September 2, 2004 11:33 WSPC/Trim Size: 9.75in x 6.5in for Proceedings polchinski

FINITE DENSITY STATES IN
INTEGRABLE CONFORMAL FIELD THEORIES

NELIA MANN

Department of Physics,
University of California,
Santa Barbara, CA 93106, USA

JOSEPH POLCHINSKI

Kawvli Institute for Theoretical Physics,
University of California,
Santa Barbara, CA 93106-4030, USA

We study states of large charge density in integrable conformal coset models. For the
O(2) coset, we consider two different S-matrices, one corresponding to a Thirring mass
perturbation and the other to the continuation to O(2+¢€). The former leads to sim-
plification in the conformal limit; the latter gives a more complicated description of the
O(2) system, with a large zero mode sector in addition to the right- and left-movers. We
argue that for the conformal O(2+2M|2M) supergroup coset, the S-matrix is given by
the analog of the O(2+¢) construction.
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1. Introduction

The AdS5 x S° background of IIB string theory is highly symmetric, and
one might hope that the string world-sheet theory in this background would
be exactly solvable. However, because of the presence of R—R flux, the usual
tools such as current algebra are not available. In Ref. [1-4] it was shown that
the world-sheet CFT has an infinite number of nonlocal conserved charges
of the type that arise in integrable models, at least at the classical level (see
Refs. [5-7] for further developments). There has been some discussion of the
combination of integrability and conformal invariance [8-10], but thus far
there are no methods with the power and generality of current algebra or
rational conformal field theory. Thus, for the AdS5 x S° world-sheet theory,
and more generally for CF'T’s based on supermanifold sigma models [11-16],
there is no known way to calculate the energies of general world-sheet states.

In this paper we would like to take small steps in this direction. There
are well-established methods for calculating the energies of states with
large densities of a conserved charge, starting from the exact continuum
S-matrix [17-22]. We would like to examine the conformal limit of these
calculations, and then apply them to the conformal OSp(2+2M|2M) coset
model.

In Sec. 2 we develop the conformal limit of the finite density system.
The calculation separates into decoupled right- and left-moving calculations,
which are simpler than in the nonconformal case. As a warmup we apply
this first to the case M = 0, the bosonic O(2) model. In Sec. 3 we use the
normal Thirring description of the O(2) model, which has a simple massless
limit. In Sec. 4 we consider a different description of the O(2) model, as the
N — 2 limit of the O(N) model. This gives a different S-matrix, describing
the bosonic spins of the O(2) model rather than the Thirring fermions. The
limiting process seems to be sensible but the result is more complicated than
previous examples of conformal integrable models, in that there is a large
and nontrivial zero-mode sector in addition to the right- and left-movers. In
Sec. 5 we argue that the OSp(2+2M|2M) model should be given by the
lift of the second description of the O(2) model. Section 6 discusses further
directions.

Of course, there has been an explosion of work on integrability from the
gauge theory side of the AdS/CFT duality, beginning with Refs. [23, 24].
At present, it appears that progress in this direction is much easier than
on the string sigma model side. However, it seems likely that a perspective
from both sides of the duality will ultimately be useful. We should note
that states with large spin have considered extensively on the gauge theory
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side as well (e.g. [25,26]; for a review see ref. [27]). Also, there have been
efforts to derive the string sigma model directly from the spin chain on the
gauge theory side [28-34] and to relate the integrable structures on the two
sides [35,36]; we do not know if there is a connection with our work.

2. Finite Density in the Conformal Limit

We start with a 14+1 dimensional relativistic theory, whose exact S-matrix is
assumed to be known. We are interested in the the lowest energy state with
a specified charge and momentum, so we consider the case that we only have
particles of one type, with a given sign of the charge, and that all states are
filled in a range of rapidities —Bj, < 8 < Br. We then have the standard
Bethe ansatz equation [37,38],

Br
m cosh 6 + KO —0)p0)do' =p0), —-Br<0<Br. (1)

-By,
Here p is 27 times the density of particles per unit length and unit rapidity,
so that the number density per unit length is given by the rapidity integral

Br
g-L / p(6)d . ()

2 —By,

The kernel is

K(6) = % 9510 S(6) | 3)
where S(0) is the S-matrix between two particles of the given type. Note that
the integral equation holds only in the range —Bj, < 6 < Bpg in which p(6)
is nonzero. The equation is complicated because this range is bounded on
both ends. It can be analyzed using the Wiener-Hopf technique [18-20,22],
but in general cannot cannot be solved in closed form.

Now let us take the limit m — 0, holding fixed the momentum. For right-
and left-moving particles,

=Cer h=0p+In"—

pr = msinh 6 ~ % 0

=
1
2

Mzmsinh@%—%e’e:—E —br HZéL_lnﬁa (4)

where p is a fixed reference scale. Thus we hold fixed éR, 1, in the limit. We
assume that in the massless limit the density separates into a right-moving
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part which is a function of 0k and a left-moving part which is a function of
HLI
pr(Or) = lim p(0r +1Inp/m)

pr(Bi) = lim p(By —Inpfm) (5)

Since the S-matrix depends only on rapidity differences, the RR and LL
S-matrices are the same as the original S-matrix,

Srr(0—0)=S,.(0—0") = lim SO —0) . (6)

m—0
On the other hand, for right- and left-moving particles the rapidity difference

is diverging in the limit and so?

Spr(0 —6') = lim lim S(6) . (7)

The Bethe ansatz equation then separates into two pieces, which are obtained
by holding 0g or 07, fixed as m — O:

Br

geé v | K(—8)pr(@)d0 = pr(d), —oco <8< Bg,
Lol | K@-0)pu(@)df =pr(0) . —Bu<b<oo, (8
—-Bj,

where B R, = Bpr,r —Inp/m is fixed in the limit. There is no RL cross term
because 0y S vanishes at large rapidity for all cases of interest.

Because the original rapidity range Br + Br, diverges in the limit, the
right- and left-moving rapidity ranges are each bounded on only one side,
and these integral equations can be solved in closed form. We follow the
Wiener-Hopf technique, as described for example in the appendix to [18]
and in [21]. Focussing on the right-moving equation, we write it as

. . Br - .
9(0) = pr(0) + [ K(0—0")pr(0')dd" = X(0) , (9)

where X (6) is nonvanishing only for @ > Bg. Here g(f) = %/wéH(BR —0),

where H denotes the step function. Taking the Fourier transform ffooo df eiw?

& We are assuming here that the limits m — 0 and § — oo commute. This will be true for the
Thirring S-matrix studied in Sec. 3, which is simply independent of m, but it will not be true for
the limit in Sec. 4, which will require a more complicated treatment.



September 2, 2004 11:33 WSPC/Trim Size: 9.75in x 6.5in for Proceedings polchinski

Finite Density States in Integrable CFT’s 1369

on both sides gives

§(w) = [1 = K(W)]pw) = X(w) - (10)
Because of the bounded ranges of pgr, g, and X, it follows that

~ inR

PR(W) =e€ PR— (w) ;
j(w) = e*Prg_(w)
X(w) = e*PrX, (), (11)

where the subscripts 4+ denote functions which are holomorphic in the upper
and lower half-planes respectively. These functions also vanish asymptoti-
cally in the half-planes where they are holomorphic, because pgr, g and X
have finite discontinuities at Bp.

Given a bounded function ¥(w) which vanishes at w — 400, we can
define

1 *© dw U(W
Uy (w) =+—lim W (o)

27 6—0 J_oo W' — (w £ 1) (12)

These are holomorphic in the upper and lower half-plane respectively, and
moreover ¥(w) = ¥4 (w) + V_(w). The operations [ ]+ act as projection

operators, in that [f_]+ = 0 and [f_]— = f—. Applying this to In[1 — K (w)]
(which vanishes asymptotically for smooth K(#)), it follows that we can
write
1— K(w) : (13)
— W)= —— ,
Gy (w)G—(w)

where G4 (w) are holomorphic and nonvanishing in the upper and lower half-
planes respectively, and approach 1 asymptotically. The integral equation
can thus be put in the form

) —Glg () - Gy X () (14)
Taking the [ ]_ part (12) eliminates the unknown function X, (w),® giving
o) g @ (15)

b This is the point where the simplification due to a semi-infinite range enters. Otherwise there
would be a second unknown function X_ (w), and an additional step would be needed, leading to
an integral equation that cannot be solved in closed form.
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Finally, using the explicit form g_(w) = ,ueBR /2(1+1iw) allows us to evaluate
the contour integral explicitly, giving

p e+ BrG (i)G_ (w)
2(1 +iw)

pr(W) =

(16)

The rapidity density pr(6) is obtained from the inverse Fourier transform,
but the quantities of main interest are given directly by pr(w). The total
charge density carried by the right-movers is

1 & N 1 .
=5 | on(@d =5 pr(0)
T J oo 2
peln
47

G (1)G_(0) . (17)

This determines Bg in terms of Jx. The total energy and momentum den-
sities are

o P T vai = P s
E—P—4W[mepmmde 2 ()

(2e2Br

GG (i) . (18)

In general K(6) = K(—0), and so G4+ (i) = G_(—i). Then we can write

Wj}%

¢=P= G 06_0)

— - KO)x T} . (19)
Similarly, for left-movers
E=-P=[1-KO)|xJ} . (20)

The relation between the energy and charge thus depends only on the total
change in the phase of S from # = —oc to 6 = .

Note that we have discussed only densities in a system of infinite volume.
In a finite volume system there will be corrections, Casimir effects. Obtaining
these from the infinite volume S-matrix which is our starting point is a
difficult problem for which there is only a partial solution; we will comment
on this further in the conclusions. For the bulk of this paper we focus on the
infinite volume case, or equivalently on the leading high-density properties
in a system of finite volume.
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3. The Massless Thirring Model

The fermionic and bosonic descriptions of the Thirring model are
S= [ o |ibrron + 507 - i (21)
and
S = —/dQZL' [2;2 0" § + m cos (b] : (22)

The field ¢ is normalized to have periodicity 2w, so that a fermion corre-
sponds to a kink A¢ = 27. The Thirring fermion-fermion S-matrix is [39]

= I?(gwﬂ. N 8:/9) ookt Ry, (0) R, (i) (23)
where
Ry, (0) = F(Qn%w i 876>F<1 tonT A ¥) — (24)
F([2n + 1%+ %)P(l +[2n— 18 + 879)

Only when the Thirring mass is nonzero can this be interpreted as an S-
matrix in the usual sense, but even in the massless limit it can be used
sensibly in the Bethe ansatz [8]. The S-matrix contains a dimensionless
parameter vy which is related to the couplings in the fermionic and bosonic

description by [39]
ST ATy (25)
Y ™ g

In particular, v = 87 and ¢g? = 47 is the free fermion theory.
The Fourier transform of the kernel is fairly simple,

: qw _ mw
51nh(16 5 )

K(w) = . 26
(@) 2sinh —X‘g cosh &* (26)
Thus
~ 1 87 47
1-KO)==z(1+—)=— 27
=5 (1+¥) =% (27)

and so the energy and momentum densities are

872 872
5+7>:gi2j,%, 5—7>:gi2j5. (28)
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On the other hand, canonical quantization gives
1 :
E£P =5 (@ £,  T1=9/g" (29)
g

in the bosonic description of the massless theory.

There is an obvious correspondence between the integrable and canonical
results (28) and (29). However, it is slightly subtle to understand directly
the relation between the quantum numbers Jg, J7, of the integrable descrip-
tion and those of the canonical description. In the latter, there are two
conserved charge densities. The topological charge density %qb’ is the total
fermion number density; this follows from our normalization of the field ¢
to periodicity 27. Thus we identify Jr + Jr, = %qﬁ' . The Noether density
211 is the chiral fermion number density; the normalization follows from the
fact that e**® are fermion bilinears. We will see that this quantum number
is more subtle to identify in the integrable case. The conserved fermionic
charges are

1/1
NR’L:2<27T¢ iQH) . (30)

We can now make two quick checks. For the parity-symmetric state Jr =

JL = ﬁ !, the chiral density II vanishes and in this case the energies (28)
and (29) agree for all g. For the free-fermion case g? = 4, the fermions in

the integrable and canonical descriptions are the same,

JIrr =NgrL (¢ = 4n) , (31)

and with this the energies (28) and (29) match at the free fermion point.

To match the quantum numbers in general, let us start at the free fermion
point and consider an adiabatic variation of g. The densities (30) are con-
structed from the topological and Noether densities without g-dependence,
and so are invariant. In terms of these, the canonical energy/momentum
density (29) is

272 2
2

S:I:PIg[(NR-FNL):I:;fT(NR—NL) . (32)

To follow the quantum numbers in the integrable case, let us back up one
step to the ‘undifferentiated’ Bethe ansatz

R 2m™n

1 /B
msinh9+,/ InSO—0)p@)d0' =~—, —-Br<60<Bgr. (33)
2mi J_p L

L
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We have introduced a finite volume L; n is an integer labeling the particle
states. Eq. (1) is obtained from this by taking the difference for consecutive
values of n. All states in the range —n; < n < npg are filled; the rapidity
endpoints Bpg 1 are implicitly determined in terms of ng . At the free
fermion point we can immediately identify the number densities

n
NR,L = }z’L . (34)

Both Ng 1, and ng 1, are adiabatically invariant, so this holds for all g. Con-

sider Eq. (33) in the conformal limit, taking g — —o0:

1 [ o1 [Br Lo o
57 | - nScrp(6)d0 + o— In Sppr(—00)pp(0)dd" = —

2 J_p, TS oo L Moo
B (é’)dé'+1/BR1ns @)do = 2T,
omi |_p, LL\(0)py, omi ). RLPR 7 NG, oo -

(35)

This determines the density Jgr, because the total number of filled right-
moving states is

LIr=nr—mg,_ . - (36)
Noting that
1 1 1 -~ 1 4
 Spp= -1 )= K(0) =2 |1- %
5 0 SLr 5 WSrr(—00) = 5 K(0) = 5 [ g2] ;@37

the integrals (35) just involve the total densities, giving

1 47
2[1—f}(JL—JR)ZNR—JRZJL—NL, (38)
where the last equality follows from a similar calculation for the left-movers.
Then
1 g?
JRIL = 3 (Ng+Np) £ o Nr—NL)| - (39)

With this identification of quantum numbers the energy/momentum den-
sities (28) calculated using the integrable description do indeed reduce to
those (32) obtained in the canonical description.

Again, the canonical currents (30) are conserved under adiabatic varia-
tion of g, but the currents Jgr  are anomalous. The Bethe equation (33)
determines # as a function of n and g. As we vary g at fixed n, states move
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to the lower end of the right-moving spectrum and reappear on the upper
end of the left-moving spectrum — there is a spectral flow.

So far we have focused on the case that only a band of particle states is
filled, so that Jr and [J;, are positive. However, it is clear from Eq. (39)
that as we vary g one of these, say Jr, may go to zero. What happens
next is different in the nonconformal theory, for arbitrarily small m, than in
the conformal theory of interest: the massless limit does not commute with
adiabatic evolution. In the massive theory, when a left-moving particle state
passes through zero rapidity it becomes a right-moving particle state, so that
after the last left-moving particle has passed through zero we end up with
a bounded interval of filled positive rapidity particle states. In the massless
case, when a left-moving particle state passes through zero it become an
empty left-moving antiparticle state. After the last filled left-moving state
passes through zero, empty left-moving particle states pass through to be-
come filled left-moving antiparticle states. Thus, negative values of Jg 1, and
pr.1, signify filled antiparticle states.

The derivation of the conformal Bethe ansatz equations (8) assumed par-
ticle states, but in fact these equations continue to hold. The particle-
antiparticle reflection amplitude Sk goes to zero at large rapidity and the
particle-antiparticle transmission amplitude S7 goes to a constant [39], so
the right- and left-moving equations continue to decouple. Thus these equa-
tions apply for any signs of Jr and Jr,, as long as all right-movers are of the
same type, and similarly all left-movers.

4. The N — 2 Limit of the O(IN) Coset Model

In the classic study of O(N)-invariant S-matrices [39], the case N = 2 re-
quired a separate treatment from N > 2. For example, the minimal O(2)
S-matrix (23) contains the free parameter 7, while there is no free parameter
for N > 2. Thus the N = 2 S-matrix cannot be thought of as a limit from
N > 2. However, we will argue in the next section that in order to treat the
supergroup coset we need the analog of the NV — 2 limit of the S-matrix of
the O(N) sigma model. We can think of this as corresponding to a different
massive perturbation of the conformally invariant O(2) model, turning on a
nonzero G-function at N = 2+¢ rather than a nonzero fermion mass as in the
Thirring description. Of course, it is not clear a priori that this procedure is
physically sensible, but we will try it and see. We find that the N — 2 limit
of the Bethe ansatz appears to exist, but that it is more complicated than
the conformal limits encountered thus far.
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The sigma model action is
1 A A L
S=—5g [ Feoupdd Fei=1, i=1 N (1)

For N = 2, o' 4 ip? = €® gives the bosonic action (22) at m = 0. The
coupling g runs for N > 2 but this running turns off in the limit, so by
appropriately scaling the energy as we take N — 2 we can obtain different
fixed values of g. The g-function is

3 5
B —(N-DFG) . Flo)=-T-Lel @

The coupling thus runs at a rate proportional to N — 2,
po_2m _
(N—2)lna:?—f—lngz—l—const.—l—... =x(9) , (42)

where m is the dynamically generated mass scale. Identifying pn ~ E ~ mel?l,
we see that when we hold E and g fixed as N — 2, the dynamical mass m
goes to zero, and also we must hold fixed |0] — x(g)/(N — 2). That is, we
focus on a rapidity region where the coupling takes a specified value ¢ in the
limit.

The S-matrix for the O(N) sigma model decomposes into three terms

k6,10 in) = Sy;.;(0 —0)|i6,56";0ut) ,
Sk1,ij(0) = 6ij0rioy (0) + 6irbj105 (0) + dudjros (0) (43)

where Ui’:2,3(9 — 0') are given in Ref. [39]. As in the limiting process of
Sec. 1, RR and LL scattering involve finite differences in rapidity while RL
scattering involves rapidity differences that diverge in the limit, as 1/(N —2).
The O(N) sigma model S-matrix for same-charge scattering is S = o + 05,
which is

1 i0 1 1, i 1_ i i0
F(m - §7>F<m +at %)F(i - é?)F<§7)

1 i0 1 1_ i 1, i —if)
F(m + %)F(m t3- %)P(ﬁ + 57)%%)
The limit relevant to the LL and RR S-matrices is taken with fixed rapidity,

1 i i0
0 - T
o rGeR)r(E)

The limit relevant to the LR S-matrix is taken with rapidity proportional
to 1/(IN — 2), because the right- and left-movers are localized near 6 =

S(0) = (44)

= 51(0) . (45)
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+x(9)/(IN — 2). Thus we define

5 N1/2
m st/ -2) = (F50) e =0, o

and Srr = St(2x(g)). The coupling does not appear in Sr;, and Sgg, but
does appear in Sy g.

Now, however, we encounter an interesting complication. In the Thirring
model we had

SLr = SLL(é — OO) , SgrrL= SRR(G~ - _OO) > (47)

so the particle numbers in Eq. (35) satisfy NG oo = MG, oo That is, there
are no missing n’s between the right- and left-movers. In the present case,
this cannot hold in general, because Sgr and Sr; do not depend on the
coupling while Sgy, and Spr do. Thus, there is a range of n that correspond
to what we will call ‘zero mode’ states, in the large rapidity regime between
the right- and left-movers. If we solve the Bethe ansatz for NV > 2 and then
take the limit, the rapidity distribution must approach such a form. Thus
we generalize the earlier conformal limit (5) to®

pr(0R) = ]1}3120(512 +x(9)/[N-2]), —oco<0r<Bg,
pr(fr) = lim p(6r, — x(9)/IN =2]) . B <fr<oo,
po(¢) = ]lviLHQﬁp(C/[N— 2), —x(9) <C<x(g). (48)

Because the zero modes occupy a range of 6 of order (N —2)~!, their density
must be of order N — 2, and so we have included a compensating factor in
the definition of pg.

The right- and left-moving Bethe ansatz equations are exactly as in
Eq. (8), using K7 constructed from S;. In particular, the zero-modes do
not enter into these equations because the rapidity difference is large and
OpSt1 is of order N — 2. To write the zero mode equations we define

2%34 In S11(¢) = Ki(¢) = %5(6) + k()
k() = 47r21+<2 : (49)

©We can divide the rapidity range so that right-movers have 8§ > x — e~ !, left-movers have
0 < —x + ¢~ 1, and zero modes are in between. As long as € goes to zero as N — 2 but does so
more slowly than N — 2 itself (e.g. ¢ = /N — 2), one gets the indicated ranges for Og, 01, and C.
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Then

[ ke = ml¢rac + 2m[k(c ~ )Qn+ K +0Q1]) = 3 mlc)
—X

—x<{<x. (50)

We use Qr 1, here to distinguish these from the densities Jg 1, of the fermionic
description. The coupling g now enters into the Bethe ansatz equations only
through the implicit g-dependence of the rapidity range x.

The Bethe ansatz equations for prp and for pp separate from the other
components of p, while the total Qr and Qp give rise to inhomogeneous
terms in the pg equation. The zero modes do feed back into the undiffer-
entiated Bethe equation (33) which determines the total Qr and Q. The
energy of the zero modes is exponentially small in the limit, so the energy
and momentum come only from the right- and left-movers as in Egs. (19, 20):

E+P=n0Q%, E-P=70%. (51)

The zero modes affect the energy indirectly because they enter into the
determination of Qi and Q..

As in the previous section, the Bethe ansatz has been derived by taking
the limit of a state with particles only, but it can be extended to negative
rapidity densities. Using the expressions in Ref. [39], the particle-antiparticle
reflection amplitude Sg = o} + 03 vanishes for rapidities of order 1/(N —2),
while the particle-antiparticle transmission amplitude St = Uf + 0'; gives
a kernel which is equal to —k({). Therefore we can use the Bethe ansatz
equations (8, 50) freely for positive and negative densities as long as particle
and antiparticles are separated by rapidities of order 1/(N — 2). That is,
all the right-movers must be of one type, and all the left-movers similarly,
but the zero mode density may have a sign that changes as a function of
rapidity, since the typical rapidity difference for the zero modes is of order
1/(N —2).

The zero modes represent a substantial complication, because their rapid-
ity support is bounded in both directions. In fact, the kernel k is essentially
the same as that for the nonconformal O(3) model, and so the zero mode
equation can only be solved as a series in x or in 1/x [19]. We see from the
perturbative calculation (42) that the expansion in 1/x corresponds to small
g in the nonlinear sigma model. In the other limit, y — 0, the zero modes
disappear. Taking the case that Qr = Qr = Q/2, we have £ = 7Q?/4. On
the other hand, since the zero modes carry no charge in this limit we can
identify Q with the Noether charge II, in terms of which £ = ¢2I1?/2. Thus
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we identify g2 = 7/2 with y — 0. The N — 2 limit therefore can reach the
range of couplings

O<g2§g, 0>y>0. (52)

It is curious that we cannot reach all values of the coupling g; perhaps there
is some extension or continuation of our construction that makes it possible
to do so.

The expansion for small y is straightforward because the integral term in
the zero mode equation (50) is small in this limit and the equation can be
solved iteratively; also the kernel k£ can be expanded in {, which is of order
X One readily obtains

2 2 3 2 4
QO_(QR‘FQL){WXQ—FL—F[1—7;:|:6+[1—7;};{8+...}. (53)

Identifying the total Noether charge Qg + Qr + Qp = I, we can also write

3 4
QR+QL:H{1—X+?’>§T—6X7r6+ } (54)

If we take again the state with Qr = Qp = Q/2, matching the energies
7Q?/4 = ¢g2TI?/2 as in the previous paragraph gives

2 2 4
= 1—21+X—+i X (55)
2 3rt  w

Thus we obtain the functional relationship between the coupling (radius) in
the O(2) theory and the parameter y which governs the N — 2 limit of the
rapidity difference between the right- and left-movers, in the neighborhood
of g% ~ /2.

For states with Qr # Qr we could again use the undifferentiated equa-
tion (33) in order to identify the quantum numbers, but a simple shortcut
is to notice that the momentum density P = 7(Q% — Q2)/2 = II¢' is adia-
batically invariant. We then have

2¢ I 2¢' Qo
_ - - Yy =0
Qr—Qr Qr+Qp 7 [ +QR+QL]
¢/ 2 7.‘.2 X3 7-‘-2 X4
{ +++[1_3]7r6+[1_2]7r8+'” . (56)

The 1/x expansion is more involved, and the conformal limit appears no
simpler than the general case. We therefore simply take the N — 2 limit of
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the known O(N) result. Using Egs. (13,22, 23) of Ref. [20], with IT = 0f/0h
and x = (N — 2)B, gives

& T T

Equating this to the canonical result g?/2 and solving for x leads to
2w 4
X:—2+ln92—|—lnf—|—.... (58)
g 7r

In particular, this reproduces the two-loop result (42).

The results (55,58) just give the relation between the parameter g of
the canonical description and the parameter x of the integrable description.
Once this relation is known, one can use the integrable description to calcu-
late physical quantities, such as the spectrum of excitations. Of course, in
this case the canonical description is vastly simpler.

5. The OSp(2+2M|2M) Coset Model

In Sec. 3 we solved free field theory in a difficult way, and then in Sec. 4
we solved it in an even more difficult way. We can now take these efforts
and apply them rather directly to a conformal theory which is not free, and
not solvable by the usual methods of chiral algebra. The OSp(N +2M|2M)
coset model has the action

1 . . o
S = 2 d*x J;j0,0 0t Tl = 1. (59)

The components (' have statistics
commuting: 1<i< N4 2M |
anticommuting : N +2M +1<i< N +4M , (60)
and J;; is

Ingorr 000
0 0 —In| . (61)
0 Iny O

J

Consider an amplitude in which only the first NV bosonic fields are present
in the external states and operators. The remaining 2M bosonic fields and
the 2M fermionic fields appear only in loops, and by drawing the graphs in
single-line notation (or introducing an auxiliary field to make the integral
over ¢ gaussian) it becomes evident that these M-dependent contributions
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cancel. Thus these amplitudes are independent of M, and are the same in the
supergroup model as in the bosonic O(N) sigma model [40,41]. In particular,
the S-matrix for states involving only the first N bosonic components is
identical to the O(N) result (43). But then there is a unique OSp(N +
2M|2M )-invariant extension [16],

|k6,10";in) = Sy, ;(0 —0)|i 0,5 6; out)
Sk1ij(0) = Tz o (0) + dindjioy (0) + (—1)P*Pibdydiray (0) , (62)

where p; is 0 when ' is bosonic and 1 when it is fermionic. This S-matrix
is not unitary, but preserves an indefinite inner product built from J.

We can now take the N — 2 limit as before, and in this way obtain
the Bethe ansatz for the conformally invariant OSp(24+2M|2M) coset. The
finite field calculations in Ref. [19,20] and in Sec. 4 involve only one O(2)
charge and so lift directly to the OSp(2+2M|2M) coset [16] — for states
with only a single O(2) C O(2+2M) charge the energy reduces to that of
the O(2) theory and so can be calculated in free field theory. Now, however,
we can go on to consider more general states, having charges in more than
one O(2) subgroup of OSp(2+2M|2M). We will leave the detailed study of
these states for future work.

Why not can we not lift the simpler massless Thirring S-matrix of Sec. 3 to
OSp(242M |2M)? The difficulty is that the Thirring fermions have no simple
transformation property under OSp(2+2M|2M). They are spinors under
the first O(2) C O(242M) but are neutral under the commuting O(2)’s, so
they do not even lift to a spinor representation of OSp(2+2M|2M). Thus
the Thirring description does not seem useful for the supercoset.4

6. Discussion

We have found (Sec. 2,3) that for some integrable theories, the conformal
limit leads to simplifications in the Bethe ansatz. For others (Sec. 4) it
does not. Unfortunately, the supergroup coset OSp(2+2M|2M) appears to
be of the latter type. It is conceivable that there is a simpler description
of this model; different massive perturbations of a given conformal theory
define different bases of states and so different S-matrices. However, we
suspect that in the present case there may simply be a certain irreducible

dR. Roiban has independently pointed out another difficulty. If we simply lift the Thirring S-
matrix as in Eq. (62), treating the Thirring fermions as vectors of OSp(2+2M|2M), it does not
satisfy the Yang-Baxter equation. The existence of an S-matrix (23) containing a free parameter
~ depends on identities that are special to O(2) and do not lift to OSp(2+2M|2M).
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complexity to the integral equations that must be solved.

Since this work is ultimately directed at a better understanding of the
AdS/CFT duality, let us list the steps that would be needed to reach this
goal. First, one must find the S-matrix having the appropriate symmetry, for
example PSU (2,2|4), and the appropriate degrees of freedom. This S-matrix
is likely to be similar in complexity to the OSp(2+2M |2M ) S-matrix. In our
case we were aided by having a family of nonconformal theories whose limit
we could take; perhaps given this example one can determine the S-matrix for
other conformal supergroup theories directly. Second, one must understand
how the BRST ghost degrees of freedom of the world-sheet theory enter into
the integrable description, and how the BRST charge acts on the states in
the integrable description.

Third, to obtain a complete integrable description of the spectrum one
must go beyond the large-field case and understand finite volume effects. The
problem is that continuum S-matrices such as those that we have used are
defined with reference to the infinite-volume vacuum. Putting the system in
a finite volume changes the vacuum (for example there is a Casimir energy)
and so changes the excitation energies and the S-matrix.® This poses a great
difficulty, and so for the most part finite volume energies are understood
only for the ground state [42] and for twisted sector ground states [43—46],
via a world-sheet space-time duality and the Thermodynamic Bethe Ansatz
(see however Ref. [47]). The other approach to finite volume energies is to
find a discretized version of the integrable theory, for which there is a trivial
ferromagnetic vacuum, and build the theory around this vacuum (for work
on discrete supercoset models see ref. [15]). We had hoped that the large-
charge states such as those that we are considering could play the role of
such a ferromagnetic vacuum but directly in the continuum theory. However,
these still have low-lying excitations and long-range correlations, and so they
are not as simple as would be needed.

For the OSp(2 4+ 2M|2M), or its continuation to OSp(2,2M|2M) there
is the interesting question as to whether the large-curvature limit ¢> — oo
has any simple dual description; in the AdS/CFT case this is the limit
where the dual field theory becomes weakly coupled. Finally, we believe
that our most interesting result is the nature of the N — 2 limit of the

€ One gets wrong answers if one simply ignores this and forges ahead. The simplest example is
the state of a single fermion with n units of right-moving momentum. The naive Bethe ansatz
would give energy 27n/L independent of g (this is trivial, since the S-matrix does not enter). On
the other hand, the CFT calculation using has explicit g-dependent terms involving the fermion
charges (or the momentum and winding, in bosonized form).
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O(N) and OSp(N + 2M|2M) theories: this limit seems to be sensible, but
has a nontrivial zero mode sector in addition to the right- and left-movers.
Some of the features that we have found may arise in other approaches to
the integrability of supergroup models.
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