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The bulk partition function of pure Chern–Simons theory on a three-manifold is a state

in the space of conformal blocks of the dual boundary RCFT, and therefore transforms

non-trivially under the boundary modular group. In contrast the bulk partition function

of AdS3 string theory is the modular-invariant partition function of the dual CFT on

the boundary. This is a puzzle because AdS3 string theory formally reduces to pure

Chern–Simons theory at long distances. We study this puzzle in the context of mas-

sive Chern–Simons theory. We show that the puzzle is resolved in this context by the

appearance of a chiral “spectator boson” in the boundary CFT which restores modular

invariance. It couples to the conformal metric but not to the gauge field on the boundary.

Consequently, we find a generalization of the standard Chern–Simons/RCFT correspon-

dence involving “nonholomorphic conformal blocks” and nonrational boundary CFTs.

These generalizations appear in the long-distance limit of AdS3 string theory, where the

role of the spectator boson is played by other degrees of freedom in the theory.
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1. Introduction

One of the most beautiful examples of a holographic correspondence is the
equivalence between three-dimensional Chern–Simons gauge theory and the
chiral half of a rational conformal field theory [1]. (For reviews see [2,3,4]).
We will refer to this as the CSW/RCFT correspondence. In recent years
a more ambitious example of holography has been investigated, that of the
AdS/CFT correspondence [5]. In this paper we discuss some aspects of the
relation between these two holographic dualities.

We expect to find a relation between the AdS/CFT correspondence and
the CSW/RCFT correspondence in the special case of superstring theories
on spacetimes of the form AdS3 × K7, where K7 is a compact 7-manifold.
The reason is that the low energy supergravity on AdS3 typically contains
gauge fields with Chern–Simons terms. This raises a puzzle when K7 is a
product of spheres, such as K7 = S3×(S1)4 or K7 = S3×S3×S1, because in
those cases the dual conformal field theory associated with the S1 factors is
in general not a rational conformal field theory. The present paper resolves
that puzzle.

In this paper we examine in some detail the holography of the massive
abelian gauge theories that appear in the AdS/CFT examples we have just
cited. At long distances these theories are dominated by the Chern–Simons
terms. We will show that the partition function of these theories has a kind of
factorization into “non-holomorphic conformal blocks,” which transform in a
finite-dimensional representation of the modular group. They are associated
to a theory of a nonchiral boson, consisting of the usual chiral boson plus an
antichiral “spectator”, and have a continuously variable radius. We think
this is an interesting extension of the standard holographic duality of CSW
theory to the chiral half of a rational conformal field theory.

Let us describe our results in some more detail. In section 2 we review
the well-studied example of a single massive abelian gauge field with action
[6,7]

S =
∫

1
2e2

dA ∗ dA− 2πikAdA . (1.1)

(Here it is in Euclidean signature; our conventions are spelled out in the text
below.) The partition function of the theory is a product of two factors; one
factor is associated with a massive scalar field, and the other with a topo-
logical sector of the theory. We are mainly interested in the latter, although
we shall see that the effects of the first term do not entirely disappear at
long distances. The most natural way to study this theory – especially in



September 2, 2004 9:57 WSPC/Trim Size: 9.75in x 6.5in for Proceedings moore2

Chern–Simons gauge theory and the AdS3/CFT2 correspondence 1609

the context of AdS3 string theory – is to compute the path integral on a
three-manifold Y as a function of the boundary conditions on the metric
and gauge fields on X := ∂Y .

In this paper we focus on the quantization of the theory on a solid torus
with Dirichlet boundary conditions for the gauge fields. We consider the limit
of an infinite-volume torus (such as a quotient by Z of hyperbolic space). In
this limit we can study the partition function by studying the ground state
of the gauge theory on T 2. We do this by solving explicitly for the Landau
level wavefunctions in the quantization on the plane, and then projecting
onto gauge invariant wavefunctions, taking proper account of the Gauss law.
In this way we produce a finite dimensional space of wavefunctions, and the
partition function on the torus is a linear combination of these wavefunctions.

In the above approach it turns out to be important to include both chi-
ralities of the boson on the boundary, although only one of these couples
to the gauge field -this being the usual chiral boson of CSW theory. Put
differently, the partition function on the solid torus, in the limit of infinite
volume, is equivalent to that of a nonchiral boson with Euclidean action:

πk

∫
dφ ∗ dφ+ 4πik

∫
∂φ ∧A1,0 (1.2)

where φ ∼ φ + 1 and therefore the target space of the boson is a circle of
radius R2 = kα′. (We have assumed k > 0). The fact that we can even
speak of the radius shows that we must include both left- and right-movers.
We refer to the left-moving part of φ, which is invisible to A, as a “spectator
chiral boson.” Note that the spectator does couple to the conformal metric
on the boundary.

In section 3 we turn to the main model of interest here, namely the theory
of two abelian gauge fields with off-diagonal Chern–Simons coupling. The
action is:

Sa =
∫

1
2e2A

dA ∗ dA+
1

2e2B
dB ∗ dB − 2πikAdB . (1.3)

Our primary motivation is that this is the form of Lagrangian appearing in
the low-energy supergravity theory on AdS3 in the examples cited above, al-
though as we discuss at the end of this introduction, there are other potential
applications of our remarks.

The topological sector of the theory has two parameters, these are the
integer k and the real number µ := |eB/eA|. One might think that (1.3) is a
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trivial extension of (1.1) since one could introduce the change of variables

A =
1√
2µ

(A(+) −A(−)) ,

B =
√
µ

2
(A(+) +A(−)) ,

(1.4)

which gives two copies of (1.1), but with e2 → |eAeB|, and k → +1
2k for one

term while k → −1
2k for the other. It turns out that we do not get a trivial

extension of the previous theory, because of the quantization conditions on
the periods of A and B. The dual theory is a theory of two bosons, φA, φB

of period 1 with Euclidean action of the form S1 + S2 + S3 where

S1 =
πk

2

∫
µdφA ∗ dφA + µ−1dφB ∗ dφB (1.5)

shows the bosons have radius R2
A = 1

2kµα
′ and R2

B = 1
2kµ

−1α′ while

S2 = iπk

∫
dφA ∧ dφB (1.6)

shows there is a nontrivial B-field, for k odd, and finally

S3 = 2πik
∫ [

(A(−))0,1 ∧ ∂φ(−) − (A+)1,0 ∧ ∂φ(+)
]

(1.7)

gives the coupling to the gauge fields. In conformity with (1.4) we have
defined

φ(+) :=
1√
2
(µ−1/2φB + µ1/2φA) ,

φ(−) :=
1√
2
(µ−1/2φB − µ1/2φA) .

(1.8)

Note that φ(−)
L + φ

(+)
R is a nonchiral scalar coupling to the gauge fields, but,

for µ non-rational, it does not have a well-defined periodicity, as promised.
The radii satisfy a

RA

RB
= µ ,

RARB = k .

(1.9)

Although the boundary conformal field theory is not rational (when µ is not
rational), thanks to the quantization of RARB, the partition function on the

a In what follows, α′ = 2 unless noted otherwise.
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torus is always a linear combination:

Z =
∑

β∈Λ∗/Λ

ζβΨβ(A,B) . (1.10)

Here Ψβ(A,B) span a finite-dimensional space of states. They are propor-
tional to Siegel–Narain theta functions (defined in appendix A) associated
to the hyperbolic lattice Λ =

√
kII1,1, and

β ∈ Λ∗/Λ ∼= (Z/kZ)2. (1.11)

The Ψβ are also not holomorphic in τ , but do transform in a simple fi-
nite dimensional representation of the modular group. These higher level
theta functions generalize the familiar holomorphic level k theta functions
of RCFT. The case k = 1 is simply the modular invariant partition function
of a single compact boson.

In section 4 we show that our considerations easily extend to the most
general abelian Chern–Simons theory with gauge group U(1)d and action∫

1
2e2

λ−1
αβ dA

α ∗ dAβ − 2πiKαβA
αdAβ (1.12)

where 2Kαβ is an even integral nondegenerate symmetric matrix, and hence
defines a lattice Λ, while λαβ is a positive definite symmetric matrix. The
boundary theory, including the spectator chiralities, is a theory of d nonchiral
bosons. The metric for the bosons is determined by λαβ and Kαβ while the
B-field is

−2πi
∫ ∑

α<β

Kαβdφ
α ∧ dφβ (1.13)

Left plus right movers move in a target space VL ⊕ VR, where V ∼= Rd.
Using the data of both λαβ and Kαβ one constructs a projection matrix P±
on V which is compatible with the projection into left and right movers.
The bosons coupling to the gauge fields lie in VL,− ⊕ VR,+. The “spectator
chiralities” lie in VL,+ ⊕ VR,−.

Finally, the computations also generalize in a natural way from the torus
to higher genus Riemann surfaces.

Now let us discuss the relation to the purely topological CSW theory. In
the AB theory, the space of states spanned by Ψβ in (1.10) is k2-dimensional,
in harmony with a standard analysis of the pure Chern–Simons theory as-
sociated to the e2A, e

2
B →∞ limit of (1.3) [1,8,9,10]. Indeed, the topological

Hilbert space and the representation of the modular group are independent
of µ (and independent of λαβ in the higher rank case). Nevertheless, the
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path integral on the torus naturally introduces µ-dependence in the basis
of wavefunctions, and is essential in writing the path integral of the mas-
sive Chern–Simons theory. The dependence of the topological field theory
on µ is quite analogous to the dependence of the topological Hilbert spaces
H(X) associated to a Riemann surface X on the complex structure of X.
Because it is the fields A(+)

z , A
(−)
z which couple to the currents, the holomor-

phic polarization is more natural when using the AdS/CFT correspondence.
Indeed, the path integral on AdS3 with no operator insertions is in the state
(1.10) with ζβ ∼ δβ,0.

Our work touches on a number of other closely related investigations.
First it touches on an old problem in the CSW/RCFT correspondence. The
chiral half of an RCFT is only part of the data needed to construct the
conformal field theory, as stressed in [11,12]. Indeed, in general different
CFT’s can be made from gluing together the chiral parts using different
automorphisms of the fusion rules [12,13].b Thus, a vexing question has
always been: “How does one modify the CSW theory to incorporate both
left- and right-movers?” The present paper provides the beginning of an
answer to that question, at least in the case of abelian gauge theories.

The importance of including the kinetic terms ∼
∫
F ∗F in studying the

holography of abelian Chern–Simons theory was stressed by S. Carlip and I.
Kogan in their attempt to rewrite string theory as a topological membrane
theory [17]. They did not explain the role of left- and right-movers in the
way we are doing, but introduced this term to account for dependence on the
boundary conformal structure. More recently, off-diagonal Chern–Simons
terms have been discussed by Witten in [10]. In his discussion it is crucial
that the theory with k = 1 is “trivial.” What this means, in our context, is
that there is only one wavefunction Ψβ , and it transforms trivially under the
modular group. Indeed, as we have noted, the level 1 Siegel–Narain theta
function is simply the theta function appearing in the modular invariant
partition function of a conformal field theory of both left- and right-movers.

The present computations might conceivably find a use in condensed mat-
ter physics, where classification of quantum hall states involves the study of
general abelian Chern–Simons gauge theories [18,19,20,21,22,23,24]. Curi-
ously, for related reasons, massive Chern–Simons theories with two gauge
fields and opposite sign Chern–Simons terms have recently been recognized
as being important in condensed matter physics with a view towards quan-

b There are important subtleties in this statement which have been investigated in [14,15,16].

However they do not affect the very simple models considered in this paper.
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tum computation. See, for example, [25].c Also in [10] Witten pointed out
that the triviality of the AB theory for k = 1 has important consequences
for the classification of quantum Hall states. In the simple case where we
do not consider spin theories, the results of this paper, combined with the
Nikulin embedding theorem [26] show that abelian Chern–Simons theories
are classified by the signature of Λ modulo 24, together with the discriminant
form of the lattice Λ, where Λ is the lattice determined by −2Kαβ .

Finally, one motivation for the present work was a project involving the
AdS/CFT correspondence, so let us mention briefly here some implications
for the AdS/CFT correspondence. (Further details are in [27].) The rele-
vance of topological field theories to the AdS/CFT correspondence was first
discussed in [28]. The authors of [29] discussed in some detail the singleton
sector of supergravity theories in the AdS/CFT correspondence in a variety
of dimensions. We will improve on [29] in two ways. First, we show that the
Hamiltonian for the singleton is naturally chosen by using Dirichlet bound-
ary conditions for the second order system in the Euclidean path integral.
Second we show how one can discuss the radius of the singleton scalar.

We have studied here the simple free-field theory of abelian gauge fields.
In the AdS/CFT context these gauge fields couple to other degrees of free-
dom in the low energy supergravity. Nevertheless, based on simple consider-
ations of the decoupling of topological modes at long distance, we conjecture
that the full partition function of the string theory on AdS3 ×K7 can still
be written as

Zstring =
∑
β

ζβ
stringΨβ(A,B) (1.14)

where ζβ
string is A,B-independent, and Ψβ(A,B) are the same functions as in

(1.10). That is, the dependence on the boundary values of the U(1) gauge
fields is given by a wavefunction in the topological Hilbert space determined
by the free massive gauge theory. The essential difference from the massive
gauge theory (which is not a holographic theory, since it does not contain
gravity), is that ζβ

string only depends on boundary data. In [27] the conjecture
(1.14) is used to investigate the holographic correspondence for AdS3×S3×
S3 × S1.

c We thank Paul Fendley for pointing this out.
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2. Review of the standard case

The massive 3d gauge theory was analyzed in a classic paper [6,7] and the
topological sector of the theory was understood in [30,1,31,8,9]. We review
it here as preparation for the AB theory.

2.1. The classical theory

We are interested in studying abelian Chern–Simons gauge theory on a topo-
logically non-trivial 3-manifold Y . In this section, we focus on the simplest
example of such a theory, with U(1) gauge group, whose action is (in Eu-
clidean signature),

SE =
∫

1
2e2

dA ∗ dA− 2πikAdA . (2.1)

Here, the gauge connection A is a section of a principal U(1)-bundle over Y ,
normalized so that dA has integral periods and large gauge transformations
are A→ A+ω with ω a closed 1-form with integral periods. In order to ob-
tain the partition function of the Euclidean theory, one has to integrate over
the space of all gauge connections A (modulo the gauge equivalence) with
the measure e−S . Similarly, on the Lorentzian space-time with signature
(−,+,+) the action looks like

S =
∫
−1
2e2

dA ∗ dA+ 2πkAdA (2.2)

and the measure is given by eiS .
The coupling k is an integer if the Euclidean theory is to be well-defined on

all 3-manifolds. If we use spin bounding 4-folds then we can take kmin = ±1
2 .

The coupling e2 has dimensions of mass. Under a conformal rescaling
gµν → Ω2gµν of the 3-dimensional metric the first term in the action scales
as Ω−1, while the second is invariant. Therefore, we expect that at long
distances the topological term dominates. Note that in this sense the long-
distance limit is the e2 →∞ limit.

The equations of motion are

d ∗ F − 4πke2F = 0 . (2.3)

In the presence of a boundary we vary in a space of fields such that the two
form

δA ∧ (∗F − 2πke2A) = 0 (2.4)

vanishes when pulled back to the boundary.
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2.2. Solutions to equations of motion

We are interested in formulating carefully the phase space of the theory.
One way of formulating physical phase space is that it is the space of gauge
inequivalent solutions of the equations of motion.

In the present theory, thanks to linearity the space of (not necessarily
gauge inequivalent) solutions of the equations of motion is a product

S = Sf × Snf (2.5)

where Sf is the space of flat solutions F = 0. These are the solutions of
the topological sector. A = Af + Anf where Anf is orthogonal to the flat
subspace in, say, the Hodge metric.

More generally, on Y = X ×R, X compact we can take A = Af + Anf

where the nonflat component Anf is defined by saying it is orthogonal to ker d
in the Hodge metric. The space of solutions to the equations of motion is a
product. When X is noncompact one needs to include boundary conditions,
and the space of solutions might or might not be a product.

The main result of [6,7] is the “equivalence” of the massive gauge theory
to a theory of a massive scalar field. In our context this means that we
can identify the factor Snf with the space of solutions of the massive scalar
equation.

2.3. Hamiltonian Formalism

Let us work out the Hamiltonian formulation on a spacetime of the form X×
R, with metric −dt2 + gijdx

idxj and orientation dtdx1dx2. The canonically
conjugate momentum as a vector-density is (ε12 = +1):

Πi =
1
e2
√
ggij(Ȧj − ∂jA0) + 2πkεijAj . (2.6)

The action can be written as S =
∫
dtL with

L =
∫

X
ΠiȦi −H +

∫
X
A0

(
∂iΠi + 2πkεij∂iAj

)
(2.7)

where we find a Hamiltonian

H =
∫

X

e2

2
√
g
gijE

iEj +
1

2e2
F ∧ ∗2F (2.8)

where ∗2 is the Hodge star on X and

Ei := Πi − 2πkεijAj (2.9)
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(We will also denote Ei = Π̃i below.) The Gauss law is:

∂iΠi + 2πkεij∂iAj = 0 . (2.10)

That is, ∇ · E + 4πkB = 0.

2.4. Phase space and symplectic structure

There are two descriptions of the phase space, depending on how one works
with Hamiltonian reduction.

One way to formulate physical phase space is as the space of gauge in-
equivalent solutions of the equations of motion. This point of view makes it
obvious that the phase space is a product of the phase space for flat gauge
fields and for nonflat gauge fields, P = Pf × Pnf for the flat and nonflat
parts of the theory.

Another way to formulate the theory “upstairs” in A0 = 0 gauge is to
take phase space to be the cotangent space with coordinates (Πi, Ai) and
symplectic form:

Ω =
∫

X
δΠi ∧ δAi (2.11)

where δ is exterior derivative on the infinite dimensional phase space. Notice
that when (2.11) is restricted to the subspace of flat gauge fields, by (2.9)
we get second class constraints and the phase space is the Chern–Simons
symplectic form

Ωf =
∫

X
2πkδA ∧ δA (2.12)

This is gauge invariant on the subspace F = 0 and one may then perform
Hamiltonian reduction.

It is instructive to consider the e2 → ∞ limit. Using (2.8), we see that
if we restrict to finite energy field configurations then we must set Ei = 0.
Then, by the Gauss law we must put F = 0. As we have said, restriction to
this subspace imposes second class constraints and we are restricting to the
flat factor in phase space.

2.5. Quantization in the Schrödinger representation

If we quantize on phase space and then impose the Gauss law we have
wavefunctionals Ψ(Ai), and we quantize using the symplectic form (2.11).
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Thus

Πi = −i δ

δAi
. (2.13)

Since we can split A = Af +Anf and the Hamiltonian does not mix these,
the Hilbert space of the theory is naturally thought of as a product

H = Hf ⊗Hnf (2.14)

where Hf is the space of wavefunctions of flat potentials.
The Gauss law is:

Ψ(A+ ω) = e−2πik
R

ω∧AΨ(A) . (2.15)

This is valid also for large gauge transformations.d Here ω is a closed 1-form
with integral periods. Note that this does not affect the Anf variable.

2.6. Euclidean Path integral on the solid torus

We will determine the Hamiltonian for the singletons by considering the
Euclidean path integral of the theory on the solid torus, and then interpreting
that path integral in terms of Hamiltonian evolution in the radial direction.

Since our action is second order in derivatives, when formulating the
path integral on a handlebody Y we should specify all components of AX

on the boundary X. This is to be contrasted with the Chern–Simons path
integral which is a phase space path integral, and in which we specify just
one component of AX on the boundary X.

Let us consider the Euclidean partition function of the theory on a solid
torus with radius ρ denoted Yρ

∼= D×S1. We assume the torus has a metric
that behaves asymptotically like dρ2 +Ω2(ρ)gX . The path integral defines a
state ΨYρ(A) given by

ΨYρ(A) =
∫

dAY

vol(G(Y ))
e−

R
1

2e2
dA∗dA+2πik

R
AdA (2.16)

where G(Y ) is the gauge group on Yρ. We can understand the behavior for
ρ→∞ just from the above understanding of the spectrum.

d This requires explanation. The proper mathematical formulation involves regarding Ψ as a

section of a line bundle over the space of gauge potentials A(X) on X. We then lift the group

action, and find that a lift only exists when c1(P ) = 0. There is a canonical trivialization of the

line in this case, as well as a canonical connection, and the wavefunction becomes a function. A

similar discussion holds for the more subtle case of the M-theory C-field [32].
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We can view the evolution to large ρ as evolution in a Euclidean time
direction. The large ρ behavior projects onto the lowest energy states,

lim
ρ→∞

ΨYρ(A) = e−ρE0Ψ0 (2.17)

with Ψ0 in the space of ground states on the torus with energy E0. The
insertion of local operators such as Wilson lines or other disturbances induces
transitions between vectors within this space of ground states.

2.7. Quantization on the torus

We now consider quantization on T 2 × R. Our wavefunction is Ψ(Af ) ⊗
Ψ(Anf ). The spectrum of the nonflat sector is clear, and we take the unique
ground state wavefunction for this factor: It is the product of harmonic
oscillator ground states for the oscillators of the massive scalar of [6,7]. In
this section we drop this factor so we can focus on the dependence on Af .

To simplify matters, we work on a torus X = T 2 with z = σ1 + τσ2

and metric Ω2|dz|2, σi ∼ σi + 1. We fix the small gauge transformations by
assuming Af is constant.

In complex coordinates A = Azdz +Azdz we have

Az =
A2 − τA1

τ − τ
, Az = −A2 − τA1

τ − τ
.

We further define the zero mode of the shifted momentum (2.9) as

Π̃z =
∫
d2z

(
−i δ

δAz(z)
− 2πkεzzAz(z)

)
= −i

(
∂

∂Az
− 4πk ImτAz

)
,

Π̃z = −i
(

∂

∂Az
+ 4πk ImτAz

)
(2.18)

so that the Hamiltonian is:

H =
e2

4 Imτ
(Π̃zΠ̃z + Π̃zΠ̃z) . (2.19)

Note that these do not commute: [Π̃z, Π̃z] = −8πk Imτ . The ground state
energy density is 2π|k|e2 and is infinitely degenerate, as in the standard
Landau-level problem. If k > 0 we have

Π̃zΨ = 0 ⇒ Ψ = e−4πk Im τAzAzψ(Az) . (2.20)

If k < 0 we have

Π̃zΨ = 0 ⇒ Ψ = e4πk Im τAzAzψ(Az) . (2.21)
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Here ψ are arbitrary holomorphic functions. Indeed, if we take ψ = ψλ,
where

ψλ(x) := eλx , (2.22)

then the set of wavefunctions {Ψλ|λ ∈ C} is an overcomplete set spanning
the infinite-dimensional lowest Landau level.

The set of states spanned by (2.22) is infinite dimensional, but when we
consider gauge invariant wavefunctions on the torus the lowest Landau level
(LLL) becomes finite dimensional. We have already enforced the invariance
under small gauge transformations by choosing our flat connections to be
constants on the torus. We can impose the invariance under large gauge
transformations by averaging over large gauge transformations. Given any
wavefunction Ψ(A) the average:

Ψ(A) :=
∑

ω∈Harm1
Z

Ψ(A+ ω)e2πik
R

ωA (2.23)

where Harm1
Z are the harmonic 1-forms with integral periods, transforms

according to the Gauss law (2.15).
Now assume k > 0 and get the projected wavefunctions of the LLL:

Ψ(A) := N e−4πk Im τAzAz
∑

ω∈Harm1
Z

e−4πk Im τωzωze−8πk Im τωzAzψ(Az + ωz)

(2.24)
where N is a normalization constant, which might depend on τ .

Let us now consider the space of wavefunctions – as functions of Az –
that we obtain from (2.24) and (2.22). At first, one might think that the
space is infinite dimensional since λ in (2.22) can be any complex number.
However, using the Poisson summation formula we find that

Ψλ = e−4πk Im τ(AzAz+A2
z)− λ2

16πk Im τ

√
Imτ

k

∑
q

1
2
p2

Lq
1
2
p2

Re−
pR
R

8πk Im τAz−
pL
R

λ

(2.25)
where q = e2πiτ, and

pL = (n/R+mR/2) , pR = (n/R−mR/2) ,

R2 = 2k .
(2.26)

We recognize that we have the soliton sum of the partition function of a
scalar field with radius R. Since R2 = 2k is integral it is a rational conformal
field theory, and the infinite sum can be split as a finite sum of terms of the
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form fi(A)gi(λ). The sublattices pL = 0 and pR = 0 are of index 2k in the
Narain lattice (pL; pR). Indeed, after a little algebra we see that (2.25) can
be written as:

Ψλ = e−Q

√
Imτ

k

∑
0≤µ<2k

Θ−µ,k(−2i ImτAz,−τ)Θµ,k

( −λ
4πik

, τ
)
. (2.27)

where

Q = 4πk Imτ(AzAz +A2
z) +

λ2

16πk Imτ
. (2.28)

The level k theta functions µ = −k + 1, . . . , k are defined by

Θµ,k(ω, τ) =
∑
n∈Z

qk(n+µ/(2k))2y(µ+2kn) (2.29)

where y = exp(2πiω). Equation (2.27) shows quite explicitly that the space
of quantum states is in fact only finite dimensional. A basis for the vector
space of states is

ψµ = N
√

Imτ

k
e−4πk Im τ(AzAz+A2

z)Θ−µ,k(−2i ImτAz,−τ) , 1 ≤ µ ≤ 2k .

(2.30)
Finally, we would like to determine the normalization N . We do this follow-
ing a trick in [9].

The flat gauge fields on the torus can be written A = dχ+Azdz+Azdz.
From the Gauss law Ψ(A) = ψ(Az, Az). However there is a Jacobian for the
change of variables from A to χ,Az, Az. Now∫

[dA]
volG

Ψ∗
µ[A]Ψν [A] = det′(d)

∫ 1

0
dA1

∫ 1

0
dA2ψ

∗
µψν . (2.31)

We can regularize det′(d) =
√

Imτ |η|2. We can also evaluate the inner
product of the states (2.30):∫ 1

0
dA1

∫ 1

0
dA2ψ

∗
µψν = δµ,ν

Imτ

k
|N |2

∫ 1

0
dA1

∑
n

e−4πk Im τ(A1+n−µ/2k)2

=
√

Imτ

2k3/2
|N |2

(2.32)
Normalizing the wavefunctions to one gives:

ψµ =
k3/4

η
e−4πk Im τ(AzAz+A2

z) Θ−µ,k(−2i ImτAz,−τ) . (2.33)
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Remarks:

1. The higher Landau levels are obtained by acting with Π̃z to give en-
ergy densities 2πke2(2N+1), N > 0. Note that (2.24) is independent
of e2, and hence has a smooth limit as e2 → ∞. Moreover, the gap
between Landau levels becomes infinite in this limit.

2. The dependence on Az is that of the wavefunctions in the holomor-
phic polarization of the pure Chern–Simons theory. Equivalently,
they are conformal blocks for the Gaussian model at R2 = 2k, cou-
pled to an external gauge field.

2.8. Holographic mapping to the Gaussian model

We now interpret the sum (2.24) in terms of conformal field theory. The
first exponential factor in the sum in (2.24) is just the standard value of the
Gaussian model action

kπ

∫
dφ ∗ dφ (2.34)

evaluated on a soliton configuration dφ = ω = n1dσ
1 + n2dσ

2. In our
conventions, we use a scalar of periodicity 1 and hence we get the Gaussian
model on a circle with radius

R2 = kα′, (2.35)

with both left-movers and right-movers. Of course, we then recognize the
Narain lattice in (2.26) with α′ = 2. Note, however, that the coupling of φ
to Az is chiral, and given by the Lagrangian

4πik
∫
∂φ ∧A1,0 . (2.36)

For k > 0 we have holomorphic functions of Az coupling to the rightmov-
ing current ∂φ and for k < 0 we have holomorphic functions of Az coupling
to the leftmoving current ∂φ.

Remarks:

1. In [17] Carlip and Kogan discuss very closely related matters in their
attempt to rewrite string theory as a topological membrane theory.
The Landau levels are solved for in their Eq. (3.4), which they are
thinking of as the solutions of the full Schrödinger equation in the
limit e2 →∞. Their motivation was to introduce dependence on the
conformal structure of the boundary into the wavefunctions. They
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intended to get left and right-moving degrees of freedom from the
inner and outer radii of an annulus, as in [31,9].

2. We now propose a somewhat heterodox interpretation of the equa-
tion (2.24). We propose that the dual conformal field theory is a
theory of both a left-moving and a right-moving boson with the ra-
dius (2.35). The fact that both chiralities are present is surprising
since the canonical quantization of the pure Chern–Simons theory is
well-known to lead to a single chiral boson. In particular, with ap-
propriate boundary conditions the quantization on the disk gives a
chiral boson degree of freedom on the boundary. One should distin-
guish between the modes of A on the boundary which, with proper
boundary conditions are those of a chiral scalar and the dual field
theory variable φ. Note that ∂φ couples to A, it is not one of the
degrees of freedom of A. Moreover, only one chirality of φ couples
to A. The other chirality is a “spectator” in the sense that in (2.24)
only one chirality ωz couples to the external gauge field. Neverthe-
less, there are really two chiralities present in (2.24). Both chiralities
couple to the conformal metric.

3. One way to make the point about the “reality” of the spectator
chirality is to note that we have identified a definite radius, (2.35).
In order to understand why this is surprising one must recall some
standard points from RCFT. In RCFT the wavefunctions (2.33) are
the conformal blocks of a Gaussian model with “U(1) level N current
algebra.” By definition, this is a holomorphic U(1) current algebra
extended by holomorphic currents

e±i
√

2Nφ(z) (2.37)

of conformal dimension N . There are 2N distinct representations of
this algebra generated by exp[i r√

2N
φ(z)] for r ∼ r + 2N . The con-

formal blocks of this theory on the torus are level N theta functions.
This theory is dual to the pure Chern–Simons theory with action

2πiN
∫
AdA (2.38)

in a normalization where dA has integer periods. In units α′ = 2
the Gaussian model with radius R has U(1) level N current algebra
wheneverR2 is rational. More precisely, ifR2 = p/q is in lowest terms
then N = 2pq for p odd and N = pq/2 for p even. In the present
section we have R2 = 2k and hence N = k, hence 2k topological
states. Returning to the general case, for a given N there are several
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Gaussian models with the same chiral algebra, corresponding to the
different ways of factoring N . The choice of a definite radius is a
choice of how to combine left- and right-moving conformal blocks
[12,13]. One cannot speak of the radius without introducing both
left and right movers.

4. The role of the spectator chiralities is further clarified if one com-
pares carefully the Euclidean and Lorentzian versions of holography.
In the Lorentzian case we have an isomorphism of Hilbert spaces. As
we have mentioned, quantization on D×R yields the Hilbert space of
a chiral boson, depending on which boundary condition we impose.
Since we could impose either boundary condition, both chiralities are
“present.” Perhaps a good analogy is the light-cone gauge quantiza-
tion of a massless scalar. Making one gauge choice one only sees one
of two chiralities. In the Euclidean formulation, the path integral
on the bulk manifold is equivalent to the path integral of some CFT
on the boundary. Here we impose Dirichlet boundary conditions on
the gauge field and compute a wavefunctional Ψ(A) of the boundary
value of A. It is here that we see the necessity of both chiralities in
identifying Ψ(A) with a conformal field theory partition function.

3. The AB theory

3.1. Action

Now let us consider the AB theory with action:

Sa =
∫
−1
2e2A

dA ∗ dA+
−1
2e2B

dB ∗ dB + 2πkAdB . (3.1)

The gauge group is U(1)× U(1), and in particular large gauge transforma-
tions are A→ A+ωA and B → B+ωB where the ωA, ωB are closed 1-forms
with integral periods.

The above treatment is asymmetric in A,B. By using∫
AdB =

∫
BdA+

∫
d(BA) (3.2)

we can convert to a theory with action:

Ss =
∫
−1
2e2A

dA ∗ dA+
−1
2e2B

dB ∗ dB + πk(AdB +BdA) (3.3)

which is manifestly symmetric under exchanging A ↔ B, eA ↔ eB. More
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generally, we can use (3.2) to formulate the action

Sx =
∫
−1
2e2A

dA ∗ dA+
−1
2e2B

dB ∗ dB+πk
[
(1+x)AdB+(1−x)BdA

]
. (3.4)

It is very useful to introduce µ := |eB/eA| and the linear combinations

A(+) :=
1√
2

(
µ−1/2B + µ1/2A

)
,

A(−) :=
1√
2

(
µ−1/2B − µ1/2A

) (3.5)

the inverse relation being (1.4). If (and only if) x = 0 in (3.4) we may use
these fields to write the action as a sum of two “decoupled” theories:

Ss =
∫ [

−1
2|eAeB|

dA(+) ∗ dA(+) + πkA(+)dA(+)

]
+

∫ [
−1

2|eAeB|
dA(−) ∗ dA(−) − πkA(−)dA(−)

]
.

(3.6)

One might conclude that the AB theory is merely two copies of the one-field
case with opposite signs of k. However, if µ is not rational then A(+), A(−)

cannot be defined as connections on topologically nontrivial line bundles.
They are not truly independent. In particular, to implement the Gauss
law on wavefunctions we cannot simply take a product of wavefunctions for
A(+), A(−) and implement the Gauss laws separately. This is what makes the
AB theory an interesting and nontrivial extension of the one-field case.

Another interesting new point is that the topological limit is e2A →
∞, e2B → ∞ holding µ fixed. Thus, the topological sector of the theory
has a continuous parameter µ, in addition to the discrete parameter k. It
is usually said that in the long distance limit the kinetic terms have no ef-
fect. As we shall see, this is not quite true. The ratio µ does affect the
wavefunctions in the topological Hilbert space.

3.2. Equations of motion

The equations of motion are

d ∗ dA(+) = 2πk|eAeB|dA(+) ,

d ∗ dA(−) = −2πk|eAeB|dA(+) ,
(3.7)

and therefore there are two propagating vector fields of m2 = (2πkeAeB)2.
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The boundary conditions should be such that when pulled back we have

− 1
e2A

δA ∗ dA− 1
e2B

δB ∗ dB + πk((1 + x)δBA+ (1− x)δAB) = 0 . (3.8)

3.3. Hamiltonian formalism: Symmetric formulation (x = 0)

The Hamiltonian formulation is easily deduced by combining (3.6) with sec-
tion 2.3. We have

Ss = −H +
∫

Πi
+Ȧ

(+) + Πi
−Ȧ

(−) +A+
0 (∂iΠi

+ + πkεij∂iA
(+)
j )

+A−0 (∂iΠi
− − πkεij∂iA

(−)
j )

(3.9)

where H is the Hamiltonian (two copies of the usual one) and

Πi
+ =

1
eAeB

√
ggij(∂0A

(+)
i − ∂iA

(+)
0 ) + πkεijA+

j ,

Πi
− =

1
eAeB

√
ggij(∂0A

(−)
i − ∂iA

(−)
0 )− πkεijA+

j .

(3.10)

The symplectic structure is

Ω =
∫

X
δΠi

+δA
(+)
i + δΠi

−δA
(−)
i =

∫
X
δΠi

AδAi + δΠi
BδBi . (3.11)

The Gauss laws become:

∂iΠi
B + πkεij∂iAj = 0 ,

∂iΠi
A + πkεij∂iBj = 0 .

(3.12)

Imposing the second class constraints of restriction to flat gauge fields gives
symplectic form

Ωf =
∫

X
2πkεijδBi ∧ δAj . (3.13)

Quantum mechanically, working in “upstairs formalism” the Gauss laws
become

Ψs(A+ ωA, B) = e−πik
R

ωA∧BΨs(A,B) ,

Ψs(A,B + ωB) = e−πik
R

ωB∧AΨs(A,B) .
(3.14)

Thus, if we shift by both ωA, ωB then:

Ψs(A+ ωA, B + ωB) = e−πik
R

ωAωB+ωAB+ωBAΨs(A,B) . (3.15)

Note that this is only a consistent transformation law so long as ωA, ωB have
integral periods and k is an integer.
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Remark: Here we encounter a truly treacherous point. Since the action
separates as in (3.6) one might have expected the Gauss law to be simply
the product of that for the A(+) and the A(−) theory. That is, one might
have expected that

Ψs(A(+) + ω(+), A(−) + ω(−)) ?=eiπk
R

(ω(−)A(−)−ω(+)A(+))Ψs(A(+), A(−)) .
(3.16)

While this indeed agrees with (3.14) if ωA = 0 or if ωB = 0 it does not agree
with (3.15) ! We will discuss this subtlety more thoroughly in the general
case in section 4.2 below.

3.4. Hamiltonian analysis

For completeness, in this subsection we give the formulation for an arbitrary
value of x. The conjugate momenta are:

Πi
A = Π̃i

A + πk(1− x)εijBj ,

Πi
B = Π̃i

B + πk(1 + x)εijAj

(3.17)

where Π̃i
A,B is x-independent. Then∫
Πi

AȦi + Πi
BḂi − S =

∫
Hdt

+
∫

Πi
A∂iA0 − πk(1 + x)A0ε

ij∂iBj

+
∫

Πi
B∂iB0 − πk(1− x)B0ε

ij∂iBj .

(3.18)

Note that no integration by parts has been used at this point.
The classical Gauss law expressed in terms of Π̃ is x-independent. On

the other hand, the quantum Gauss law is

Ψx(A+ ωA, B) = e−iπ(1+x)k
R

ωA∧BΨx(A,B) ,

Ψx(A,B + ωB) = e−iπ(1−x)k
R

ωB∧AΨx(A,B) .
(3.19)

The wavefunction and Hamiltonian depend on the choice of x. The general
transformation between wavefunctions is

Ψx(A,B) = ΩxΨs(A,B) = e−iπkx
R

A∧BΨs(A,B) (3.20)

where x = 0 is the symmetric formulation. The Hamiltonian is obtained
from Hx = ΩxHsΩ−1

x .
We henceforth set x = 0 but the formulae for general x can be obtained

using (3.20).
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3.5. Ground states on T 2

The standard Hamiltonian analysis on D×R yields a left- and right-moving
chiral boson, once one chooses appropriate boundary conditions. However,
as in the previous section, we focus on the Euclidean path integral on the
solid torus, since the natural Dirichlet boundary conditions on the fields
distinguishes a Hamiltonian for the singleton modes. Therefore, we use the
same trick of considering the gauge invariant ground-state wavefunctions on
T 2.

Again we have the factorization Hf ⊗ Hnf of the Hilbert space and we
concentrate on the wavefunctions of flat gauge fields. We do this, and fix the
small gauge transformations by taking our wavefunctions to be functions of
the constant gauge potentials.

The Hamiltonian can be written as:

Hs =−
e2A

2 Imτ

(
∂

∂Az
− 2πk ImτBz

) (
∂

∂Az
+ 2πk ImτBz

)
−

e2B
2 Imτ

(
∂

∂Bz
− 2πk ImτAz

) (
∂

∂Bz
+ 2πk ImτAz

) (3.21)

and one can solve for the Landau levels. A trick for finding these is to write
the Hamiltonian as a sum of two copies of (2.19), with opposite signs of k.
From (2.20) and (2.21) we can write without further ado the wavefunctions
in the lowest Landau level (assuming k > 0):

Ψλ,λ := e−2πk Im τA
(+)
z A

(+)
z −2πk Im τA

(−)
z A

(−)
z eλA

(+)
z +λA

(−)
z . (3.22)

These have energy 2πk|eAeB| for all values of λ, λ, (they are not related by
complex conjugation), and (3.22) forms an overcomplete set for the LLL.
Again, this space of states is infinite dimensional.

Let us now follow the procedure used in the one-field case. Averaging
the wavefunctions (3.22) over the large gauge transformations for A,B to
enforce the Gauss laws (3.14) gives a family of gauge invariant ground states
parametrized by λ, λ:

Ψλ,λ =
∑

ωA,ωB

Ψλ,λ(A+ ωA, B + ωB) eiπk
R

ωAωB+iπk
R

ωAB+iπk
R

ωBA . (3.23)

Applying this to the wavefunctions (3.22) we have the averaged sum:

Ψλ,λ =Ψλ,λ(A,B)
∑

e−2πk Im τ(ω
(+)
z ω

(+)
z +ω

(−)
z ω

(−)
z )eiπk

R
ωA∧ωB

× eλω
(+)
z −4πk Im τA

(+)
z ω

(+)
z −4πk Im τA

(−)
z ω

(−)
z +λω

(−)
z

(3.24)
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where ω± are related to ωA, ωB by the same linear transformation as (3.5).
Our next move is to give an interpretation of the sum (3.24) as an in-

stanton sum in the partition function of a Gaussian model on the torus. To
begin, we write

ω(+)
z ω

(+)
z + ω(−)

z ω
(−)
z = µωA

z ω
A
z + µ−1ωB

z ω
B
z . (3.25)

Therefore, we see from the quadratic terms in ω in (3.24) that we have
two Gaussian models, one at radius R2

A = 1
2kµα

′ and one at radius R2
B =

1
2kµ

−1α′. Let us call these Gaussian fields φA, φB. They have periodicity 1
and both left- and right-movers, so ωA = dφA in an instanton configuration
on the torus. The quadratic piece of the action is

S1 =
πk

2

∫
µdφA ∗ dφA + µ−1dφB ∗ dφB . (3.26)

There is evidentially a B-field:

S2 = iπk

∫
dφA ∧ dφB . (3.27)

Now let us consider the coupling to the external gauge field. Let us form
the linear combinations:

φ(+) :=
1√
2
(µ−1/2φB + µ1/2φA) ,

φ(−) :=
1√
2
(µ−1/2φB − µ1/2φA)

(3.28)

and similarly for ω(±). Comparing with (3.24) we see that the only couplings
of the Gaussian fields are A(−)

z couples to ∂zφ
(−) while A(+)

z couples to ∂zφ
(+).

To be more precise, the linear terms correspond to an action:

S3 = 2πik
∫ [

(A(−))0,1 ∧ ∂φ(−) − (A+)1,0 ∧ ∂φ(+)
]
. (3.29)

Thus, the rightmoving part of φ+ and the leftmoving part of φ− couple
to the external gauge fields, and correspondingly, one chirality of each of φA

and φB “decouples” from the gauge fields, but not from the metric.
Note, that unless µ is rational the scalar fields φ(±) do not individually

have a discrete periodicity, that is, we cannot consider φ+ to be a well-
defined periodic scalar field on its own. The unusual and interesting point is
that, nevertheless φ−L +φ+

R and φ+
L +φ−R are very nearly well-defined periodic

scalars.
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Remarks:

1. Notice that (with α′ = 2) the radii satisfy (1.9). The second equation
relating RA and RB is analogous to the T -duality relation. Standard
T -duality is RARB = 2 in units α′ = 2.

2. Note that the wavefunction (3.22) only depends on eA, eB through
the ratio µ. Thus, if eA, eB →∞ holding µ fixed then the wavefunc-
tion has a smooth limit. This is the limit in which we expect the
topological theory to dominate. The gap to the next Landau level is
∼ 2πk|eAeB|.

3.6. Vector space of wavefunctions on T 2

At this point we could proceed with standard quantization of the CFT de-
fined by (3.26) and (3.29). Let us stress that for generic µ this conformal
field theory is not a rational conformal field theory. Nevertheless, as we will
show momentarily, the space of wavefunctions (3.24) spanned by λ, λ ∈ C
is finite dimensional and defines an analog of the space of conformal blocks.
Moreover, we will show that the partition function can be written as a finite
sum of factorized terms in a fashion very reminiscent of RCFT.

In order to get at the spectrum we will take a shortcut and simply perform
a Poisson resummation of the instanton sum (3.24). We rewrite the sum in
terms of ωA, ωB. We write ωA = n1dσ

1 + n2dσ
2 and ωB = ñ1dσ

1 + ñ2dσ
2.

Next we do a Poisson resummation on n2, ñ2 and convert the sum to a
form where we recognize the Hamiltonian formalism (of the conformal field
theory). After some algebra one arrives at the result:

Ψλ,λ =
2 Imτ

k
e−Q

∑
q

1
2
(p2

L+ep2
L)q

1
2
(p2

R+ep2
R)

exp[−4π
√
k ImτA(+)

z (pR + p̃R)/
√

2− 4π
√
k ImτA

(−)
z (pL − p̃L)/

√
2

− λ√
k
(pR − p̃R)/

√
2− λ√

k
(pL + p̃L)/

√
2]

(3.30)
where the prefactor e−Q is determined by

Q = 2πk Imτ [A+
z A

+
z +A−z A

−
z ]

+ 2πk Imτ

(
(A+

z )2 + (A−z )2
)

+
1

8πk Imτ
(λ2 + λ

2) .
(3.31)
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Now we have

pL − p̃L√
2

=
1
R
m2 −

R

2k
m̃2 ,

pR + p̃R√
2

=
1
R
m2 +

R

2k
m̃2 ,

pL + p̃L√
2

=
1
R

(m2 − kñ1) +
R

2k
(m̃2 − kn1) ,

pR − p̃R√
2

=
1
R

(m2 − kñ1)−
R

2k
(m̃2 − kn1)

(3.32)

where R =
√

2RA =
√

2µk, m2, m̃2, n1, ñ1 ∈ Z.
At this point we can recognize the following. The sum (3.30) is a sum

over a signature (2, 2) Narain lattice. We can define two sublattices: ΛA

is the lattice of vectors “coupling only to A and not to λ.” Thus, it is
defined by pR − p̃R = 0, pL + p̃L = 0. Similarly, Λλ is the lattice of vectors
pR + p̃R = 0, pL − p̃L = 0. The main observation is that these are each
sublattices of signature (1, 1) and ΛA⊕Λλ is of finite index in the full Narain
lattice. The analog of the chiral splitting of RCFT is obtained by summing
over the lattice vectors in ΛA ⊕ Λλ. This sum is a factorized product of a
function of A and a function of λ. Then, the full sum is given by a sum of
this factorized form over the coset representatives and takes the form

∑
β∈Λ∗/Λ

Ψβ(A)Ψβ(λ) (3.33)

where the lattice Λ will be defined presently. In this way we have defined a
factorization into “nonholomorphic conformal blocks.”

Let us make all this explicit. Note that we may write

m2 = ka+ ρ ,

m̃2 = kb+ ρ̃ ,

m2 − kñ1 = kc+ ρ ,

m̃2 − kn1 = kd+ ρ̃

(3.34)

with a, b, c, d ∈ Z and 0 ≤ ρ, ρ̃ ≤ k− 1 all uncorrelated. In this parametriza-



September 2, 2004 9:57 WSPC/Trim Size: 9.75in x 6.5in for Proceedings moore2

Chern–Simons gauge theory and the AdS3/CFT2 correspondence 1631

tion we may write

(pL − p̃L√
2

;
pR + p̃R√

2

)
= a

√
k

2µ
e0 − b

√
µk

2
f0 + β ,

≡ ae1 − bf1 + β(pL + p̃L√
2

;
pR − p̃R√

2

)
= c

√
k

2µ
e0 + d

√
µk

2
f0 + β

= c e1 − df1 + β

(3.35)

where β = ρ/ke1 − ρ̃/kf1 and β = ρ/ke1 + ρ̃/kf1. Here e0 := (1; 1), f0 :=
(1;−1) generate the lattice

√
2II1,1. The vectors e1, f1 generate a lattice

Λ = e1Z + f1Z ∼=
√
kII1,1. Note that Λ∗ ∼= 1

kΛ, and we may regard β, β as
representatives of elements of the dual quotient group Λ∗/Λ.

Now, with any lattice of indefinite signature, but with a projection into
definite signature subspaces one may form a Siegel–Narain theta function.
The definition is reviewed in appendix A. We may write our analogs of “con-
formal blocks” in terms of Siegel–Narain theta functions for Λ. Specifically,
we have

Ψβ(A) = N 2 Imτ

k
e−πk

R
[A(+)∗A(+)+A(−)∗A(−)]ΘΛ(τ, 0, β;P ; ξ(A)) , (3.36)

N is a normalization constant and

Ψβ(λ) = ΘΛ(τ, 0, β;P ; ξ(λ)) (3.37)

where we have defined:

ξ(A) =
(√
k2i ImτA

(−)
z ;−

√
k2i ImτA(+)

z

)
, (3.38)

ξ(λ) =
(
− λ

2πi
√
k
;

λ

2πi
√
k

)
. (3.39)

One can now compute that∫ 1

0
dA1dA2dB1dB2(Ψβ(A,B))∗Ψβ′(A,B) = δβ,β′

2 Imτ

k3
|N |2 . (3.40)

Taking into account the Jacobian factor Imτ |η|4 for going from the wave-
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functional Ψ(A(z)) to the wavefunction on harmonic 1-forms we finally get e

Ψβ(A) =
2k1/2

ηη
e−πk

R
[A(+)∗A(+)+A(−)∗A(−)]ΘΛ(τ, 0, β;P ; ξ(A)) . (3.41)

It is now straightforward to compute the representation of Ψβ(τ,A) under
the action of the modular group. Specifically, the matrix elements of the T -
and S-transformations are given by

Tβ,β′ = eiπ(β,β)δβ,β′ (3.42)

and

Sβ,β′ =
1
k
e−2πi(β,β′) (3.43)

where β, β′ ∈ Λ∗/Λ ∼= (Z/kZ)2 inherits a quadratic form from the hyperbolic
inner product.

This is the same representation of SL(2,Z) as that studied in [28], and
for similar reasons. There is a natural action of the modular group on
the irrep of the discrete Heisenberg group which is a central extension of
H1(X;Z/kZ)×H1(X;Z/kZ).

3.7. Comment on a clash of terminology

The term “level k U(1) current algebra” is, regrettably, used in two very
different ways in the context of the theories discussed in this paper. In
[33,34] Kutasov and Seiberg, and Larsen and Martinec, use it to refer to
the structure of conformal weights h ∼ p2/k, h̃ ∼ p̃2/k where (p, p̃) lie in
a (Narain) lattice of charges. Unfortunately, the same terminology is used
with a different meaning in a closely related context in rational conformal
field theory. In the latter setting “level k U(1) current algebra” is the chiral
algebra of the RCFT one obtains for a Gaussian model on a rational square-
radius, as described near (2.37) above. One of our motivations in this paper
is to clarify the relation between the two uses of this term. We do this in
the present section.

Let us consider only the momentum coupling to A(+), A(−). Let us define
the left and right “charges” by:

uL := ξ(pL − p̃L) ,

uR := ξ(pR + p̃R)
(3.44)

e Of course, we have made a choice of factorization of Im τ |η|4. Our choice was to take the positive

square root. This seems reasonable, and gives a nice representation of the modular group below,

but should be better justified. It is certainly necessary to match to the topological theory.
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where ξ is a real normalization constant to be determined below.
The set of charges (3.44) forms a lattice in R1,1 defined by

Λ := {(uL;uR)|n,m, ñ, m̃ ∈ Z} ⊂ R1,1 . (3.45)

This lattice is generated by integral combinations of 2 vectors:

e1 = ξ
1
RA

e0 ,

f1 = ξ
RA

k
f0

(3.46)

where e0 := (1; 1), f0 := (1;−1) generate the lattice
√

2II1,1. Thus, e1 · f1 =
2ξ2/k, while e21 = f2

1 = 0. The charge lattice is e1Z⊕ f1Z. So choosing

ξ =

√
k

2
(3.47)

we obtain a self-dual lattice.
In terms of these charges we can write the conformal weights of the states

counted in (3.30) as:

h =
1
2
(p2

L + p̃2
L)

=
1
4
(
pL + p̃L

)2 +
1
2k
u2

L ,

(3.48)

h̃ =
1
2
(p2

R + p̃2
R)

=
1
4
(
pR − p̃R

)2 +
1
2k
u2

R .

(3.49)

Now, for fixed values of the “spectator charges” (pL + p̃L; pR − p̃R) we
recognize, after using (3.47) that the dependence of the conformal weight on
(uL;uR) is that of “level k U(1) current algebra.” Note especially that

1
4
(pL − p̃L)2 − 1

4
(pR + p̃R)2 =

1
4ξ2

(u2
L − u2

R)

= −m2m̃2

k
=
N

k

(3.50)

where N can be any integer.

Remark.The purely topological quantization. In [10] Witten studied the
off-diagonal Chern–Simons theory for the case that k = 1 and concluded
that the pure Chern–Simons theory is “trivial.” It is straightforward to
analyze the purely topological theory on D×R using the methods of [1,31,9].
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One finds a left and a right-moving boson, but, we stress, these are not the
left- and right-moving components of a single boson of well-defined discrete
periodicity. One can compute L0 − L0 in this approach and one finds L0 −
L0 = N/k. Without further input it is difficult to decide whether we should
allow all integers N , or whether one should project to N = 0 mod k. The
approach we are taking in this paper answers that question. We see that the
integer N in (3.50) can be any integer.

4. General massive abelian Chern–Simons theories

Both in the theory of the quantum hall effect [18,19,20,21,22,23,24] and in
AdS3 × S3 × T 4 one is naturally led to wonder about the extension of the
above remarks to a collection of abelian gauge fields Aα, α = 1, . . . , d. We
take the action ∫

− 1
2e2

λ−1
αβ dA

α ∗ dAβ + 2πKαβA
αdAβ (4.1)

and the gauge fields are normalized so that Fα has integral periods. The
gauge group is U(1)d. The Euclidean version is e−SE with∫

1
2e2

λ−1
αβ dA

α ∗ dAβ − 2πiKαβA
αdAβ . (4.2)

The coupling e2 has dimensions of mass, while λ−1
αβ is a dimensionless positive

definite symmetric matrix. Without loss of generality we may assume it has
fixed determinant, say determinant one.

We will assume that Kαβ is nondegenerate. As we have seen above, by
adding total derivatives, we can assume that Kαβ is symmetric, and these
total derivatives do not affect the quantization of the theory. In order that
the action makes sense on arbitrary manifolds we must have∫

M4

Kαβc
α
1 c

β
1 ∈ Z (4.3)

where cα1 is a vector of integer cohomology classes on the four-manifold M4.
Clearly Kαα ∈ Z. Using the example of S2×S2 we see that Kαβ +Kβα ∈ Z
for α 6= β, and this is sufficient for well-definedness in general. f Thus, we
conclude that 2Kαβ is a nondegenerate, even, integral, symmetric matrix.
It can have any signature. This matrix defines an integral lattice which we
denote Λ. We will denote the integral lattice generated by −2Kαβ by Λ.

f By choosing a spin structure and only considering bounding manifolds compatible with the spin

structure we can allow theories with more general Chern–Simons couplings [35]. This involves

several new issues, and we will not investigate that case here.
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The matrix of Chern–Simons couplings λ−1
αβ has inverse λαβ . The topo-

logical limit is obtained by taking e2 → ∞. Thus we expect both λαβ and
Kαβ to show up in constructing the wavefunctions for the topological Hilbert
space.

4.1. Quantization of the purely topological theory

The quantization of the pure Chern–Simons theory is completely straight-
forward and was in fact already analyzed to some extent in [9]. We have

[Aα
j , A

β
k ] =

εjkK
αβ

2πi
. (4.4)

Choosing a real polarization on the torus we have wavefunctions Ψ(Aα
1 ).

Implementing the Gauss law for transformations in the σ2 direction we find
the wavefunctions are supported on gauge potentials such that KαβA

β
1ω

α
2 ∈

Z, that is, on points in Λ∗. The Gauss law for transformations in the σ1

direction shows that the wavefunction descends to Λ∗/Λ. This leads to a
standard representation of a finite Heisenberg group, and is associated to a
representation of SL(2,Z) in a natural way.

4.2. Hamiltonian analysis and Gauss law

The conjugate momentum is

Πi
α = Π̃i

α + 2πKβαε
ijAβ

j (4.5)

where Π̃i
a = λ−1

αβg
ij√g(∂0A

β
j − ∂jA

β
0 ) is the electric field. The Hamiltonian

is

H =
∫

X

gij

2
√
g
λαβ Π̃i

αΠ̃j
β +

1
2
λ−1

αβ F
α ∗2 F β (4.6)

The classical Gauss law is

∂iΠi
α + 2πKαβ∂iA

β
j ε

ij = 0 . (4.7)

Implementing the quantum Gauss law one encounters a subtlety. Let ωα

be a 1-form with integral periods. Define the operator

Gα(ωα) := i

∫
ωα

i Πi
α + 2π

∑
β

ωαKαβA
β (4.8)

where there is no sum on α. One easily computes that

eGα(ωa)eGα(eωα) = eGα(ωα+eωα)+2πi
R

Kααωαeωα
= eGα(ωa+eωa) (4.9)
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since Kαα is integral. Similarly, if α 6= β then

eGα(ωα)eGβ(ωβ) = eGα(ωα)+Gβ(ωβ)−2πi
R

Kαβωαωβ
= eGβ(ωβ)eGα(ωα) . (4.10)

Since Kαβ ∈ 1
2Z, the operators eGα are simultaneously commuting and can

all be imposed as constraints. However, one cannot enforce the Gauss laws

eGα(ωα)+Gβ(ωβ)Ψ = Ψ (4.11)

because they have a nontrivial cocycle in the group law. This is the origin
of the B-field (4.22) in the holographically dual theory.

Enforcing all the Gauss laws eGαΨ = Ψ for α = 1, . . . , d is equivalent to
the quantum Gauss law:

Ψ(A1+ω1, ..., Ad+ωd)=e−2πi
R P

α<βKαβωαωβ

e−2πi
R P

α,βKαβωαAβ

Ψ(A1, ..., Ad) .
(4.12)

4.3. Landau levels

On the flat torus we have Hamiltonian

H = −
∫

1
2 Imτ

λαβ

(
∂

∂Aα
z

− 4π ImτKγαA
γ
z

)(
∂

∂Aβ
z

+ 4π ImτKγβA
γ
z

)
(4.13)

where we have chosen a normal ordering. On the plane a complete set of
functions for the lowest Landau level is generated by the wavefunctions

Ψv,v = exp
[
− 4π ImτµαβA

α
zA

β
z + vαA

α
z + vαA

α
z

]
(4.14)

where vα, vα are independent complex vectors.
One finds that (4.14) is an eigenfunction of (4.13) if and only if

[λK, λµ] = 0 ,

(λµ)2 = (λK)2 ,

(µ+K)λv = 0 ,

(µ−K)λv = 0

(4.15)

where for simplicity we have assumed that µαβ is symmetric.
Now, for normalizable wavefunctions we want µαβ to be positive her-

mitian. In this case, the last two equations in (4.15) involve projection
operators. Now, note that λ1/2Kλ1/2 is a symmetric form and therefore can
be diagonalized by a real orthogonal matrix O:

K = λ−1/2O
(

∆+ 0
0 ∆−

)
Otrλ−1/2 (4.16)
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where ∆± are diagonal matrices with ∆+
ii > 0 and ∆−

ii < 0. We therefore
can solve our equations by letting

µ = λ−1/2O
(

∆+ 0
0 −∆−

)
Otrλ−1/2 . (4.17)

Thus, µ is positive definite. The energy eigenvalue with our normal ordering
is −8π

∑
i ∆

−
ii .

It is useful to introduce the vector space V ∼= Rd where Aα is valued. We
can regard µ,K ∈ V ∗ ⊗ V ∗ while λ, µ−1 ∈ V ⊗ V . Note that v = vα, v = vα

are valued in V ∗c . The subscript c means that we have complexified. Note
that Γα

β = µαγKγβ is an operator Γ : V → V and satisfies Γ2 = 1. Here
µαγµγβ = δα

β. We define projection matrices

P± :=
1
2
(1± µ−1K) (4.18)

and accordingly we have subspaces V± := P±V . With this choice λv ∈ V−,
and λv ∈ V+. The following identities are useful. Since µ is symmetric,
P tr
± are also projection matrices, and µP± = P tr

± µ. Moreover, (µ−1K)tr =
λ−1(µ−1K)λ, so P tr

± = λ−1P±λ, and so we can also say that

vtrP+ = 0 ,

vtrP− = 0 .
(4.19)

4.4. Averaged wavefunction

Now we can proceed as before with the average

Ψv,v =
∑
ωα

Ψv,v(A+ ω)e2πi
P

α<β

R
ωaKαβωβ+2πi

R
ωαKαβAβ

. (4.20)

Expanding out we find the soliton sum of a theory of bosons φ ∈ V , with
periodicity φα ∼ φα + 1. The action is

S = 2π
∫
dφαµαβ ∗ dφβ − iπ

∫
Bαβω

α ∧ ωβ (4.21)

where Bαβ = −Bβα is a B-field defined by

Bαβ = Kαβ , α < β . (4.22)

The chiral coupling to the gauge fields is

−4πi
∫
∂φαµαβ(P−A0,1)β + 4πi

∫
∂φαµαβ(P+A

1,0)β . (4.23)
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Thus, only holomorphic currents valued in V− couple to Az, while only
antiholomorphic currents valued in V+ couple to Az. Similarly, the coupling
to v, v in (4.20) is just:

exp
[
vtrP+ωz + vtrP−ωz

]
. (4.24)

We stressed above in the AB theory that φ+, φ− were not scalars with
definite periodicity. The generalization of this statement is that the gauge
group (or periodicity lattice for φ) defines a lattice Zd ⊂ V . The subspaces
V± in general do not contain any lattice vectors. Thus, the chiral scalars
P−φL and P+φR in general do not form a single well-defined scalar. Indeed,
the lattice Λ in general has signature (r+, r−) with r+ 6= r−.

4.5. Vector space of states on T 2

One can quantize the theory of chiral bosons as before. The averaged wave-
function may be expressed in terms of a sum over an even unimodular Narain
lattice of signature (d, d). We endow the real vector space V ⊕ V with the
quadratic form:

(pL; pR) · (qL; qR) := pα
Lµαβq

β
L − pα

Rµαβq
β
R . (4.25)

Note that there are now two totally independent projections in the game. We
have P± projecting onto subspaces of V determined by the Chern–Simons
couplings λ,K. In addition we have the left- and right-moving projections of
Narain theory, related to the chirality of the bosons. The latter projections
are denoted by L,R. The embedding of IId,d ⊗R ⊂ V ⊕ V is accomplished
by the basis vectors:

eα =
1√
2
(δγ

α − µγζBζα; δγ
α + µγζBζα) , α = 1, . . . , d ;

fα =
1√
2
(µγα;−µγα) , α = 1, . . . , d .

(4.26)

In the above formulae we denote the components of the L,R projection by
the superscript γ. One easily checks that

eα · eβ = 0 ,

fα · fβ = 0 ,

ea · fβ = δα
β

(4.27)

and hence integral combinations of these vectors define an embedding of the
even unimodular lattice IId,d into V ⊕ V .
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Now, by examining (4.20) or by quantizing (4.21), (4.23) one finds that
only the projection of Az into V− couples to pL while only the projection
of Az into V+ couples to pR. Similarly, in the averaged wavefunction, the
projection of v into V+ couples to pL while the projection of v into V− couples
to pR . Thus we define two collections of d vectors:

να =
√

2
(

(P−)γ
α; (P+)γ

α

)
, α = 1, . . . , d ;

να =
√

2
(

(P+)γ
α; (P−)γ

α

)
, α = 1, . . . , d .

(4.28)

The real span of the να is a subspace of VL ⊕ VR which we can denote
V−,L ⊕ V+,R while the real span of the να is V+,L ⊕ V−,R.

Moreover, one easily computes that

να · νβ = −2Kαβ ,

να · νβ = +2Kαβ ,

να · νβ = 0

(4.29)

and hence integral combinations of να generate a lattice Λ, while integral
combinations of να generate a lattice Λ. Furthermore,

fβ · να = δβ
α ,

fβ · να = δβ
α ,

eα · νβ = −Kαβ +Bαβ ,

eα · νβ = Kαβ +Bαβ .

(4.30)

Since IId,d is unimodular, Λ and Λ are sublattices of the Narain lattice
generated by eα, f

α. The lattice Λ ⊕ Λ is of finite index in IId,d. We can
now uniquely decompose any Narain vector in terms of its projection into
Λ⊗R⊕Λ⊗R. These projections consist of a vector in Λ plus a glue vector
in Λ∗/Λ. To be specific, there exist a finite set of vectors β ∈ Λ∗, β ∈ Λ∗

such that β + β ∈ IId,d and such that we can write:

p = nαeα +mαf
α = pΛ + pΛ (4.31)

where

pΛ = (`α − 1
2
Kαβδβ)να = `ανα + β ,

pΛ = (`α +
1
2
Kαβδβ)να = `

α
να + β .

(4.32)
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Here `α, `α are independent vectors of integers. Moreover, δα runs over a
finite set of integral vectors. Put differently, we can make a 1-1 transform
on the integers nα,mα in (4.31) in such a way that and we use a finite set
of vectors δα representing Λ∗/Λ. To be specific, every vector of integers mα

can be uniquely written in terms of a vector of integers `α and the vectors
δα as

mα = 2Kαβ`
β + δα . (4.33)

We may take β = −1
2K

αβδβνα and β = +1
2K

αβδβνα. The mapping β → β

should be viewed as an isomorphism of dual quotient groups Λ∗/Λ → Λ∗/Λ.
Indeed, the Nikulin embedding theorem [26] describes the embedding of an
even integral lattice, such as Λ, into any even unimodular lattice, such as
IId,d, in terms of an isomorphism of dual quotient groups between Λ and its
complementary lattice Λ. Here we have made that isomorphism explicit.

Now, it turns out that the left- and right- projections to pL, pR are
compatible with the projections P± onto the subspaces V± . For example,
we have

να,L · νβ,L = 0 να,R · νβ,R = 0 . (4.34)

Thus, we can split the sum over the Narain lattice IId,d into a finite sum over
Λ∗/Λ of factorized wavefunctions coupling only to A and v, v, respectively.
The averaged wavefunction can be written in terms of higher-level Siegel–
Narain theta functions as:

Ψv,v = e−2π
R

µαβAα∗Aβ Imτd/2

√
detµ

∑
β∈Λ∗/Λ

ΘΛ(τ, 0, β;P ; ξ(A))ΘΛ(τ, 0, β;P ; ξ(v))

(4.35)
where

ξ(A) = −
√

8
(
P−(i ImτAz);P+(i ImτAz)

)
, (4.36)

ξ(v) =
√

2
2πi

(
P+(µ−1v);−P−(µ−1v)

)
. (4.37)

As in the previous case, (4.35) only gives the wavefunctional of the gauge
fields up to a normalization constant. As before, a basis of wavefunctions
for the topological theory can be given in the form

Ψβ = e−2π
R

µαβAα∗Aβ ΘΛ(τ, 0, β;P ; ξ(A))
ηr+ηr−

(4.38)
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where (r+, r−) is the signature of Λ. The representation of the modular
group is precisely analogous to what we had before:

Tβ,β′ = e−2πi(r+−r−)/24eiπ(β,β)δβ,β′ , (4.39)

Sβ,β′ =
1√
|Λ∗/Λ|

e−2πi(β,β′) (4.40)

where Λ∗/Λ inherits a quadratic form defined by

q(β mod Λ) := (β, β) mod 2 , (4.41)

where β is any lift of β mod Λ to a vector in Λ∗.

Remarks:

1. We can say precisely in what sense this is a generalization of the
chiral splitting of RCFT. The latter case corresponds to the case
where Λ and Λ are lattices of definite signature, hence Λ is purely
left-moving and Λ is purely right-moving. We would like to stress
that, despite the notation, ΘΛ(τ, · · · ) is not holomorphic in τ if Λ is
not of definite signature.

2. In [24] there are some related computations. However, these authors
assume that the edge state bosons have well-defined periodicity, and
hence are not describing the dual to the most general abelian Chern–
Simons theory.

4.6. Generalization to higher genus surfaces

The above computations generalize to higher genus surfaces X. Our wave-
functions are functions on the vector space of real harmonic one-forms on
X. We define coordinates by choosing a basis ωa = ωa

zdz of holomorphic
1-forms, while ωa is a basis of anti-holomorphic 1-forms, with a, a = 1, . . . h,
h is the genus of X.

Recall that the momentum is a vector-valued density, so

Πi
α

∂

∂xi
⊗ d2x , α = 1, . . . , d (4.42)

is coordinate invariant. The Hamiltonian is

H =
∫

X

gij

2
√
g
λαβ Π̃i

αΠ̃j
β d

2x+
1
2
λ−1

αβ F
α ∗2 F β . (4.43)

Our phase space is the cotangent space T ∗Γ(Ω1(X)). Our strategy is to
restrict to the sub-phase space of the cotangent bundle to the space of real
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harmonic forms. We refer to this as the “small phase space” for brevity.
Just as on the torus, we can introduce complex coordinates so that

gijdσ
i ⊗ dσj = gzz(dz ⊗ dz + dz ⊗ dz) . (4.44)

Now, in restricting to the small phase space we take

Aα =
h∑

a=1

(
Aα

aω
a
zdz +Aα

aω
a
zdz

)
. (4.45)

Note that Aα
a = (Aα

a )∗ are complex coordinates on phase space and are
z, z-independent. The symplectic form is

Ω =
∫

X
δΠα ∧ δAα . (4.46)

Restricting to the subspace (4.45) we define the conjugate coordinates on
phase space by

δΠz
α = δΠb

α(τ−1)cb ω
c
z ,

δΠz
α = δΠb

α(τ−1)bc ω
c
z .

(4.47)

Here we have introduced the period matrix

τac :=
∫

X
ωa ∧ ωc (4.48)

The symplectic form on the small phase space is

Ω = δΠa
α ∧ δAα

a + cplx. conj. (4.49)

and this fixes the quantization:

Πa
α = −i ∂

∂Aa
α

, Πa
α = −i ∂

∂Aa
a

. (4.50)

There is no misprint here. We have a minus sign on the RHS of both ex-
pressions.

Now we find

Π̃z
α =− iωa

z (τ−1)ab

[
∂

∂Aα
b

− 2πKβαiτ
bcAβ

c

]
,

Π̃z
α =− iωc

z (τ−1)bc

[
∂

∂Aα
b

+ 2πKβαiτ
dbAβ

d

]
.

(4.51)
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Finally we substitute into (4.43) with F = 0. We get a (1, 1) form, and the
integral over X is

H = −1
2
λαβτ−1

db

{(
∂

∂Aα
b

− 2πiKγατ
beAγ

e

)
,

(
∂

∂Aβ

d

+ 2πiKδβτ
fdAδ

f

)}
.

(4.52)
Thus, we see that the above discussion easily generalizes to arbitrary

genus. Roughly speaking τ becomes the period matrix, and we replace λ→
λ⊗ τ−1 while K → K ⊗ τ .

5. Open problems and further questions

The present paper will appear somewhat trivial to many readers. While the
computations are elementary – after all we are discussing free field theory
– we think it is important to have a clear idea of the wavefunctions which
naturally come up in the study of holography of massive Chern–Simons
theory. To conclude, we discuss briefly some natural continuations of the
above results.

First, much of the structure of the rational Gaussian model can be un-
derstood in terms of the extended chiral algebra, where one extends the u(1)
chiral algebra generated by i∂φ(z) by the operators e±i

√
2kφ(z). This defines

the “level k U(1) chiral algebra” in the sense of RCFT. The conformal blocks
of the RCFT are the holomorphic theta functions which are characters of
this chiral algebra. Is there an analogous nonholomorphic algebra in the
present case? A related question is to understand in detail how Wilson lines
piercing the cylinder/torus correspond to vertex operator insertions in the
boundary conformal field theory.

Second, there might be some interesting connections with the idea of inte-
grable structures in the AdS/CFT correspondence. In the above discussion
we have always assumed that µ is irrational. However, when µ is rational the
dual is an RCFT. By the correspondence there is an infinite set of “extra”
holomorphic conserved charges in the string dual on AdS3 ×K7. It would
be worth seeing if this enhanced symmetry gives useful information on the
holographic correspondence and how, in detail, it leads to greater solvability
of the string theory.

A natural question one can ask is what the nonabelian generalization
of the AB-type theory might be. In fact, Kaluza-Klein reduction of six-
dimensional supergravity on AdS3 × S3 yields a very interesting and subtle
generalization of SU(2) massive Chern–Simons theory, which deserves to be
understood better than it is at present [36,37,38,39,40,41].



September 2, 2004 9:57 WSPC/Trim Size: 9.75in x 6.5in for Proceedings moore2

1644 S. Gukov, E. Martinec, G. Moore and A. Strominger

The simple free field theory we are discussing might offer a useful labo-
ratory to explore some issues of holography. In the massive Chern–Simons
theory, which is not holographic, there is a many-to-one map from “interior
data” such as the choice of metric within the solid torus, or the presence
of local operators, to the coefficients ζβ of the wavefunction appearing in
(1.10). Some aspects of this map (such as the metric dependence) could in
principle be made quite explicit. When embedded in string theory the anal-
ogous ζβ

string in (1.14) is supposed to be a “1-1 map” between the internal
data and the data of the boundary conditions of all the string fields. Un-
derstanding this better, in the present context might be useful in addressing
the puzzles raised in the recent paper [42]. Let X3 = H3/Γ be the quotient
of hyperbolic 3-space by a quasi-Fuchsian group. Then there are Riemann
surfaces X,X ′ at the two ends. The partition function of the massive abelian
Chern–Simons theory on this manifold has the “entangled” form:∑

β,β′

ζββ′Ψβ(A)Ψβ′(A′) (5.1)

where ζββ′ depends on the details of what operators have been inserted in the
interior of the 3-manifold. According to our general conjecture, ζββ′

string should
only depend on (arbitrary) boundary conditions on the two end surfaces
X,X ′. AdS/CFT leads us to expect that it is an outer product of two
vectors. We see no a priori reason why this cannot be true, and we believe
this is the resolution of the puzzles described in [42].

It is quite natural to try to extend the discussion here to two higher
dimensional analog systems. The first natural generalization is to the
(BNS , BRR) system on spacetimes which are asymptotically hyperbolic and
have boundary X4 × S5, where X4 is a 4-manifold. The analysis of the as-
sociated topological field theory was undertaken in [28]. In [28] the kinetic
terms were neglected, as is appropriate for the study of the representation of
SL(2,Z). However, we have seen that for finer questions involving natural
bases of wavefunctions one should retain the kinetic terms. A computa-
tion analogous to that above indeed produces the partition function of a
boundary theory of a U(1) gauge field coupling to a “chiral” combination
of (BNS , BRR). In this case, the “new” parameters, analogous to µ above,
include the complex dilaton τ of the type IIB string and the conformal class
of the metric on X4. We expect that the full string theory partition function
gives an analog of the decomposition (1.14), where ζβ

string is the partition
function of SU(N)/ZN SYM theory in different ’t Hooft flux sectors, and
Zstring is the partition function of U(N) SYM theory.
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Finally, we hope that the method of this paper will help in understanding
better the pairing between the 5-brane partition function and the supergrav-
ity path integral for the C-field and that there will be a nice combination of
the results of [32] with the techniques of this paper.
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6. Appendix A: Siegel–Narain Theta functions

Let Λ be a lattice of signature (b+, b−). Let P be a decomposition of Λ⊗R
as a sum of orthogonal subspaces of definite signature:

P : Λ⊗R ∼= Rb+,0 ⊥ R0,b− . (6.1)

Let P±(λ) = λ± denote the projections onto the two factors. We also write
λ = λ+ + λ−. With our conventions P−(λ)2 ≤ 0.

Let Λ+γ denote a translate of the lattice Λ. We define the Siegel–Narain
theta function

ΘΛ+γ(τ, α, β;P, ξ) ≡ exp
[ π
2y

(ξ2+ − ξ2−)
]

×
∑

λ∈Λ+γ

exp
{
iπτ(λ+ β)2+ + iπτ(λ+ β)2− + 2πi(λ+ β, ξ)− 2πi(λ+

1
2
β, α)

}
= eiπ(β,α) exp

[ π
2y

(ξ2+ − ξ2−)
]

×
∑

λ∈Λ+γ

exp
{
iπτ(λ+ β)2+ + iπτ(λ+ β)2− + 2πi(λ+ β, ξ)− 2πi(λ+ β, α)

}
(6.2)

where y = Imτ .
The main transformation law is:

ΘΛ(−1/τ, α, β;P,
ξ+
τ

+
ξ−
τ

) =

√
|Λ|
|Λ′|

(−iτ)b+/2(iτ)b−/2ΘΛ′(τ, β,−α;P, ξ )

(6.3)
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where Λ′ is the dual lattice. If there is a characteristic vector, call it w2,
such that

(λ, λ) = (λ,w2) mod 2 (6.4)

for all λ then we have in addition:

ΘΛ(τ + 1, α, β;P, ξ) = e−iπ(β,w2)/2ΘΛ(τ, α− β − 1
2
w2, β;P, ξ ) . (6.5)
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