gauge couplings measured a prediction requires further input. In a given uni-

fication scheme the normalization of the U(1) factor is known. In SU(5) it is

given by γ = 1 and the same value applies in many other GUTs. This value is

also found in level-1 compactified heterotic string theories even though there

may be no stage of Grand Unification below the compactification scale. Once

x is determine there is a prediction relating the observed gauge couplings

because there are then only two unknown constants in Eq. (1). In string

theories the scale of unification may also be predicted. We will discuss these

predictions in detail as they provide the only quantitative evidence for uni-

fication.

Using the SU(5) normalization and the SM values of the beta functions

the prediction for the gauge couplings was first tested by Georgi, Quinn and

Weinberg [6]. The result was encouraging, the couplings closely approaching

each other at a scale of O(1016 GeV). Unfortunately, with the improved

measurement of the low energy gauge couplings, the agreement has proved

to be illusory and now the couplings are more than 10 standard deviations

from meeting at a point.a

a Strictly, due to threshold effects, the running couplings do not meet at a point at the unification

scale [9]. The quoted discrepancy correctly includes these threshold effects.
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However it is known that GUTs which involve a new large Grand Unified

scale, MX , suffer from the hierarchy problem due to large radiative correc-

tions driving the SM Higgs scalar mass close to MX . Since the electroweak

breaking scale is proportional to the Higgs mass the GUT is inconsistent

unless some mechanism of eliminating these corrections is included. As dis-

cussed in the introduction several ideas have been proposed. The only one

which is consistent with a large GUT scale while preserving the perturbative

unification of gauge couplings given by Eq. (1), is if the SM is extended to

include supersymmetry. Supersymmetry limits the radiative corrections to

be proportional to the SUSY breaking scale. In this sense the only consistent

GUT is a supersymmetric GUT and the gauge unification prediction should

be calculated including the corrections arising from the new SUSY states.

The minimal supersymmetric extension of the SM (the MSSM) assigns

the SM states to (N = 1) supermultiplets and requires the existence of new

states, superpartners of the SM states, to complete these representations.

Of course the addition of these states means the beta functions in Eq. (1)

change when the scale, µ, is greater than the mass of the new states and

so the prediction of gauge unification will change. One might worry that

the introduction of the new mass scale, associated with these new SUSY

states, spoils the predictivity of the theory because there are now three

unknown parameters and only three measureables. However this is not the

case because the solution to the hierarchy problem requires that the scale

of SUSY breaking is limited to ≤ O(1 TeV) and, as we will discuss, this

introduces a very small uncertainty in the prediction.

To determine the prediction of gauge unification in the MSSM it is con-

venient to combine the standard model gauge couplings to eliminate the

one-loop dependence on the unification scale and the value of the unified

coupling. This leads to a relation which depends only on the threshold ef-

fects associated with the unknown masses of the supersymmetric states,

α−1
3 (MZ) =

{
15

7
sin2 θW (MZ) − 3

7

}
α−1

em(MZ)+
1

2π

19

14
ln

Teff

MZ
+(two-loop) .

(2)

Note that the leading dependence on the SUSY thresholds comes from

Teff , an effective supersymmetric scale, while two loop corrections, which

have a milder dependence on the scale, through (gauge and matter) wave-

function renormalization lnZ ∼ lnαi(µ) can be ignored to a first approxi-
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mation. In terms of the individual SUSY masses Teff is given by [10]

Teff = m eH

(
mfW
meg

) 28
19

(
mH

m eH

) 3
19

(
mfW
m eH

) 4
19

(
mel
meq

) 9
19

(3)

provided the particles have mass above MZ . The precision of the relation,

Eq. (2), between Standard Model couplings is limited by the dependence on

Teff . However the uncertainty in Teff is limited by the fact that the super-

symmetry masses are bounded from below because no supersymmetric states

have been observed and from above by the requirement that supersymmetry

solve the hierarchy problem. From Eq. (3) we see the dependence on the

squark, slepton and heavy Higgs masses is very small, the main sensitivity

being to the Higgsino, Wino and gluino masses.

If all the supersymmetric partner masses are of O(1 TeV) then so

is Teff . However in most schemes of supersymmetry breaking radiative

corrections split the superpartners. In the case of gravity mediated su-

persymmetry breaking with the assumption of universal scalar and gaug-

ino masses at the Planck scale the relations between the masses imply

Teff ' m eH (α2(MZ) /α3(MZ))2 ' |µ|/12,. For µ of order the weak scale

Teff is approximately 20 GeV. From this we see the uncertainty in the SUSY

breaking mechanism corresponds to a wide range in Teff . In what follows

we shall take 20 GeV < Teff < 1 TeV as a reasonable estimate of this uncer-

tainty. Using this one may determine the uncertainty in the strong coupling

for given values of the weak and electromagnetic couplings using Eq. (2).

The result (including two-loop effects) as a function of α3 and sin2 θW is

plotted in Figure 1 [11].

The precision of the prediction is remarkable. A measure of this is given

by the area between the two curves in Figure 1. If one assumes that a

random model not constrained by unification may give any value for α3 and

sin2 θW between 0 and 1 the relative precision is an impressive 0.002! Of

course this estimate is sensitive to the measure chosen. Changing to α3

and sin θW makes very little difference. Changing to α−1
3 and sin2 θW (and

restricting the possible range of α−1
3 to be 1 < α−1

3 < 10) increases the

relative precision by a factor of 10. Using this variation as an estimate of

the uncertainty associated with the measure we conclude that a reasonable

estimate for the precision of the prediction for the correlation between the

Standard Model couplings is in the range (0.2 − 2)%. One may also use the

result of Eq. (1) to predict one of the couplings given the other. However, as

may be seen from Figure 1(a), the prediction is not equally precise for each

coupling. This effect may be seen directly in Figure 1(a) since the curve is
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Figure 1. Plots of α3(MZ) versus sin2 θW calculated in the MSSM for two values of
the effective supersymmetric threshold, Teff = 20 GeV and Teff = 1000 GeV. The
limits correspond to requiring α3(MZ ) remains in the perturbative domain and unification
occurring above the supersymmetry threshold. The area between the two curves provides
a measure of the predictivity of the theory. The experimental range of values is also shown.

more steeply varying in the α3 direction than in the sin2 θW direction close

to the experimental point. The optimal combination of α3 and sin2 θW with

minimal uncertainty normal to the curve can be determined numerically but

is relatively close to sin2 θW . Quantitatively the error in α3 is ≈ 10% for a

change in Teff from 20 to 1000 GeV and the corresponding error in sin2 θW

is 1.3%. Thus the prediction for sin2 θW provides a more realistic measure of

the precision of the unification prediction.

Using the latest measurements of the relevant parameters one finds the

couplings unify at the scale MX = (3.5 ± 2)1016 GeV and and the value

of sin θW is predicted to be sin2 θW = 0.2334 ± 0.0025 to be compared to

the experimental value of sin2 θW = 0.2311 ± 0.0007. (For comparison using

the measured values of sin2 θW one finds the couplings unify at the scale

MX = (4.3 ± 3)1016 GeV b and αs(MZ) = 0.134 ± 0.005 to be compared to

the experimental measurement αs(MZ) = 0.117± 0.017.)

The agreement between the prediction and experiment is impressive and

as we will discuss leads to strong restrictions in the underlying theory if

it is to be maintained [11]. First however we turn to a discussion of the

possibility that compactified string theories may predict the value of the

unification scale.

b The unification scale is slightly larger than early estimates due to the measured top quark being

larger than the estimates following from radiative corrections.
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3. String theory – unification with gravity

As mentioned above, the string makes an important additional prediction

which goes beyond Grand Unification, namely it determines the unification

scale in terms of the Planck scale. If this could be checked it would provide

the first quantitative test of the unification of the strong, electromagnetic

and weak forces with gravity which the superstring provides.

The prediction for the gauge unification scale in the weakly coupled het-

erotic string follows from the general form of the 4D Lagrangian

Leff = −
∫

d10x
√

g α−1
10

( 4

α′4 R +
1

α′3 TrF 2 + ...
)

= −
∫

d4xV
√

g α−1
10

( 4

α′4 R +
1

α′3 TrF 2 + ...
)

. (4)

In this we may see that Newton’s constant, GN , and the value of running

gauge couplings at the unification scale, αGUT , are given in terms of the 10D

string coupling α10, the string tension α′ ∼ 1
Mstring

and the volume of the

6D compactified space V by

GN =
α10α

′4

64πV
, αGUT =

α10α
′3

16πV
. (5)

For the case that α10 is small the volume V is approximately M−6
string and

one obtains Eq. (6) eliminating V between the two equations. This leads to

the prediction is [12]

Mstring ≈ gstring × (5.2 × 1017 GeV) ≈ 3.6 × 1017 GeV (6)

which is only a factor of 10 above the “observed” gauge unification scale.

This is remarkably close and gives considerable encouragement to the idea

that gravity is unified with the other fundamental forces. Given the im-

portance of the result it is crucial to understand the origin of the residual

discrepancy. This has been examined in some detail. There are various ef-

fects that can cause the prediction of the Grand Unified scale to vary [13].

One should remember that the Grand Unified scale is the argument of the log

and thus, in order to get it correctly, one has to work to very high precision.

Possible problems in determining this scale are :

• SUSY threshold effects. It seems that although these could make

the agreement with the prediction for the strong coupling better this

only can be achieved with a very peculiar supersymmetry spectrum

at low energies in which the gluino is lighter than the Wino [14].
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Moreover it does not change the predicted value of the unification

scale.

• A second possibility is that there is a Grand Unified group below

the string scale so that the scale at which the gauge couplings unify

should be identified with the scale of GUT breaking and the scale,

Eq. (6) at which gravity unifies with the gauge coupling lies higher.

Unfortunately this explanation means we will never be able to test

the string prediction for Mstring leaving just the prediction for gauge

coupling unification. Also there are inevitably further threshold cor-

rections coming from new states lying at and above the Grand Unifi-

cation scale. These states include the heavy gauge bosons and Higgs

bosons needed to make up complete GUT multiplets.

• Another possibility is that there are string threshold effects which

in a given string theory are calculable [15] and amount to including

the effect of the heavy Kaluza–Klein modes which are themselves

split when the Grand Unified theory is broken. Unfortunately it has

proved difficult to calculate these effects in realistic string compact-

ifications. We will return to a discussion of these effects shortly.

• There is another way of exhibiting the implication of Eq. (5). If one

uses the “measured” value for V = O((3.1016 GeV)−6) one may use

Eq. (5) to obtain the value of α10 instead. This gives an enormous

value, quite inconsistent with the assumption of weak coupling that

went into the derivation of Eq. (5). If this is the explanation, rather

than the threshold effects just discussed, the failure of the prediction

of Eq. (6) is not surprising - it was the wrong calculation. Instead

one should go to the strongly coupled heterotic string case [16]. In

this case the string unification scale has an additional dependence on

the compactification scale of the 11th dimension and can be brought

into agreement with the gauge unification scale if the size of this

dimension is (1015 GeV)−1 [17]. Of course, unless this compactifica-

tion scale is known, one loses the prediction for the gauge unification

scale. Subsequently there has been an explosion of interest in gauge

unification at much lower scales associated with low scale compactifi-

cation [3] in which the SM fields also propagate in additional dimen-

sions at a scale below the gauge unification scale. This has the effect

of modifying the rate at which the gauge couplings evolve causing

them to run like a power of the scale rather than a logarithm. As

a result the couplings can unify at a low scale, perhaps even at the

TeV scale.
How will we be able to distinguish between these various possibilities?
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This may be easy if the origin is due to low-scale physics accessible to exper-

imental measurement. However most of the potential explanations involve

effects due to very heavy states well above the scale we can directly probe.

In this case we will have to rely on circumstantial evidence. I will argue that

we already have been provided with just such evidence through the success

of the prediction of gauge coupling unification! The fact that experiment

and theory agree to a precision better than 1% seems to me unlikely to be

just a happy accident. In this case, given that heavy threshold effects of

the types listed above also affect gauge coupling unification, we may hope

that we can identify their origin from the condition that the accuracy of this

prediction is not spoiled.

3.1. High-scale threshold sensitivity of the unification

predictions

Including the effect of thresholds the value of the gauge couplings at MZ is

of the form

α−1
i (MZ) = −δi + α−1(Λ) +

bi

2π
∆(Λ, µ0) +

bi

2π
ln

Λ

MZ

+
3Ti(G)

2π
ln

[
α(Λ)

αi(MZ)

]1/3

−
∑

φ

Ti(Rφ)

2π
ln Zφ(Λ,MZ) . (7)

Here bi = −3Ti(G) +
∑

φ Ti(Rφ) are the one-loop beta function coefficients

and ∆ and the coefficient bi give the massive threshold correction corre-

sponding to the particular theory considered - they are non-zero only for the

N=2 massive SUSY states and vanish for the N=4 spectrum. The parameter

µ0 is the mass of the heavy states, often the compactification scale in string

theories, and Zφ and (α(Λ)/α(MZ )) are the matter and gauge wavefunction

renormalization coefficients respectively. In Eq. (7) there are additional ef-

fects due to low energy supersymmetric thresholds δi
c which were discussed

above.

3.1.1. Grand Unified Models

In a realistic Grand Unified theory one is forced to introduce a number of

additional gauge non-singlet multiplets in order to spontaneously break the

c The definition of Teff Eq. (3) in terms of δi is lnTeff /Mz = −(28π/19)(δ1b23/b12 + δ2b31/b12 +

δ3), with bij = bi − bj .
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gauge symmetry and to give a realistic pattern of quark and lepton masses

and mixing angles. These states include the heavy gauge bosons and Higgs

bosons needed to make up complete GUT multiplets. These states introduce

significant threshold uncertainty, ∆, which depend on the unknown mass

of the heavy states. For reasonable ranges of the unknown heavy particle

masses these corrections [9] can readily be much greater than 1% and so

in such theories the precision of prediction found in the MSSM must be

considered accidental in such schemes. Taking the extreme view that this

accuracy is not accidental one must conclude that the troublesome massive

states must be absent and discard the possibility that there is a stage of

Grand Unification below the string unification scale. This illustrates the

power of the requirement that the precision prediction be maintained.

3.1.2. Weakly coupled heterotic string models

In the heterotic string there need be no Grand Unified group below the com-

pactification scale and then the uncertainties associated with the breaking

of the Grand Unified group can be much reduced. The calculation of the

threshold effects of states at the compactification scale in string theories re-

quires one specifies the specific compactification. Given the huge number

of candidate string theories this looks an impossible task. However, as we

will discuss, the threshold corrections come principally from those states be-

low the string scale and these must be limited in number if the accuracy

of the gauge unification prediction is not to be disturbed. This means the

classification of the various possibilities becomes tractable.

In comparing the threshold effects at the unification scale to the SUSY

threshold effects discussed above we will restrict ourselves to a measure of

the sensitivity of the prediction to these scales for either the strong coupling

or sin2 θW while the other is maintained fixed. In leading order we have from

Eq. (7)

δα−1
3 (MZ) − 15

7
δ sin2 θW =

1

2π

[
b1

b23

b12
+ b2

b31

b12
+ b3

]
δ∆(Λ, µ0) , (8)

where bij = bi − bj, b1 = 33/5, b2 = 1, b3 = −3. The relative sensitivity of

α3 (keeping sin2 θW fixed) to changes in µ0 and Teff is given by

R ≡
∣∣∣∣

δ(ln(α3(MZ)))

δ(ln(α3(MZ)))MSSM

∣∣∣∣ =
14

19

∣∣∣∣
{

5

7
b1 −

12

7
b2 + b3

}
d∆

d(lnµ0)

∣∣∣∣ , (9)

where we have assumed that the predicted value for α3(MZ) in the model
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considered is close to that of the MSSM.d One obtains the same result for the

relative threshold sensitivity if we compute the prediction for sin2 θW (MZ)

(with α3(MZ) fixed).

To illustrate this we first consider the case of the weakly coupled heterotic

string with an N=2 sector (without Wilson lines present) in which six of

the dimensions are compactified on an orbifold, T 6/G. In such models the

spectrum splits into N=1, N=2 and N=4 sectors, the latter two associated

with a T 2 × T 4 split of the T 6 torus. Due to the supersymmetric non-

renormalization theorem, the N=4 sector does not contribute to the running

of the holomorphic couplings.e The N=1 sector gives the usual running

associated with light states but does not contain any moduli dependence.

The latter comes entirely from the N=2 sector. For the heterotic string all

states are closed string states and at one loop the string world sheet has the

topology of the torus T 2. For the case of a six-dimensional supersymmetric

string vacuum compactified on a two torus T 2 the string corrections take

the form [12, 18]. Here T ∝ R1R2 and U ∝ R1/R2 where T , U are moduli

and R1, R2 are the radii associated with T 2. We consider the case of a

two torus T 2 with T = iT2 (the subscript 2 denotes the imaginary part)

and U = iU2. Making the dimensions explicit T2 should be replaced by

T2 → T o
2 /(2α′) ≡ 2R2/(2α′). Performing a summation over momentum and

winding modes and integrating over the fundamental domain of the torus

gives the following result for the string threshold correction ∆H [18]

∆H = −1

2
ln

{
8πe1−γE

3
√

3
U2T2|η(iU2)|4 |η (iT2)|4

}

= −1

2
ln



4π2 |η(i)|4

(
Ms

µ0

)2
∣∣∣∣∣η

[
i 3

√
3π

2e1−γ

(
Ms

µ0

)2
]∣∣∣∣∣

4


 (10)

with the choice U2 = 1 in the last equation. Ms is the string scale, µo ≡ 1/R,

η(x) is the Dedekind eta function and we have replaced α′ in terms f of Ms.

For large g T2 the eta function is dominated by the leading exponential and so

d For a model to be viable one must in first instance predict the right value for α3(MZ) and only

after would the question of threshold sensitivity be relevant.
e Actually even in the case of N=4, two-loop corrections to the effective gauge couplings may

introduce substantial threshold corrections [11].

f From [12] Ms = 2 e(1−γE)/2 3−3/4/
√

2πα′ where gs is the string coupling at the unification.

g Note that T2 ≈ 5.5(MsR)2 in DR scheme, so one can easily have T2 ≈ 20 while R is still close

to the string length scale, to preserve the weakly coupled regime of the heterotic string. In this

section “large” R corresponds to values of T2 in the above range.
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Figure 2. The values of the derivative d∆H/d(ln µ0) = 1 − 2x ln′

x η
“

i3
√

3πeγE−1/(2x2)
”

and that of ∆H for x close to 1. Figure 3. The values of α3(MZ ) for the model with gauge
bosons in the N=2 sector with a change of x from 1 to 1/2, leading to an area (between
dashed lines) of values available to α3(MZ) larger by a factor of ≈ 5 compared to the
MSSM case (continuous lines).

one finds the power law behavior ∆ ∝ T2 ∝ R2 which has a straightforward

interpretation as being due to the decompactification associated with T 2.

This contribution is basically due to the tower of Kaluza–Klein states below

the string scale and can be understood at the effective field theory level [19]

whose result is regularized by the string world-sheet [19]. The presence of

power-like running, although taking place over a very small region of energy

range,h can significantly affect the sensitivity of the unification prediction

for α3(MZ) with respect to changes of the compactification scale (which,

being determined by a moduli vev, is not fixed perturbatively and hence is

not presently known). To demonstrate this explicitly, consider the variation

of the threshold ∆H with respect to T2

δ∆H

δ lnT2
= −1

2

{
1 + 4

d ln |η(iT2)|
d(ln T2)

}
. (11)

This gives the following relative threshold sensitivity with respect to the

compactification scale µ0 (x ≡ µ0/Ms ≡ Rs/Rc)

R =
14

19

∣∣∣∣
{

5

7
b1 −

12

7
b2 + b3

}{
1 − 2x

d

dx
ln η

(
iσx−2

)}∣∣∣∣ , (12)

where σ = 3
√

3πeγE−1/2 and x ≡ µ0/Ms ≡ Rs/Rc with Rs the string length

and Rc the compactification radius.. In Figure 2 we plot the second factor

in curly brackets (which is equal to δ∆H/δ(ln x)).

h This takes place essentially between the compactification and the string scale [19]
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To understand the importance of ∆H and the implications it has for the

threshold sensitivity of α3(MZ), we note that ∆H plays a central role in

the attempts to bridge the well-known “gap” (of a factor of ≈ 10) [13, 20]

between the heterotic string scale and the MSSM unification scale. Since R
gives the relative sensitivity of the gauge coupling predictions to the N=2

threshold and the SUSY threshold we see that even for x = 0.5, correspond-

ing to the compactification radius being twice the string length, the precision

of the gauge coupling prediction is substantially reduced. The requirement

that this precision should not be lost constrains x ≈ 1 (i.e.µ0 = Mstring).

However this fails to “bridge the gap”. This example clearly illustrates the

general problem that weakly coupled heterotic string models have to recon-

cile two conflicting constraints, namely the need for a large ∆H to solve the

scale mismatch between the MSSM unification scale and the heterotic string

scale and the need for a small derivative of ∆H to avoid a large threshold

sensitivity of the gauge couplings. The latter constraint is introduced by the

power-law dependence i of the thresholds on the compactification scale, and

even though such running takes place over a small energy range it still gives

significant effects. The problem can be avoided if x ≈ 1, corresponding to

the compactification scale being very close to the string scale. On the other

hand the former constraint seems to require a small value for x. As we shall

discuss this conclusion may be evaded in theories with Wilson line breaking.

3.1.3. Low scale string theories

The remarkable precision of the prediction for gauge coupling unification has

led us to consider the nature of an underlying (string) theory that can main-

tain this accuracy. Due to the non-decoupling of the contribution of massive

states to renormalizable terms in the low energy effective Lagrangian, the

requirement that the gauge predictions be undisturbed places strong con-

straints on the massive sector. We determined the contribution of states

transforming non-trivially under the Standard Model gauge group in com-

pactified string models. Requiring that these contributions leave the MSSM

predictions intact leads to a constraint on the magnitude of the compact-

ification radius associated with the propagation of such states to limit the

number of states in the Kaluza–Klein tower. It is straightforward to extend

the discussion given above to a variety of string theories [19] This shows that

due to the sensitivity of the gauge coupling predictions to the compactifi-

i This is due almost entirely to the presence of the towers of Kaluza–Klein modes rather than to

winding modes, [19].



September 4, 2004 9:31 WSPC/Trim Size: 9.75in x 6.5in for Proceedings ross

896 G. G. Ross

cation scale in the case the gauge couplings have power law running rather

than logarithmic running the compactification radius should be very close to

the inverse of the string scale (well within a factor of 2). These conclusions

apply to string theories with an N = 2 sector. It is possible to construct com-

pactified string theories in which this sector is absent in which case there is

no significant one-loop sensitivity of the unification prediction for the gauge

couplings to changes of the high scale/moduli fields. The downside is that

then one does not have the large ∆H needed to “close the gap”. Even if

this problem is solved in another way the N = 4 sector necessarily present

introduces strong threshold dependence at two loop order which proves to

lead to almost as restrictive a bound on the compactification scale.

The implication of this result is quite far-reaching. One immediate one

is that unification at a low scale through power law running of the gauge

couplings cannot maintain the precision of the MSSM predictions. Indeed,

due to the different contributions to the beta functions of massive compared

to massless SUSY representations, low scale unification requires a very dif-

ferent multiplet content from the MSSM in order to obtain the same gauge

unification prediction. As a result the precision prediction for gauge cou-

plings must be considered a fortuitous accident, something we find hard to

accept given the remarkable precision of the prediction. Even if we do accept

this, and the N=2 sector happens to give the same beta function as the N=1

MSSM spectrum, power law running introduces a strong dependence on the

heavy thresholds so that the precision of the “prediction” is lost. For both

these reasons we consider a low scale of unification due to power law running

to be unlikely. Models with a low scale of unification due to a non-SU(5)

hypercharge normalization do not require power law running. Nonetheless

it turns out that they too have enhanced threshold dependence due to the

need for additional light states and again this loses the predictive power of

the MSSM.

3.2. A string theory profile

The profile of our string model which preserves the precision prediction for

gauge couplings found in the MSSM therefore requires a large scale of uni-

fication with an SU(5) normalisation for the weak hypercharge. Even so,

there is still a strong constraint on the compactification scale because the

cutoff of the contribution of heavy states is at the string scale or higher.

To avoid the same power law running corrections that degraded the predic-

tions in the case of low scale unification, the radius of compactification of

those dimensions in which Standard Model gauge non-singlet fields prop-
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agate must not be large compared to the cutoff radius. This means the

compactified string theory lies far from the Calabi–Yau limit and close to

the superconformal limit. This is quite attractive in that many aspects of

the effective low-energy field theory, such as Yukawa couplings, are amenable

to calculation in the superconformal limit.

Of course our analysis does not preclude the existence of large new di-

mensions not associated with the propagation of Standard Model states. A

particular example is the strongly coupled heterotic string in which gravity

but not the Standard Model states propagate in the eleventh dimension.

However the size of the extra dimensions is still severely constrained by the

need to have a high unification scale, the minimum occurring for just one

additional dimension as in the strongly coupled heterotic case. Thus even

in the case of large new dimensions in which Standard Model states do not

propagate, the new dimension cannot be larger than 10−14 fm.

4. Unification with gravity – closing the gap

The need for a high scale of unification broadly fits the expectation in the

(weakly coupled) heterotic string. However in detail there is a discrepancy

between the MSSM value for the unification scale of MX = (3.5±2)1016 GeV

and the prediction in the weakly coupled heterotic string, approximately a

factor of 10 larger.

As discussed above one possibility is to have a GUT below the string

compactification scale, the GUT breaking scale being the gauge unification

scale. Even in this case it is still necessary for the compactification scale to

be very close to the string scale to keep the two loop contributions from the

Kaluza–Klein states small. If this theory comes from the weakly coupled

heterotic string the compactification and string scales must be close to the

Planck scale. Unfortunately if this is the explanation the string prediction for

the compactification scale does not lead to a testable prediction. Moreover,

as discussed above, this also diminishes the accuracy of the prediction to

well above the 1% level.

The strongly coupled version of the heterotic string provides another ex-

planation for the discrepancy found in the weakly coupled case. For the case

the eleventh dimension is some three orders of magnitude larger than the

string length, corresponding to a compactification radius of O(10−14fm), the

gauge unification scale may be reduced to that found in the MSSM. This

provides a way to reconcile the predicted unification scale with that needed

in the MSSM. However, unless one is able to predict that the radius of the

eleventh dimension is indeed of O(10−14fm), the prediction for the unifica-
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tion scale is lost, being just given in terms of this unknown compactification

scale.

To me a more attractive possibility is that calculable heavy threshold ef-

fects associated with the breaking of the underlying string GUT reduces the

weakly coupled string prediction for the unification scale to its “measured”

value. The requirement that the precision of the gauge coupling prediction

be maintained severely limits the magnitude of these threshold effects and

precludes explanations requiring large radii. However in models with Wil-

son line breaking it is possible to have very large threshold corrections to the

unification scale while keeping the threshold contribution to gauge couplings

small. Given that such Wilson line breaking is very often needed to break the

underlying gauge symmetry of the heterotic string, this explanation seems

very reasonable. Although these have been calculated in specific string theo-

ries [21], the analysis has not been done in realistic string theories. However

the indication coming from the toy models is that Wilson line effects can

be very significant even though the compactification scale, which is related

to the scale of Wilson line breaking for discrete Wilson lines, is close to the

Planck scale. For this reason it is worth having a closer look.

4.1. Wilson line breaking

The Wilson line operator is defined as

Wi = e
i

R
γi

dyAI
ymT I

, I = 1, · · · , rk G , (13)

where Aym are the higher dimensional components of the gauge field, ym

are the compact dimensions, m = 1 (m = 1, 2) for one (two) compact di-

mensions respectively. A summation over m and I is understood. γi are

one-dimensional cycles of compactification. TI are the generators of the

Cartan sub-algebra of the Lie algebra

Continuous Wilson lines have their magnitude determined by a moduli

which can have any vacuum expectation value. In this case they act just as

if the breaking was spontaneous and due to a Higgs scalar multiplet trans-

forming as the adjoint. The Wilson line breaks the associated gauge group

and gives a mass to those gauge bosons not commuting with the Wilson line.

Ignoring matter and the KK excitations, the mass of these excitations, MX ,

defines the unification scale as above it there is no further relative evolution

of the gauge couplings of the unbroken gauge group factors. Of course the

overall gauge coupling continues to run until the string cutoff scale but this

effect can be absorbed in the starting value of the gauge coupling used at

MX . For matter fields the effect of Wilson lines is determined by their gauge
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transformation properties. Chirality protects those fields which are mass-

less before Wilson line breaking from acquiring a mass. However their KK

modes can be shifted in mass by the Wilson line and this can lead to further

corrections to the gauge couplings.

If one is to discuss the effect of threshold effects close to the string scale

it is necessary to know the full spectrum of states. We will be concerned in

determining these effects for the minimal set of fields consistent with obtain-

ing the MSSM at low scales. The main uncertainty in this spectrum in a

theory with an underlying GUT is the origin of the doublet triplet splitting

needed if one is to have the light Higgs doublets of the MSSM necessary

for electroweak breaking. In the case of continuous Wilson lines this must

come from some mechanism, such as the missing partner mechanism [22],

which significantly complicates the minimal spectrum needed and gives rise

to significant uncertainties in the prediction following from gauge unification

from the associated threshold corrections. For this reason we concentrate on

the possibility that the Wilson lines are discrete because this does offer an

elegant explanation of the doublet triplet splitting problem without compli-

cating the spectrum [23].

Discrete Wilson lines are associated with a discrete group, D, which acts

on the coordinates of the compactified d−4 dimensional space In the absence

of Wilson lines the states of the theory, which may have non-trivial intrinsic

transformation properties under D, correspond to the discrete group singlet

states. Thus the massless modes, which have no dependence on the 4 + d

coordinates, must be intrinsic D singlets. The discrete Wilson line provides

a representation, D, of the discrete group acting on the gauge quantum

numbers and the orbifold projection is modified to require that the states of

the theory should be singlets under the simultaneous action of the discrete

group action on both the internal and gauge quantum numbers. Thus if

there is massless representation, R, of the gauge group, G, that transforms

as R̃ under the discrete group before Wilson line breaking then, with Wilson

line breaking, only the component of the representation that transforms as

R̃−1 under D remains, thus splitting the multiplet.

In the case of SU(5) the electroweak breaking Higgs fields belong to the

fundamental five dimensional representation (R = 5). If only the SU(2) dou-

blet component transforms as R̃−1 under the discrete Wilson line then only

the doublet will remain light while the remaining color triplet components

are heavy, offering an origin for the doublet triplet splitting. In contrast to

the Higgs, the quark and lepton matter multiplets fill out complete SU(5)

representations. It is therefore necessary that these states should not be
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split. This is explained naturally in the case of discrete Wilson lines. Since

division by a freely acting discrete group changes the Euler number by the

factor, N, the order of the group, in the theory before compactification there

must be an excess of 3N in the number of left-handed states transforming

as the (5⊕10) compared to the conjugate representation. These states form

complete N dimensional representations of the group D. As a result, after

modding out by the diagonal subgroup of (D⊕ D), one is left with 3 fam-

ilies which form complete representations of D and hence fill out complete

(5⊕10) representations of SU(5). However note that the members of a fam-

ily corresponding to different representations of D originate from different

D representations in the underlying manifold.

In the discrete Wilson line case the massive gauge bosons, associated

with the broken generators, acquire mass determined by the compactifica-

tion scale. The same is true of the heavy partners of the Higgs doublets

and the Kaluza–Klein excitations. However our condition that the precision

prediction for gauge coupling unification should not be spoiled by power

law running says that the compactification scale should be very close to the

string scale. Thus, in this case, it is the string scale that determines the

cutoff of the contribution of the zero modes and provides the gauge unifi-

cation scale. For a given compactified heterotic string model with discrete

Wilson line breaking no new parameters are introduced and therefore the

gauge unification scale remains a prediction.

4.2. Orbifold calculation

In order to estimate the effect of Wilson lines it is useful first to consider

(discrete) Wilson lines in orbifold compactifications for the weakly coupled

heterotic string. This means we have to consider the KK and winding states

that affect the running of the gauge couplings. However in practice the fact

that the gauge unification scale is lower than the string scale means that

the compactification radius, R, is greater than the string length, M−1
string. In

this case the KK states, whose mass is determined by integer multiples of

1/R, are less massive than the winding states with mass integer multiples

of R M2
string. In the heterotic string contributions from states above the

string scale are exponentially suppressed and as a result the winding modes

have a contribution suppressed by a factor of O(e−2πRMstring ). To make this

point more explicitly we note that the momentum modes alone give the
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contribution [19]

∆i =
bi

4π

1/2∫

−1/2

dτ1

∞∫

√
(1−τ2

1 )

dτ2
1

τ2





∑

m1,m2∈Z

exp

[
−πτ2

T2

(
m2

1 + m2
2

)]
− 1





=
bi

4π

∑

(m1 ,m2)6=(0,0)

1/2∫

−1/2

dτ1 E1

[
κ~m

√
1 − τ2

1

]
(14)

with |~m|2 = m2
1 + m2

2 and where

κ~m ≡ π|~m|2
T2

. (15)

It is straightforward to compare the result of directly evaluating Eq. (14) with

the full string result of Eq. (10). For example at T2 = 2, corresponding to

Rc/Rs = 2, the KK states alone give 99% of the full threshold correction [19].

This means that one may determine the threshold corrections to an excellent

accuracy simply by including the contribution of states at or below the string

scale. With this motivation we now consider the KK threshold corrections

in simple orbifold examples.

4.2.1. One compact dimension

In the case of one additional dimension the effect of Wilson line breaking is

to change the mass of the states in the KK tower according to

M2
n(σ) = χ2 +

1

R2
(m + ρσ)2, ρσ = −R<AI

y >σI , (sum over I) , (16)

where ρσ is derived using for one compact dimension with constant AI
y. R

is the compactification radius, σI is the weight or root of the representation

that the higher dimensional field (of charge σ in Cartan–Weyl basis) belongs

to. χ is the bare mass of the KK tower that henceforth we take to be 0.

The general correction introduced to the gauge couplings by the combined

effect of KK states and Wilson lines is given by the general formula [12] valid

whether or not supersymmetry is present

Ω∗
i =

∑

r

∑

σ=λ,α

Ωi(σ), Ωi(σ) ≡
′∑

m∈Z

βi(σ)

4π

∫ ∞

0

dt

t
e−π t M2

m(σ)/µ2

∣∣∣∣
reg.

. (17)

Ωi(σ) is the contribution to the one loop beta function for the gauge cou-

pling gi of a tower of KK modes associated with a state of charge σ in the



September 4, 2004 9:31 WSPC/Trim Size: 9.75in x 6.5in for Proceedings ross

902 G. G. Ross

Weyl–Cartan basis and of mass “shifted” by ρ(σ) real. Here σ = λ, α are

the weights/roots belonging to the representation r. The sum over m runs

over all non-zero integers and accounts for the effects of KK modes of mass

Mm(σ) associated with the compact dimension. The regulated sum over

the KK tower can be performed and the gauge group dependent piece is

regularization independent.

If the gauge symmetry group G is a Grand Unified group before the

Wilson lines are “turned on”, the overall divergent part of Ω∗
i is the same

for all group-factors i that G is broken into. As a result the σ independent

part of Ω∗
i can be absorbed into the redefinition of the tree level coupling,

similar to the case with one compact dimension. The resultant form for the

gauge couplings is [24]

1

αi(R)
=

1

αo
−

∑

r

∑

σ=α,λ

βi(σ)

4π
ln

| sinπ∆ρσ |2
π2ρ2

σ

, ρσ = −RσI〈AI
y〉 , (18)

where ρ = [ρ] + ∆ρ, [ρ] ∈ Z One only needs to add here the contribution

of zero modes (before Wilson line breaking), not included in Ω∗
i and whose

presence is in general model dependent.

In the limit of turning off the Wilson lines vev’s ∆ρ = ρσ → 0 the

correction in (18) coming from the KK excitations vanishes and no splitting

of the gauge couplings is generated. The interesting case is what happens

when ρσ is non zero.

For the case of continuous Wilson lines the breaking can be continuously

taken to zero. The Wilson line acts in the same way as a physical Higgs field.

providing the longitudinal component of the broken gauge bosons, forming

a massive N = 2 supermultiplet. Thus for continuous Wilson lines there is

also a contribution from the (m = 0) would-be zero mode which acquires a

mass ρσ/R after Wilson line breaking. Including it gives the result

1

αi(R)
=

1

αo
−

∑

r

∑

σ=α,λ

βi(σ)

4π
ln

| sinπ∆ρσ |2
π2M2

stringR
2

. (19)

For the case that ∆ρσ is small this corresponds to a contribution
βi(σ)
4π ln (∆ρσ/MstringR)2. The interpretation of this is straightforward. As

may be seen from Eq. (16) it corresponds to the contribution of the KK state

that has been made anomalously light, with mass ∆ρ/R through a cancel-

lation of the Wilson line contribution to the mass and the contribution as-

sociated with a non-zero KK level. The string imposes a cutoff Mstring on

the one loop contribution of this state to the gauge coupling evolution. The
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contribution from all the higher levels can be seen to be small corresponding

also to the to the string cutoff implicit in Eq. (17).

4.2.2. Two compact dimensions

Assuming constant Ay1,2 , one computes the Wilson lines operator Wi of

Eq. (13) corresponding to each one-cycle γi of the two torus of compactifica-

tion, ρi,α [24],

ρ1,α = −R1αI〈AI
y1
〉, ρ2,α = −R2 αI

[
〈AI

y1
〉 cos θ + 〈AI

y2
〉 sin θ

]
, (20)

where θ is the angle between the two cycles and is fixed by the type of

orbifold considered (θ = 2π/N for T 2/ZN compactifications). Using the

Klein-Gordon equation in 6D we find the mass of the 4D KK fields in the

adjoint (α) and fundamental (λ) representations as [24]

M2
n1,n2

(σ) =
µ2

T2 U2
|n2 + ρ2,σ − U(n1 + ρ1,σ)|2, σ = α, λ . (21)

with the notation familiar in string models

U ≡ U1 + iU2 = R2/R1 eiθ, (U2 > 0); T2(µ) = µ2R1R2 sin θ . (22)

For θ = π/2 the two compact dimensions “decouple” from each other and in

this case one finds M 2
n1,n2

(σ) = (n1 + ρ1,σ)2/R2
1 + (n2 + ρ2,σ)2/R2

2.

For generality we keep the θ angle arbitrary. If the gauge symmetry

group G is a grand unified group before the Wilson lines are “turned on”,

the overall divergent part of Ωi will be the same for all group-factors i that

G is broken into. As a result the σ independent part of Ω∗
i can be absorbed

into the redefinition of the tree level coupling, similar to the case with one

compact dimension. In that case one obtains the following splitting of the

gauge couplings in 4D [24]

1

αi
=

1

αo
+

∑

r

∑

σ=α,λ

βi(σ)

4π
{ln πeγ |ρ2,σ − Uρ1,σ|2

(R2 sin θ)2

− ln

∣∣∣∣
ϑ1(∆ρ2,σ − U∆ρ1,σ |U)

η(U)

∣∣∣∣
2

+ 2π U2∆
2
ρ1,σ

} , (23)

where the functions ϑ1 and η are defined in [24] and with

|ρ2,σ − Uρ1,σ|2/(R2 sin θ)2 = |σI

(
〈AI

y2
〉 − i〈AI

y1
〉
)
|2 . (24)

As in the one dimensional case, the splitting of the gauge couplings is induced

by the combined effects of the compact dimensions and Wilson lines vev’s
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in a particular direction in the root space of the initial gauge group G. One

may need to add to the above equation the correction from a zero mode

(0, 0) which acquires a mass after Wilson line breaking and the massless

states. Only a logarithmic correction will then be present with the power-

like corrections (divergences) “absorbed” into 1/αo.

For the case that only ρ2,σ is non-zero the correction approximately re-

duces to the form of Eq. (19) after absorbing σ independent terms in a re-

definition of the coupling.

4.3. Gauge Coupling Unification with Wilson line breaking

In this section we will use the results discussed above to determine the effects

of Wilson line breaking on gauge coupling unification. These corrections have

been determined in the context of the weakly coupled heterotic string with

orbifold compactification but the general structure is indicative of the effects

in more general compactifications because it is driven by states which are

made anomalously light by Wilson line breaking and this happens in general

compactification schemes.

4.3.1. Kaluza–Klein gauge excitations

We start with a discussion of the effect of the gauge sector of KK modes.

The Wilson lines do not affect the gauge boson excitations associated with

the unbroken gauge group. The remaining X and Y gauge boson excitations

acquire mass corrections according to the form given in Eq. (21).

For the case of one additional dimension the contribution of the massive X

and Y gauge bosons is given by Eq. (19). On the other hand the contribution

of the KK modes of the unbroken gauge bosons is given by Eq. (18) with

ρ3,2,1 = 0 and the normalization chosen is such that this vanishes. The

X and Y contribute to the relative gauge evolution in the opposite way

to that of the 3, 2, 1 gauge bosons. From Eq. (19) j we see they contribute

between an “effective mass scale” given by | sin π∆ρσ |
πR and the cutoff scale

Mstring. Once they start to contribute the relative evolution of the gauge

couplings ceases corresponding (up to matter contributions) to a reduction in

the unification scale by the factor |sinπ∆ρ | /πRMstring. Such a reduction is

what is needed if the unification scale in the weakly coupled heterotic string

is to agree with the gauge coupling unification scale. Note that this is a

general conclusion independent of the initial gauge group or the Wilson line.

j Although we are considering discrete Wilson lines the equation still applies because the m = 0

field still contributes to the first massive level after Wilson line breaking
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Given the importance of this systematic trend it is of interest to see how it

arises directly from the form of the spectrum in Eq. (21). From this equation

it is clear that the effect of the Wilson line is systematically to shift pairs of

states with opposite signs of n1,2 up and down in mass keeping the mean,

m, unchanged. However in field theory calculation. In this the logarithmic

corrections coming from individual massive states come in pairs with mass

m+ρ and m−ρ giving the contribution log(m+ρ)+log(m−ρ) = log(m2−ρ2).

We see that the lighter state dominates and the net effect is a reduction

from m2 to m2 − ρ2 in the effective mass squared at which the states start

to contribute and systematically reducing the unification scale. In string

theory the string regularization further reduces the contribution of the more

massive state going further in the direction of reducing the unification scale.

In the calculation of the precise contribution of the massive states it is

necessary to compute their beta functions. As noted above, in the calcu-

lation of the relative evolution of the gauge couplings, the contribution of

the X and Y gauge bosons is the same magnitude as the contribution of

the SU(3)⊗ SU(2)⊗U(1) Standard Model gauge bosons but has the oppo-

site sign. The contribution to the gauge coupling running from massive KK

modes comes only from the N = 2 supermultiplets, the N = 4 supermulti-

plets do not contribute at all. An N = 2 gauge supermultiplet contributes

only 2/3 of the contribution of an N = 1 gauge supermultiplet because it

includes both an N = 1 gauge supermultiplet and an N = 1 chiral super-

multiplet. The number of KK excitations contributing to the beta function

is model dependent, depending on how many (large) bulk dimensions the

gauge field propagates in and whether the KK modes fill out N = 2 or

N = 4 representations. To determine the number we need to know the spe-

cific string theory. In the absence of this the best we can do is to estimate

the magnitude of the reduction in the string prediction for the unification

scale to be expected from Wilson lines, parameterizing our ignorance in the

specific number by varying the number of KK excitations. In this we are

helped by the fact we are working in the limit where Rc is larger than Rs.

As discussed in [25], in this limit one can use either the full string theory or

an effective field theory to determine the KK spectrum.

4.3.2. Kaluza–Klein matter excitations

The minimal set of matter fields is that of the MSSM with 3 generations of

quarks and leptons and two Higgs doublets. Again the structure of their KK

excitations is model dependent depending on whether the propagate in the

bulk and if so in how many dimensions. In particular if they correspond to
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twisted states about orbifold fixed points, they have no KK excitations. We

consider the various possibilities in turn.

Twisted matter. If all the matter fields correspond to twisted states then

only the gauge KK modes need be included. As discussed above the effect of

the Wilson lines is to reduce the scale at which the gauge contribution runs.

However the contribution of the matter fields is still cutoff at the string

scale so there is a mismatch between these scales. It is straightforward

to determine the net effect. At one loop order the quarks and leptons fill

out complete representations of SU(5) and so do not change the relative

evolution of the gauge couplings which determine the unification scale and

the precise value of one of the three gauge couplings at low scales. For these

predictions, at this order, only the Higgs zero mode contribution and the

contribution of the gauge bosons need be included. If the Higgs contribution

were cut-off at the same reduced scale as the gauge bosons the prediction

would be just that in the MSSM with a reduced cut-off scale. However

the Higgs contribution is not cutoff and its contribution must be included

between the reduced unification scale and the original cut-off scale. This

changes the gauge coupling evolution by causing the electroweak coupling to

run more slowly. As a result, if the strong coupling is still to unify with the

other couplings, its value at low scales must be increased. In the MSSM

the value needed for the strong coupling is already somewhat larger than the

measured value so this change goes in the wrong direction. For this reason

we do not consider this possibility further.

Quark, lepton Kaluza–Klein modes. If the quarks and leptons all have

Kaluza–Klein modes the situation is more complicated as they all contribute

to gauge coupling running. However for the case of (discrete) Wilson lines

their effect on the relative evolution of the coupling constants vanishes be-

cause the massive quark and lepton modes fill out complete multiplets of

SU(5) which are degenerate. The reason is that these multiplets carry the

same (D ⊕ D) intrinsic charge as is necessary if they are to give complete

multiplets of zero modes. As a result the massive excitations also have the

same dependence on the compactified coordinates and hence the same mass.

Higgs Kaluza–Klein modes. If the Higgs fields are untwisted states they

have KK excitations whose effects need to be included. We consider the

case that the doublet triplet splitting is due to discrete Wilson line breaking.

There are two cases to consider.

If the Higgs doublet fields are discrete group, D, singlets they must also
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be D (Wilson line) singlets. This means that for them ρσ is zero in Eq. (20)

and so their KK excitations are unshifted. However this is not the case

for their color triplet partners which are not D singlets. At one loop order

the contribution of the color triplet KK contribution to the relative gauge

coupling evolution acts in the opposite way to the Higgs doublets (the two

together give no one loop contribution). As a result the colour triplet states

reduce the unwanted increase in the strong coupling just discussed coming

from the contribution of the light Higgs above the gauge boson cutoff scale.

The massive color triplet states belong to N = 2 supermultiplets which

means that they consist of two N = 1 chiral multiplets and thus they have a

beta function coefficient of magnitude twice that of the Higgs (but opposite

in sign). As a result they can readily dominate over the “excess” Higgs

contribution above the reduced gauge boson unification scale and actually

reduce the value of the strong coupling, bringing it into better agreement

with experiment. We will present numerical estimates of this effect below.

The other possibility is that the Higgs doublet fields come from non singlet

D fields. In this case the net effect of the KK doublet and color triplet fields is

model dependent as both may contribute to the running of gauge couplings.

4.3.3. Wilson line breaking of SU(5).

Our discussion to date applies to a general Grand Unified gauge group, G,

before Wilson line breaking. However when making a quantitative estimate

of the effects we will illustrate the effects to be expected by considering the

case that G = SU(5) and in this case the discrete group is restricted to be Z3

[26]. The Wilson line group element is Diagonal(a2, a2, a2, a−3, a−3) = eiY θ

where Y = Diag[2, 2, 2,−3,−3].This breaks SU(5) to SU(3)⊗SU(2)⊗U(1)

giving the X and Y gauge bosons a mass. The condition that this Wilson

line should be a representation of Z3 is θ = 2πn/3. In this case the Higgs

doublet fields are clearly D singlets as required.

For clarity of presentation we discuss the case of one additional dimension

but it is easy to generalize it to the case of two additional dimensions using

the results given above. To include the effects of the KK modes we use

Eq. (18). For our SU(5) example with Wilson line breaking we have ρ
X,Y

=

5/3R. At one loop order this affects the running of the couplings and hence
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the unification predictions

α−1
i (Q) = α−1

GUT +
bi

2π
log

Q

MX
− 2

3

bi(3, 2, 1)

4π
ln

∣∣ sinπ∆ρ24X,Y

∣∣2

π2M2
s R2

+2
∑

Higgs

∑

j

bi(5j)

4π
ln

∣∣ sinπ∆ρ5j

∣∣2

π2M2
s R2

≡ α−1
GUT +

bi

2π
log

Q

MX
+

b′i
2π

(25)

where the one loop beta function coefficient, bi, is just that of the MSSM,

bi(3, 2, 1) is the coefficient coming from the unbroken (MSSM) gauge su-

permultiplet, bi(5j) is the coefficient coming from the Higgs supermultiplet

sector and the sum j = 1, 2 is over the (2, 1) and (1, 3) SU(2)⊗ SU(3) com-

ponents of the 5. In this equation we have absorbed terms independent of

the group factor, i, in α−1
GUT and we have bi = bi(3, 2, 1) + bi(51). The scale

MX is the unification scale taking account of the KK thresholds (of course

in the string we expect MX = Ms).

We wish to determine the change in the unification scale and strong

coupling in this scheme relative to the MSSM in which

α−1
MSSM,i(Q) = α−1

MSSM,GUT +
bi

2π
log

Q

M0
X

, (26)

where M 0
X is the unification scale in the MSSM. In both cases α1,2(MZ)

are input as their measured values. The unification scale is found from the

relative evolution of α1,2. Combining Eqs. (25,26), we find

log

(
MX

M0
X

)
=

b′2 − b′1
b2 − b1

(27)

and

∆α−1
3 =− 1

b′1−b′2

[
(b′2−b′3)∆b1+(b′3−b′1)∆b2+(b′1−b′2)∆b3

] 1

2π
log

(
M0

X

MX

)
,

(28)

where ∆bi are defined to be

∆bi = b′i − bi . (29)

As discussed above the massive matter multiplets in a given represen-

tation of SU(5) are degenerate and so do not contribute to ∆bi. Thus in

determining M and ∆α−1
3 the only contributions are the KK modes of the

gauge bosons and the Higgs multiplets.

In Table 1 we give the results for the case MsR = 2. This the smallest

value consistent with our neglect of winding modes and yet not so small that
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n = 1 n = 2

M0
X

MX
4.1 5.9 (24)

∆α−1
3 -0.27 -0.34 (-0.51)

M0
X

MX
3.1 4.7 (14.7)

∆α−1
3 0.54 0.3 (0.85)

Table 1 The change in the string prediction for the unification scale and the strong

coupling for MsR = 2. The Wilson line group element, Eq. (16), is specified by a = e2πn/3

and the result for two choices for the Wilson line (n=1 and n=2) are shown. Also shown

in parenthesis is the result including the light winding mode which occurs for n=2 only.

The first two rows give the results for the case the Higgs multiplets have no KK modes

and the last two rows give the results for the case the Higgs have KK excitations. The

calculation refers to the 1D case, Eq. (18) and is very close to the 2D case with ρ1 = ρ and

ρ2 = 0 .

the precision is greatly reduced. The numbers quoted apply to the case of a

N = 2 massive spectrum in one extra dimension using the form of Eq. (25).

The results for additional extra dimensions are similar and can be found

in [27].

From the Table one may see that, as expected, the unification scale is

increased bringing it closer to the string prediction. Without Higgs KK

modes there is an increase in the strong coupling which makes the agreement

with experiment worse. However with Higgs KK modes the strong coupling

is decreased improving the fit (the correction ∆α−1
3 = 1.1 brings the strong

coupling into excellent agreement with experiment).

The result is very sensitive to the form of the Wilson line for two reasons.

For n = 2 the m = 0 “would-be”zero mode state is made heavier than

the string scale and its contribution is strongly suppressed. In this case we

should use Eq. (18) rather than Eq. (19) leading to the enhancement shown

in the second column of the Table. Moreover for n = 2 and MsR = 2 a

winding mode is made lighter than the string scale and its effect is no longer

negligible. Naively including its effect using the field theory estimate gives

the results in brackets in the Table. In this case both the unification scale

and the strong coupling are in excellent agreement with the measured values.

Although this calculation has been done in a field theory context with no

specific string compactification the result is very encouraging for the weakly

coupled heterotic string. It would certainly be very interesting to perform the

full string theory calculation for a realistic heterotic string compactification.
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5. A profile of the supersymmetric extension of the

Standard Model

The requirement that the unification prediction obtained using the spectrum

of Standard Model gauge nonsinglet states of the Minimal Supersymmetric

version of the Standard Model should not be spoiled yields a remarkably clear

picture of the low energy phenomenology to be expected if the structure

emerges from a string theory. However, as we now discuss, this does not

imply that the full structure of the MSSM be recovered.

The first implication is that the scale of unification, compactification and

the associated string scale must be very large, close to the Planck scale.

As a result one does not expect to produce at low energies any low energy

string states or Kaluza–Klein states and so must be content with less direct

string effects such as the small corrections to the gauge couplings and the

unification scale. These are corrections to the renormalizable terms of the

Standard model and are not suppressed by inverse powers of the string scale.

However some processes are so rare that even corrections suppressed by

inverse powers of the string scale may be significant.

5.1. Nucleon decay

The most sensitive of these is nucleon decay. In a supersymmetric generaliza-

tion of the Standard Model there are new sources of nucleon decay through

processes involving squarks and sleptons. In particular, in addition to the

usual terms giving mass to quarks and leptons, one may have the additional

gauge invariant terms [28] of the form given in Eq. (30).

LY uk
RP violating = λijk [li lj Ec

k]F +λ′
ijk [li qj dc

k]F +λ′′
ijk

[
uc

i dc
j dc

k

]
F

∆L = 1 ∆L = 1 ∆B = −1
. (30)

These have the property that they violate R-parity, allowing single pro-

duction of supersymmetric states and allowing the decay of the lightest su-

persymmetric particle. However, they also have property that they violate

Baryon number and/or Lepton number and all the terms of Eq. (30) can not

be simultaneously present if proton decay is not to proceed at an unaccept-

ably fast rate. The first point to note is that if the terms proportional to

λ′ and λ′′ are simultaneously present the nucleon is unstable through a tree

level graph with a down squark exchanged. Since the amplitude is propor-

tional to (λ′λ′′)/m2
d̃
, and the squark mass is at most in the TeV range, the

decay rate is quite unacceptably fast. The cure is to forbid these new terms

by a discrete symmetry. In the MSSM this is done by a Z2 discrete sym-
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metry known as matter parity under which the quark and lepton superfields

appearing in the superpotential change sign while the Higgs superfields are

left invariant. Thus the last three terms of Eq. (30) change sign under this

symmetry and are forbidden while the terms giving rise to quark and lep-

ton masses having only two matter fields are invariant and allowed [29, 30].

Clearly this forbids all the terms of Eq. (30) and leaves just the couplings

of the MSSM. Thus the matter parity leads to the R−parity of the MSSM

given by Eq. (31),

Rp ≡ (−1)3B+L+2S . (31)

However, there are more possibilities to stabilize the proton than to forbid

all the terms of Eq. (30) [28]. Provided the terms proportional to λ and

λ′ are not simultaneously present the graph generating proton decay will

be absent. It is possible to eliminate one or other of these operators by

symmetries other than matter parity provided one allows for the possibility

that quarks and leptons transform differently. Although this is not possible if

the theory is embedded in SU(5), in which the quarks and leptons transform

under discrete symmetries in the same way, it is possible in other GUT’s and

also in string unification, which need not be embedded in a GUT. Indeed a

study of discrete ZN symmetries shows that it is easy to obtain any of the

following, all of which inhibit nucleon decay [31]

• Matter parity. λ = λ′ = λ′′ = 0; ∆B = ∆L = 0

• Lepton “parity”. λ = λ′ = 0; ∆B 6= 0,∆L = 0

• Baryon “parity”. λ′′ = 0; ∆B = 0,∆L 6= 0

It is clear there are many possibilities; indeed allowing for flavor depen-

dence there are 45 different operators possible in Eq. (30). Obviously it would

be useful to limit the possible new terms and various constraints have been

considered. In the context of an underlying string theory the possible ZN

symmetries are constrained by the condition that they should be discrete

gauge symmetries and satisfy the discrete anomaly free condition. It has

also been argued from purely phenomenological considerations that discrete

symmetries should be discrete gauge symmetries if they are to avoid large

violation through gravitational effects [32]. A study of all possible discrete

symmetries for N < 4 shows that there are only two discrete anomaly free

symmetries, the R−parity of the MSSM and a new Z3 Baryon parity. These

have vastly different implications for nature of supersymmetric phenomenol-

ogy so it is clearly of importance to consider whether one or other is to be

preferred.
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One distinguishing feature is nucleon decay for it can also proceed via

higher dimension operators. The original diagram suggested in SU(5) gener-

ating proton decay involves vector boson exchange leading to the amplitude

∼ 1
M2

x
qqq` and the decay rate Γp→π0e+ ∝ m5

p

M4
X

. Since the amplitude is due

to the exchange of a new vector boson Xµ the amplitude is dimension 6 and

is suppressed by two powers of the X-boson mass. Allowing for couplings

of order one, the current bound on the proton lifetime leads to the bound

on the X- boson mass, MX >1.5.1015 GeV. In supersymmetry there are also

new contributions beyond the dimension 4 terms discussed above which ap-

pear through the dimension 5 operators, [QQQL]F , [U U DE]F . In these

it is the exchange of a colored Higgsino triplet that leads to proton decay

and as a result the amplitude is only suppressed by one power of the heavy

fermion mass (a dimension 5 operator). The bound on this mass scale is

some 8 . 1023 GeV if the couplings involved are of order one. Thus if this

scale is associated with the Grand Unified scale, then there must clearly be

some suppression due to small couplings. For example, in a supersymmet-

ric Grand Unified theory, the graph involves Yukawa couplings to the light

quarks which are so small that the proton decay rate prediction is accept-

able. In this case the decay mode for this second class of diagram is largely

into strange quarks because of the larger Yukawa coupling to heavy quarks,

leading to the dominant decay modes [33]:

p → K†νµ, π+ν, K0µ+

1 : 0.5 : 0.007

n → K0νµ, π0νµ

1.8 : 0.24

The overall rate is model dependent. In a realistic SO(10) model discussed

in [34] it is very close to the present limit. In other models such as flipped

SU(5) [35] the dimension 5 operators are suppressed and the dimension 6

operators are dominant, leading to the prediction that the proton should

decay into π0e+as in the original non-supersymmetric SU(5). Again the

rate may be expected to be close to the upper bound.

What is the expectation if the underlying theory is a string theory? Since

the dimension 5 operators with O(1) couplings require a scale of O(1024 GeV)

to keep the rate within experimental bounds one may be worried that cor-

rections at the Planck scale will lead to unacceptably fast processes; for

example black hole evaporation or wormhole production [36]. Since there is

no reason to expect a small coupling in these processes they may give an am-
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plitude which is too large. Similarly in a superstring theory couplings that

are allowed by the symmetries are typically of order one and again in this

case one would obtain unacceptably fast proton decay from the exchange of

heavy string states.

Given this it is clear that there are two possible ways to avoid the problem

of rapid nucleon decay in a string theory. If the underlying symmetries allow

dimension 5 nucleon decay operators we should ensure that the Yukawa

couplings involved in the nucleon decay process are indeed small and this can

be guaranteed through a new family symmetry respected by the underlying

string physics [37]. This is the strategy that must be adopted in the case

of the MSSM with the Z2 matter parity. The second possibility is that

the symmetries forbid the theory should have a symmetry which kills the

dimension 5 operators once and for all. In this case one is left with the

dimension 6 operators as the dominant source of nucleon decay. A very

simple realization of this is given by the Z3 Baryon parity which, while

allowing lepton number violating processes at renormalizable order, forbids

both dimension 4 and dimension 5 baryon number violating operators.

So far as the implications for low energy phenomenology, the need to

inhibit proton decay leads to two distinct possibilities which are character-

ized by the differences between models based on Z2 matter parity and Z3

baryon parity. In the case of matter parity all the new SUSY states are all

odd so they appear quadratically in the Lagrangian with the important phe-

nomenological implication that the super-partners of Standard Model states

can only be produced in pairs and that the lightest supersymmetric parti-

cle (LSP) will be absolutely stable and indeed a candidate for dark matter.

Both baryon and lepton number violation occurs through dimension 5 oper-

ators suppressed by only a single inverse power of the unification mass giving

strange particle final states for nucleon decay.

In the alternative case of Z3 baryon parity, nucleon decay is first given

by dimension 6 operators. In the flavored case that the string theory does

not have a stage of unification below the compactification scale such nu-

cleon decay processes will be too slow to measure. On the other hand the

LSP is now unstable leading to many more possibilities for low energy SUSY

phenomenology [38] because the LSP may now be charged as it does not con-

tribute to dark matter. For example in a large region of the parameter space

the stau, the supersymmetric partner of the tau lepton, is the LSP. This

means the usual signature for supersymmetric particle production, namely

large missing transverse energy carried by neutral weakly interacting LSPs

which escape detection, is absent as essentially all the energy associated with
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superpartner decay ends up in charged matter. it will be important to search

for such processes at the LHC.

Of course one of the most interesting aspects of the MSSM is that it

does produce a dark matter candidate and that for a range of the parameter

space the dark matter abundance is consistent with observation. Models

with Z3 baryon parity alone do not have a dark. matter candidate and so

in them the source of dark matter is uncertain. In fact it is easy to keep

the advantages of both Matter parity and Baryon parity if the string theory

possesses an underlying Z2 × Z3 discrete gauge symmetry. In this case the

leading proton decay amplitude is dimension 6 but the LSP is stable as in

the MSSM and the LSP is a dark matter candidate. Moreover there are

no dimension 4 lepton number violating terms, again as in the MSSM. The

direct SUSY signals of this model will be the same as the MSSM, the only

phenomenological difference is the absence of nucleon decay mediated by

dimension 5 operators. Given the magnitude of the unification scale it is

unlikely nucleon decay from dimension 6 operators will be visible in this

scheme.

5.2. Supersymmetry breaking

One of the essential ingredients leading to a successful prediction of gauge

coupling unification is the presence of new supersymmetric partners of the

Standard Model states. Their spectrum is determined by soft supersymme-

try breaking terms and this largely determines the supersymmetric signals

to be expected at the LHC. Remarkably the condition that the precision

prediction for the gauge couplings should not be spoiled severely limits the

possible supersymmetry breaking mechanism. The reason is that one cannot

add even complete SU(5) multiplets of states to the theory without changing

the prediction for the gauge unification. This means that the messenger sec-

tor, which communicates supersymmetry breaking to the Standard Model

states, should not involve gauge non-singlet states, even in complete multi-

plets. To quantify this we note that the effects of multiplets belonging to

vectorlike 5 + 5 representations or 10 + 10 representations is determined by

n where n = (#5 +#5 + 3#10 + 3#10)/2. For moderate n, n . 7, the main

effect is to increase αs, taking it further from the experimental value. The

effect is dependent on the mass of the new states but goes up to αs = 0.137

in the limit the unified coupling (which is made larger by the new states)

is just in the perturbative domain [39]. The value of the unification scale is

increased but this effect is largely cancelled by the increase in the value of

the unified coupling which in turn increases the string prediction for the uni-
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fication scale. For larger n the increase in the strong coupling can be a little

less but typically the unified coupling enters the non-perturbative domain

making the prediction for the unification scale problematic [40]. Overall the

net effect of the new states is to worsen the fit to the unification predictions

and to reduce the accuracy with which this prediction can be made.

Thus to preserve the accuracy of the predictions for the gauge coupling

and the unification scale one must have supersymmetry breaking messenger

mechanisms which do not involve gauge non-singlet fields. This suggests

gravity mediation. One possible mechanism is anomaly mediation. However

in this case one must be careful to solve the lepton tachyon problem by a

mechanism that does not introduce gauge nonsinglet fields too [41]. To date

the most promising suggestion is through the addition of the anomalous part

of a D−term associated with a new UX(1) symmetry (e.g. X = B − L). If

the underlying theory is a string theory this UX(1) should be gauged. To

avoid the decoupling of the D−term the symmetry cannot be broken at

a high scale. To avoid conflict with the non-observation of a new gauge

symmetry one then has to make the gauge coupling, gX , anomalously small.

As a result one can only get the required magnitude of the anomalous part

of the D−term through a tuning of the anomalous term ξ such that gXξ is

the supersymmetry breaking scale. Since there is no reason for this choice

we consider this mechanism to be unlikely, disfavor anomaly mediation as

the only effect. This then leaves the usual gravity mediated mechanism. In

this case the usual assumption is that the gravity is flavor blind and at the

Planck scale the gaugino masses are all equal to one common scale, M1/2,

and squark, slepton and Higgs masses are equal to another common scale,

M0 (These are both expected to be of order the gravitino mass m3/2 =

Λ2/MP lanck where Λ is the supersymmetry breaking scale). A study of

soft scalar mass terms in simple orbifold heterotic string compactifications

yielded the form

m2
i = m2

3/2(1 + ni cos
2 θ) , (32)

where ni are the modular weights of the scalar fields, m3/2 is the grav-

itino mass, and the goldstino angle θ parameterizes the contribution of the

F−terms of the dilaton and radius moduli fields S and T (assuming for sim-

plicity a common radius) to SUSY breaking. An acceptable vacuum struc-

ture is inconsistent with the dilaton dominance limit (θ = π/2) [42] and so

one must consider the contribution of the T field. However as can be seen

Eq. (32) this need not be family independent so the usual flavor blind super-

gravity assumption does not necessarily apply in string compactifications. In
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this case another constraint may be necessary, the most plausible being that

there is a non-Abelian family symmetry forcing the flavor blind structure.

This leads to a more general parameterization of the SUSY spectrum than

is assumed in the SUGRA case but one in which the flavor changing neutral

current effects are still within experimental limits. The extended parameter

space this opens up can lead to interesting new phenomenological signals for

supersymmetry [43].

5.3. Flavor changing processes and the structure of quark

and lepton mass matrices

One of the striking features of the properties of matter states is the hi-

erarchical pattern of quark masses and mixing angles and the hierarchical

pattern of the charged lepton masses. In the Standard Model this structure

is put in by hand but in a more unified theory one hopes the structure will

emerge naturally. There have been various suggestions for generating this

structure. One possibility is that there is an underlying family symmetry

which, when unbroken, allows only the third family to acquire a mass. The

symmetry is then spontaneously broken by one, or more, familon fields θ

which carry family quantum numbers and generate the Yukawa couplings

and associated mass matrix structure through higher dimension operators

of the form coming from the superpotential W given by

W =

(
θ

M

)αij

HaQLiq
c
Rj . (33)

Another suggestion is that the hierarchy is generated through a spatial sep-

aration of the matter and Higgs fields in one or more of the compactified

dimensions [44, 45],

Yijk = hqu

∑

~n±∈HD
2 (M,∪aΠa,ijk)

d~n e−
Aijk(~n)

2πα′ e−2πiφijk(~n). (34)

The meaning of the various terms is defined in [45] but the most important

contribution comes from the exponentiation of Aijk(~n), which is the target-

area of the “triangle” with vertices at the location in the higher dimensional

space of the three participating fields. The Yukawa couplings will then have

an exponential suppression as the separation between the fields becomes

large, corresponding to the need to stretch the string between participating

states.

In both these cases the requirement we discussed in the previous section

that supersymmetry breaking should be mediated by gravity leads to the
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conclusion that the structure of Yukawa couplings is significantly restricted.

The reason is that Yukawa couplings giving rise to quark and lepton mixing

between different families also gives rise to flavor changing neutral currents

(FCNC) and (flavor conserving) CP violating effects which are known to

be strongly suppressed. In supersymmetric theories these effects can be

significantly enhanced because the squarks and sleptons also contribute to

FCNC.

For the case the Yukawa structure comes from a broken family symme-

try a very significant source of such effects comes from the fact that the θ

field(s) acquire non-vanishing F−terms, Fθ = βm3/2 < θ > . A study of var-

ious models shows that the expectation is that β = O(1) [46, 47], although

in models with numerous intermediate scales of symmetry breaking a sup-

pression is possible. The F−term then induces trilinear soft supersymmetry

breaking terms

Aij Ŷ
ij = F ηK̂ηY

ij + αij
eK/2

M

(
θ

M

)αij−1

βm3/2θ (35)

with K̂η = ∂K̂/∂η where K is the Kähler potential and Y ij = eK/2(θ/M)αij

are the Yukawa couplings. From Eq. (35) we see that, in any model which

explains the hierarchy in the Yukawa textures through non-renormalizable

operators, the trilinear couplings are necessarily nonuniversal. Moreover,

due to the factor αij these trilinear terms are not diagonalized at the same

time as the Yukawa couplings and hence the fermion masses are diagonalized.

They thus give rise to FCNC. Moreover, even in the most conservative case

where all soft SUSY breaking parameters and µ are real, we know that the

Yukawa matrices contain phases O(1). If the trilinear terms are nonuniversal,

these phases are not completely removed from the diagonal elements of Y A

in the SCKM basis and hence can give rise to large EDMs [47, 48].

The most significant bound on the Yukawa couplings is provided by the

mercury Electric Dipole Moment (EDM) bound. In particular it imposes

a significant constraint on the Yukawa coupling matrix elements below the

diagonal in the (3, 1) and (3, 2) positions. This is particularly interesting

because these are the terms responsible for right handed mixing which are

very poorly constrained in non-supersymmetric theories due to the absence

of right-handed weak currents. Moreover in SU(5) based models the (left

handed) neutrino mixing angles are related to the down quark right handed

mixing angles.. Demanding that the terms of Eq. (35) do not violate the

experimental bounds on the mercury EDM constrains the (3, 1) and (3, 2)

elements to be ≤ O((θ/M)3) and ≤ O(((θ/M)2) respectively and means they
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should be no larger than the (1, 3) and (2, 3) elements It is also in conflict

with SU(5) based models for large neutrino mixing angles being relates to

large down quark right-handed mixing angles.

The trilinear couplings implied by Eq. (35) also contribute significantly

to quark and lepton flavor violation. With the Yukawa coupling necessary to

generate the fermion mass structure the b → sγ rate should be close to the

present bound. Even more interesting is the lepton flavor violation process

µ → eγ. If there is an underlying relation between charged lepton and down

quark mass matrices we expect off diagonal elements in the charged lepton

Yukawa couplings which will lead to lepton flavor violation. To generate the

correct muon and electron mass we follow Georgi and Jarlskog’s suggestion

and put a relative factor of 3 in the (2, 2) entry. We also put a factor of 3

in the (2, 3) and (3, 2) entries as is required by non-Abelian models which

seek to explain the near equality in the down quark mass matrix of the

(2, 2) and (2, 3) elements. With this to keep µ → eγ at the level of current

experimental bounds requires a slepton mass greater than 320 GeV. At this

level µ → eγ should be seen by the proposed experiments in the near future.

Although we have concentrated on the case there is an underlying family

symmetry organizing the fermion mass hierarchy, similar conclusions apply

in the case that the fermion hierarchy is generated through a spatial sep-

aration of the matter and Higgs fields in one or more of the compactified

dimensions. The reason is that, as discussed above, the T field is expected to

acquire a significant F term. Due to the target area dependence the matrix

of Yukawa couplings of Eq. (34) has different T dependence in different ma-

trix elements and this induces trilinear soft supersymmetry breaking terms

which are not diagonalized when the masses are diagonalized and are similar

in magnitude to those just discussed. The general conclusion is that unifica-

tion schemes involving low scale SUSY, which we have argued are essential

to the success of the gauge coupling unification prediction, leads to FCNC

and CP violating process just at the present experimental limits.

6. Summary

Gauge coupling unification provides the only quantitative indication of

physics beyond the Standard Model suggesting an underlying unified theory.

The precision is such that requiring that it not be spoiled by heavy threshold

effects severely limits the nature of the underlying theory. In the case of a

string theory it requires that the inverse of the compactification radius be

very large and close to the string or Planck scale to avoid power law running

in the evolution of the couplings. This effectively rules out all models with
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large new space dimensions.

The fact that the gauge unification scale lies tantalizingly close to the

Planck scale provides some evidence that this unification extends to include

gravity. The original prediction of the unification scale in the weakly coupled

heterotic string failed by an order of magnitude. However the prediction did

not include the threshold effects associated with the massive string states

and the unification scale, being related the argument of the logarithm in the

gauge coupling evolution, is much more sensitive to such threshold effects

than the prediction for the gauge coupling. Although the precise calculation

of the correction awaits the construction of a fully realistic string theory, it is

possible to estimate the magnitude of the threshold effects using an effective

field theory approach. Remarkably this indicates that, if the breaking of the

underlying unified gauge symmetry is via discrete Wilson lines, the correction

to be expected systematically reduces the string prediction for the unification

scale. This can readily bring the prediction into good agreement with the

value needed for gauge coupling unification without spoiling the precision of

the relation between the gauge couplings.

It is also possible determine the nature of the supersymmetric extension

of the Standard Model (SSM) from the condition it should come from a string

theory and also maintain the accuracy of the gauge coupling prediction. The

condition that nucleon decay should be within experimental bounds suggests

the MSSM needs to be modified. One possibility is that there is a new

family symmetry which suppresses nucleon decay. In this case the dominant

nucleon decay mode is into strange particles. A second possibility is that the

dimension five nucleon decay is forbidden by a new symmetry such as baryon

parity. In this case nucleon decay will be too slow to observe. However

baryon parity allows the LSP to decay so supersymmetric phenomenology

can be quite different from the MSSM; for example a charge lepton may be

the LSP so missing momenta signals do not apply. It is also possible that

both R-parity and Baryon parity are symmetries of the SSM in which case

the phenomenology will return to that of the MSSM but proton decay will

be unobservable.

Gravity mediated supersymmetry breaking is favored by the requirement

that the precision prediction for gauge couplings be preserved. However the

requirement that this breaking be flavor blind is questionable in the context

of the underlying string theory. A non-Abelian family symmetry can force

the flavor blind structure and leads to a more general parameterization of the

SUSY spectrum than is assumed in the SUGRA case but one in which the

flavor changing neutral current effects are still within experimental limits.
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Finally µ → eγ and dipole electric moments are likely to be very close to

the present bounds. Keeping them under control in a theory with SUGRA

mediated supersymmetry breaking strongly constrains the Yukawa structure

and suggests the existence of a family symmetry. The constrained Yukawa

structure limits the magnitude of the right handed mixing angles and is

incompatible with explanations for large neutrino mixing relating it to the

down quark right handed mixing.

It is encouraging that future experiments at the LHC and experiments

looking for rare processes will be able to detect such signals which provide

some further, albeit indirect, evidence for unification. This will only be

the tip of the iceberg for the measurement of the detailed supersymmetric

spectrum and properties will undoubtably shed further light on the nature

of the underlying theory.
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