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In this article we discuss gauge/string correspondence based on the non-critical strings
With this goal we present several remarkable sigma models with the AdS target spaces.
The models have kappa symmetry and are completely integrable. The radius of the AdS
space is fixed and thus they describe isolated conformal fixed points of gauge theories in
various dimensions. This work is dedicated to the memory of Ian Kogan.

Soon after the proposal for gauge/strings correspondence [1] and its spec-
tacular implementation in A = 4 Yang-Mills theory [2] (which was also
based on the earlier findings [3]) it has been suggested that some non-
supersymmetric gauge theories may become conformal at a fixed coupling
[4,5]. The conjecture was based on the one loop estimate of the 3 function
in the AdS, ® S, sigma model in the non-critical string (p + ¢ < 10). The
effective equations of motion have been shown to have a solution with a
particular values of the radii of AdS, and S, .

Unfortunately this regime takes place at the curvatures of the order of
the string scale where the one loop approximation can be used only as an
order of magnitude estimate. Still, the counting of the parameters in [5]
makes this result plausible. More recently this conjecture was discussed in
the zero dimensional model [6].

In this letter I will take the next step and give further arguments that the
above sigma models are conformal. They are also shown to be completely
integrable.

The bosonic part of the AdS sigma model is the familiar action for the
unit vector field 7 which in this case is hyperbolic, satisfying the relation
72 = —1 This hyperboloid is embedded in the p + 1 dimensional flat space
with the signature (p,1) or (p — 1,2) depending on whether the dual gauge
theory is assumed to be in the Euclidean or Minkowskian spaces. It is
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convenient to use the Cartan moving frame, defined by
dn = B%", (1)
de® = A% — B
Here the vectors ey, a = 1,...p, are orthogonal to n. The one forms B* =
A®PFT1 and A% form a zero curvature connection with the value in SO(p +
1). Gauge symmetry related to A%’ corresponds to the rotation of the e—
vectors by the SO(p) group and thus we treat 7 as an element of the coset

space SO(p+1)/SO(p) . The Maurer -Cartan equations (the zero curvature
conditions) are

dB® = A®RB (2)

dA® = = [AA]"* — B*B’,

1
2
where all the products are the exterior products of 1-forms.

The gauge invariant Lagrangian for the 7 - field has the form

1
L:%BZBE}H

where v is a coupling constant and the SO(p) gauge symmetry is explicit
since there are no derivatives in this expression. The first variation of this
action is

68 ~ / BV w? (3)
where
0B% = Vow® = dpw® — A%,
That gives the equation of motion
VoBS =0. (4)

In order to calculate the f—function we have to calculate the second variation
of the action

628 ~ /vawavaw“—éAg”big = /Vanwa+(wawb—w25ab)B“Bb, (5)

where A% = w*B?—w®B% is the corresponding gauge transformation. Using
the fact that (ww®) = 52%’ log A, where A is a cut-off, we obtain the divergent
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counterterm defining the S-function

AS =L

log A / BBt . (6)

We brought up here this 30 years old derivation because when done this
way, it has a direct generalization for the case of interest. Before coming
to that we need one more recollection — the Wess-Zumino terms and their
contribution to the § - function. In the bosonic case the WZ terms exist only

for p = 3 which corresponds to the coset gggg' In this case we construct a

™

3-form (following Novikov and Witten)
Q3 = e"“B*B"B°, (7)

where the exterior product of 1-forms is used.

It is obvious that due to the structure equations this form is closed. It
is also not exact. This last statement requires some explanation. In the
compact case its meaning is obvious — one can’t represent (23 = df)o with
the non-singular 2. But what is the meaning of this in the non- compact
and in the supermanifolds? The definition of cohomology which we will
adopt below is as following. We assume that the 3-form is not exact if one
can’t find €29 which can be locally expressed in terms of connections. This
definition is motivated by the renormalization group, as we will see below.

The key to the renormalization properties is the variation of 3. Under
the gauge transformation we find

603 = e¥¢d(w*B"B°) . (8)
Hence
6Syw 7 ~ ede / w*BbBed*¢ . (9)
The second variation gives
828y 7 ~ e“bceaﬂ/wavawb3§d2§. (10)

This term generates log A in the second order in B which has an opposite
sign to (6). Choosing the action in the form

S 1(/B2d2§+f<a/Q3 (11)

we find the the G-function

B(y) = — 21— k%) + ... (12)
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In the compact case the coefficient £ must be quantized and thus (according
to the standard argument) can not renormalize. In the general case we can
modify this argument by saying that the counter-terms must depend on the
connection locally, and thus can not create a cohomologically non-trivial {23 .
There is a nice interplay between the cohomology (in the sense above) and
the renormalization.

In the bosonic case the above construction of the conformal 7i-field theory
is limited to the group SO(4) since there is no invariant 3-tensors in higher
dimensional case ( H 3(5287(;)1)) = 0 ). In the superspace the situation is
different.

Our main goal is to find the Wess-Zumino terms in the various super-

spaces of both critical and non-critical dimensions, which will provide us
with the conformally invariant 7i-field theories on the world sheet, corre-
sponding in the hyperbolic cases to various gauge theories in space-time.
The “critical” case of AdSs x S5 has already been examined in the impor-
tant work by Metsaev and Tseytlin [7 |. Our approach in this case leads to
some drastic simplifications, while consistent with their results.

Our first non-trivial example is based on the supergroup OSp (2 | 4). Its
bosonic part Sp(4) ~ SO(3,2) acts on AdS, thus describing some 3d gauge
theory. It also has the R-symmetry SO(2). This is a simplest choice because,
as we will see below, there is no closed 3-forms without R symmetry (as in
OSp(1|4)) and the case of the simpler supergroup OSp (1 | 2), which was
recently considered in [6 |, is somewhat degenerate and may require special
consideration.

Roughly speaking, the extra invariant tensors in the superspace are sim-
ply the elements of ~-matrices, while the invariance conditions is given by
the famous v —+ identities [8]. The set of connections in OSp (2 | 4) contains
as before 1-forms B* = A% and A® where the latter is the gauge connec-
tion for SO(3,1) (a =1, ...4); directions 1 and 5 are assumed to be time-like.
This set is complemented with the 2 gravitino 1-forms, ;, ¢ = 1,2; each
form is also a size 4 Majorana spinor. Finally we have a connection C' of the
R-symmetry SO(2). The Maurer-Cartan equations have the form (they are
easily read of the standard commutation relations of the OSp algebra [9] )

dB" = A B" + iy "1, (13)
dAab — %[AA]ab _ BaBb _|_E,7abwi ’

dipi = (" A® + B ) + Ce Ty,

dC = 61']'@7#]' .
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The closed 3-form which replaces (7) in this case is given by
Q3 = e By ;.

Here v% = i[v“vb] and v is the set of four real gamma matrices; everywhere
the antisymmetric product of differential forms is assumed.

The form Q3 has explicit gauge symmetry under SO(3,1) x SO(2) and
thus defined on the coset space S()?:’ff)i%())(m
using the above relations. First of all, due to its explicit gauge symmetry

. Let us now calculate d {23 by

the terms containing A%and C' will vanish trivially. The non-trivial part is
related to two identities. First, from the dB term comes the contribution

dQs = (V" vi)e™ (Pry ") + ... (14)
It can be rewritten as a sum of terms like
(17" 91) (¥17°X) (15)

where Y = 7°¢3. Since the product of 1 forms is cyclicly symmetric, this
expression is precisely the v — v identity [8] and is equal to zero. Another
dangerous term comes from the pieces dip = y*B%) + ... and dip = — B2,
its contribution is given by

Qs = € B (v 7 dipy — dipy v 1) (16)

(the minus in this formula comes from the fact that we are differentiating
1-forms). By plugging in the above expression for di) we see that we get zero
(due to the presence of 4°). In the simpler case of OSp (1 | 4) this would not
be possible since the expression with 4° is identically zero and without it
the contribution (16) wouldn’t cancel. Let us also notice that our WZ term
is parity-conserving, since the effect of 4 is compensated by the orientation
dependence of the exterior products.

One might think that we found a cohomology but this is not the case.
It is easy to see that Q3 = dQy, where Q5 = €74)'y547. The v — v identity
turns out to be a part of the Jacobi identities for OSp (24).

Now we can chose the action for our sigma model in a remarkably simple

form
1
S = o (/Bngd2g + H/QQd%) : (17)

The next step is to find the first and the second variations of this action. As
in the bosonic case we have to consider the change of €29 under infinitesimal
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gauge transformations. These transformations are given by

B = Vw® + ,7%;, (18)
51#% = Veg; + ’YaBaé‘i + ’Yawad)i .

The bosonic field w® and the fermionic fields ¢; (which are two Majorana
spinors) will become the degrees of freedom of our sigma model. The varia-
tion of the )y is given by

8 = € (w Py’ + By v e + d(1hin’e;)) - (19)

The last term doesn’t contribute to the action and the equations of motion
take the form

VaBS + Keape? 0"y i3 =0, (20)
V' Bithia + Keage” Bay "y iz = 0.

To calculate the G-function we need the second variation of the action. It
is sufficient to find it in the background fields for which all the fermionic
components are set to zero. As a result, the answer is a sum of two terms
one of which is quadratic in w and given by (5), while the other is quadratic
in €. It is convenient to pass to the complex notations, ¥ = 11 + i) , and
to introduce left and right components of a spinor, 1 = H% YL, + 1_% YR.
We also set kK = 1 since , as we will see, this is necessary for conformal
symmetry. It is straightforward to vary (17) and to find the second variation
of the action. In the Weyl notations it is given by

628 ~ / (eLB4V_ep +ErB_Viep + 1By B_eg)d*¢, (21)

where B =y*B°.

In order to calculate the J-function it is sufficient to treat the case in
which the background B are constant matrices. This is follows from the fact
that the counterterms can’t contain the gradients of B , which would have
higher dimensions. Another constraint on the string-theoretic background
is that the energy- momentum tensors are zero

Tir =B =0. (22)

This condition implies that our Lagrangian is degenerate and we must fix
the xk-symmetry. In the present context it is quite simple. Redefine the fields
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and matrices in the following way

Bi = /BBy, (23)
1
er,r = (B{BY) 1¢rR,

where {v;,7_} = 2; 73 = 0. Just as it is done in the light cone gauge,
we can impose the conditions on ¢, which kill one half of its components.
Namely we take y_¢1, = 0;7+¢r = 0. With these constraints the action (21)
takes the form

55~ [ (615401 + 0k on+ Ghon-+ o) [B1BY ) . (20)

It is instructive to count the number of degrees of freedom in this case. We
see that after fixing the xk-symmetry we are left with the two left movers and
two right movers (we are counting real components of the spinors). On the
bosonic side we have four d.o.f. coming from the AdS; which are reduced to
two by the Virasoro constraints. So, there is a match between bosons and
fermions.

The contribution of fermionic fluctuations to the S-function comes from
and only from the second order iteration of the mass term

/ 0% (8}, r(0) Bl () ~ og A (25)

It has an opposite sign to the (6) and cancels it. Beyond one loop we need
a more general argument, since our action is cohomologically trivial. Let us
return to the first variation of the action and write it, using Weyl’s notations,
in the form

55:/(wL_§+aL+¢R+§_gR) d%¢. (26)

The k-symmetry of this action is immediately seen by setting e; =
§+/<a_ ; ER = B_ k4 . We obtain the contribution proportional to the world
sheet energy-momentum tensor T4+ = (B%)? which can be canceled by the
shift of the world-sheet metric. This symmetry will be lost if we gener-
ate a counterterm explicitly dependent on the metric. Thus the non-zero
G -function, which introduces an explicit dependence on the Liouville field,
must be forbidden. This, however, is not conclusive since we can’t exclude
an anomaly in the k-symmetry. While we lack a complete proof, let us add
another argument in favor of conformal symmetry. The variation of the ac-
tion (33 ) doesn’t depend on v and 1r— . This independence persists to
the second variation. Perhaps one can prove it in all orders. If this is the
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case, conformal symmetry follows immediately. Indeed, the logarithmically
divergent counterterm must contain terms like 1 p_1 7, and thus can’t ap-
pear. Notice that conformal symmetry of the familiar WZNW model can
be proved by the very similar argument. However, at present the conformal
symmetry is still a conjecture.

It is important to realize that before fixing x-symmetry the model is not
renormalizable. At the first glance it seems strange since both bosonic and
fermionic connection entering (17) have dimension one and thus the coupling
constant is dimensionless. On the other hand, even in the flat space the
GS action contains quartic fermionic terms with derivatives which naively
would give power-like divergences. Similar terms appear in our formalism if
we continue the loop expansion by the further variations of the action. The
reason for this discrepancy is that the leading term in the kinetic energy for
the fermionic excitations vanishes. Indeed, while 1) ~ de, the term (d¢)?
is absent from the action due to the properties of the Majorana spinors.
Instead we get a kinetic terms with first derivatives only (in contrast with
the bosonic part). As a result, the UV dimension of ¢ is 1/2 instead of zero.
This is the source of the power-like UV-behavior. These power-like counter-
terms are quite unusual — by dimensional counting they are seen to contain
negative powers of the background field B.

After fixing the k-gauge most of the non-linear terms should disappear.
We know that it happens in the light-cone gauge in the flat space and in the
leading UV order the curvature is irrelevant. However, in general the right
choice of the k-gauge and renormalizability is a non-trivial problem. I plan to
analyze it in a separate article. Let us stress that explicit renormalizability
may depend on the gauge choice . For example, the Nambu action of the
bosonic string is renormalizable in the conformal gauge and apparently non-
renormalizable in the Monge gauge.

These consideration show that only k-symmetric actions are allowed. An-
other reason for that is the fact that in the Minkowskian space-time the
Green-Schwarz fermions contain negative norms and these are eliminated by
the k-symmetry.

It is interesting to notice that k-symmetric models are completely inte-
grable. In the critical case AdS5 x S5 it was known for some time that this
model has a hidden symmetry ([16] and A. Polyakov (unpublished)). In the
non-critical case this is also true and can be demonstrated in a very simple
way. Generally, hidden symmetry follows either from the Lax representa-
tion or from the zero curvature representation with the spectral parameter
A [17 ]. In the latter case we need to construct a family of A -dependent
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flat connections, such that at A = 1 they coincide with our original set (13),
while the flatness for other A imply the equations of motion. Let us do it
for OSp(2]|4). The relevant zero curvature equations in the complex Weyl
notations have the form

ViB% = V_B} =911 + Y7 *"Yr, (27)
Vit =Vt = Bypp- — B_try
Vitpe —V_tppy = Bypp— — B_ipp .

Now, let us introduce the spectral deformation of these connection in the
following way

B_.=\B_; B,=\!'B,, (28)

1 1
YR+ = A2Ypy; Y+ = A 24,

while all other connections remain unchanged. These deformations preserve
the zero curvature conditions if the following equations of motion are satisfied

VB = ¢py"r; V_BL = ¢ 71, (29)
By =0;B_t¢p =0,

which are just the equations of motion for the OSp(2[4) model. Notice
also that if the fermions are set to zero we get the standard zero curvature
representation for the 7 -field and the sine-gordon equations [17 ]. Existence
of the A-dependent flat connections easily leads to the infinite number of
conserved currents [17].

In principle with these formulae one can start the heavy machinery of the
inverse scattering method. But even in the bosonic case this is not straight-
forward because of the possible quantum anomalies. We will not proceed
with it here and only notice that this hidden symmetry must manifest itself
in the spectrum of the anomalous dimensions.

The above scheme generalizes to the sigma models on AdSs describing 4d
gauge theories. In this case the relevant supergroups are SU(2,2 | N). The
bosonic part of it is SO(4,2) x U(N) (for N = 4 the right factor is SU(4)).
It is convenient to use Majorana representation of SO(4,2) provided by
the 8 x 8 real y-matrices. The conjugation rule in this case is ¢ = ¢T3,
M = BIMT 3 where 8 = v'9% (we assume that 1 and 6 are the time-like
directions). The odd matrices under this conjugation consist of vpq, Ypgrs
v7 (they form the algebra Sp(8), all other tensors are even. The Cartan-
Maurer equations are almost the same as before. We will write explicitly
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their fermionic part only

dip, = (Cry 4+ iV D))y + ..., (30)
dB* = 7"k + ...,
dA™ = Pyl +

dCry = yth + ...,

_ 1.
Dy = Py 1 = 0k Un + -

where C' is antisymmetric and D is symmetric in k,{. The U(N) connection
is just C' +¢D.

Let us discuss now the WZ term. Its form depends on the type of the
supercoset space we are looking for, that is on the part of the R-symmetry
group which we want to gauge. This choice must be consistent with the
k—symmetry. The general expression for the 2-form defined on AdSs is
given by

Qo = Y (BM + i FFYyy (31)

where E and F' are some antisymmetric matrices.

Since we do not have a general classification of all possible matrices, let
us discuss some interesting examples. First of all the simplest supergroup is
SU(2,2 | 1) which is the symmetry of the N'=1 Yang-Mills theory. In this
case the WZ term doesn’t exist, (s vanishes because % is an even matrix
and the result must be antisymmetric. For the case N'=2 we have a natural
action with E* = e Tt is easy to see that this differential form is invariant
under the subgroup SU(2) of the R-symmetry (which is described by the
traceless part of the above connection) and under SO(4,1) transformations
of space-time (this symmetry is explicit in (31) ). As a result, the Goldstone
modes will as before include bosonic fluctuations w® with a = 1...5, two
Majorana 8-spinors ¢ and also the U(1) remainder of the R-symmetry, the
angle a. Thus our action is describing a sigma model on AdSs x S;. The
gauge variations needed to derive the equations of motion are given by

S = V(B + W) + €97 (Cey + any) + Ve, (32)
0B* = Vw® + Ek’}/a65k s
6C =Va+ eklﬂkfy?a .

We see that in order to have k-symmetry the action must have the form

1

=5

((Ba)2 +C% 4 92) d2¢ . (33)
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It is convenient at this stage to replace the Majorana 8-spinors by the Weyl
4-spinors. With these modifications the first and the second variations are
the same as in the previous case except that the spinors are larger and the
extra connection C'is added. Once again we have a Fermi-Bose match: there
are 6 bosons from AdS5 x S7 reduced to 4 by the constraints and 4 physical
fermions.

Our next example is the group SU(2,2 | 4), the case already examined
in [7]. As is well known the R-symmetry in this case is reduced to SU(4) ~
SO(6). It is convenient to introduce the Clifford algebra of O(6) which allows
the Majorana representation with the purely imaginary antisymmetric 8x8
matrices which we will call g, n = 1,...,6. We will now repackage the
set of Y, k = 1,...,4 connections (each of which is a Majorana 8-spinor of
SO(4,2)). We consider a set of 64 Majorana fields ¥ which are direct product
of 8-spinors in SO(4,2) x SO(6). The Weyl condition, which reduces the
number of fields to the desired 32 is given by v737¥=W. The set of bosonic
connections is simply doubled. We have to find now the WZ-term. As we
saw before, we need an antisymmetric tensor to write the needed 2-form.
The key observation is that it is provided by the matrix 3%. The 2-form
with the right properties is

Qy = U390, (34)

This form is explicitly invariant under SO(4,1) x SO(5) rotations forming
a gauge group. The full action is remarkably simple

1

=5

The key difference (apart from the different choice of variables) with [7] is
that in this paper the WZ term was written as 3-form. Here we notice

(B2 +(C™? +0s) . (35)

that this 3-form is exact and this greatly simplifies the matter. Let us also
notice that in [7] the authors worked with the pair of the Majorana-Weyl
16-spinors, Ly and Lo . In this variables (linearly related to ours) the form
QQ = fl L.

We will not repeat the calculations of the second variation and of x-
symmetry, since they are practically identical to the derivations given above.
So far we discussed only the S-function, but for string theory we also must
have a correct central charge ¢(v) = 26 . In principle this relation determines
the value of v and thus fixes the curvature of AdSs5. In the corresponding
gauge theory this means that unlike N’ =4 Yang-Mills theory we are dis-
cussing the 4d theories with the isolated zeroes of their (4d) S-functions. It
is clearly important to calculate ¢() . In the WZNW model this problem has
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been solved long ago. In the present case we still lack the necessary tools. All
we can do at the moment is to find this function at v — 0. In this limit the
bosonic part of the action gives a contribution simply equal to the number
of degrees of freedom. However there is a subtlety with the fermionic part.
The action (21) in the UV limit looks like the action for the world-sheet
fermions. The latter have central charge % . So naively one should get ¢ = %
(number of fermi-fields). This counting is wrong (see also related comments
in [10]). To get the right one, let us notice that the dependence on the Li-
ouville field in this Lagrangian appears through the Pauli-Villars regulators.
We introduce heavy fermions y with the mass equal to the cut-off A. The

mass term in their Lagrangian has the form

Spy ~ A/ew Xx d*¢, (36)

since these fermions are scalars from the world-sheet point of view. For
standard world-sheet fermions, which are spinors we would get e factor in
the corresponding expression. Since the central charge is the coefficient in
front of the Liouville action which is quadratic in ¢, we conclude that the
right formula for ¢ in the limit of zero coupling is ¢ = ( np+2np) , in which
the contribution of the GS fermions is four times larger than the central
charge of the world-sheet fermions. In the case of the flat 10d space that
indeed gives ¢ = (10 + 2 x 8) = 26 (after the k-symmetry is gauge fixed, we
remain with 8 fermions in each direction).

The sigma models we described, provided that the conjecture of conformal
invariance is correct, describe gauge theories in various dimensions. Some
more work is needed to identified their matter content. In most cases known
today, this issue is resolved by appealing to the D-brane picture in the flat
space and then replacing the D-branes by the corresponding fluxes. This
approach works for the weak coupling when the supergravity approximation
is applicable. However , as was stressed in [4], D-branes, while useful, are
neither necessary nor sufficient for the gauge/strings correspondence.

In general one has to analyze the edge states of the sigma model. As was
argued in [1], they are described by the open string vertex operators and cor-
respond to the various fields on the gauge theory side. Such operators can be
studied at the weak coupling, although even that is non-trivial. These calcu-
lations have not been done so far. The only thing we know at present is the
symmetry of the above models. To avoid confusion one should clearly distin-
guish the explicit symmetries of the above actions and the global symmetry
of the theory. The explicit symmetries are in fact gauge symmetries coming
with the coset space. They are related to the right supergroup action. On
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the other hand our Lagrangians are written in terms of the left-invariant

connections. Thus the global supergroup SU(2,2|N) of left multiplications
50(3)
50(2)
the explicit symmetry is SO(2), while the global symmetry is SO(3) ).

is not visible but definitely present (even in the standard bosonic case

At the same time there is a simple way to pass to the non-supersymmetric
models. It was pointed out in [4] that for the gauge/strings correspondence
it is necessary to eliminate the open string tachyon from the edge states. The
minimal way to achieve it in the NSR formalism is to exploit the non-chiral
GSO projection leading to the Type 0 strings without supersymmetry. The
closed string tachyon may be either of the “good variety” [4] in which case
it is harmless or of the bad variety, corresponding to the relevant operators
on the gauge theory side. In the latter case the gauge theory requires a
fine-tuning to be conformal.

In the present context the Type 0 construction in the Green-Schwarz
formalism corresponds to the summation over the spin structures for the GS
fermions (recall that in the standard supersymmetric case one must take only
positive spin structures). The summation preserves modular invariance and
projects out the states with odd number of GS fermions (see an alternative
discussion in [11] ).

Above we discussed only the simplest supercosets. They are cohomolog-
ically trivial and for that reason we couldn’t prove non-renormalization of
the WZ term. They also contained no free parameters. It would be very
interesting to find cases without these limitations. A free parameter must
appear in the theories describing gauge fields with the fundamental matter.
In this case the sigma model must contain a parameter Ny/N. . It is inter-
esting to notice that the structure some simple supergroups indeed depends
on a free parameter [9].

Conformal gauge theories described above may find various applications.
They are useful for the further decoding of the gauge/strings correspondence,
in particular for testing of the strong coupling limit which I will discuss
elsewhere. One might also think of using 3d conformal gauge theories for the
holographic description of the early universe. Another interesting problem
related to the above models is QCD with ¥ = 7. However, first we must learn
much more about their dynamics (after all we didn’t really proved that the
[-function is zero and didn’t compute the central charge).

After I wrote this paper I learned (from A. Tseytlin) that the quadratic
form of the WZ term has some history [12-14] and especially [18]. I refer the
reader to these valuable papers. However, neither our models nor the issues
of conformal symmetry have been discussed before. Also, the supercoset
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models were analyzed in [15] in the Berkovits formalism. Relation of this

impressive paper to the present one is unclear to me.
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