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I review a particular class of physical applications of Logarithmic Conformal Field The-

ory in strings propagating in changing (not necessarily conformal) backgrounds, namely

D-brane recoil in flat or time dependent cosmological backgrounds. The role of re-

coil logarithmic vertex operators as non-conformal deformations requiring in some cases

Liouville dressing is pointed out. It is also argued that, although in the case of non-

supersymmetric recoil deformations the representation of target time as a Liouville zero

mode may lead to non-linear quantum mechanics for stringy defects, such non-linearities

disappear (or, at least, are strongly suppressed) after world-sheet supersymmetrization.

A possible link is therefore suggested between (world-sheet) supersymmetry and linearity

of quantum mechanics in this framework.
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1. Introduction

In this article, as a tribute to Ian Kogan, I would like to review some work

that I have done partly with him, in connection with some physical applica-

tions of Logarithmic Conformal Field Theory (LCFT) to strings propagat-

ing in changing backgrounds. Such a situation is encountered, for instance,

when a macroscopic number of closed strings hits a D-particle, embedded

in a d-dimensional space time, and forces the D-particle to recoil via an im-

pulse [1, 2]. Equivalently, pairs of logarithmic operators may occur in some

(nearly conformal) cosmological backgrounds of string theory, such as late

times Robertson-Walker (RW) cosmology [3]. In the first case, the loga-

rithmic pair consists of the velocity and the position of the non-relativistic

recoiling brane defect, while in the second example it is the cosmic velocity

and acceleration that enter in a logarithmic fashion.

In the context of non-supersymmetric D-particle recoil an interesting sit-

uation arises. The target time dynamics of the recoiling defects can be

described in terms of the (irreversible) flow of a renormalization-group (RG)

scale on the world-sheet of the underlying σ-model describing the stringy ex-

citations of the recoiling D-particle. This leads to non-linear terms in the as-

sociated “evolution equation” based on the identification of target time with

such a RG scale [4,5]. The latter is nothing other than the zero mode of the

associated Liouville σ-model field required for restoration of the conformal

invariance, which was broken by the recoil/impulse (non marginal) deforma-

tions. Upon going to the supersymmetric case, however, which is realized via

appropriately supersymmetrized recoil operators, such non-linearities dis-

appear (or at least are strongly suppressed), and the associated evolution

dynamics for the D-particles is that of a linear Schrödinger-like quantum

mechanics. This may have some interesting implications in linking super-

symmetry (of some form) to linearity of quantum mechanics. The key result

in our analysis was that world-sheet leading ultraviolet (UV) divergences

in an appropriate Zamolodchikov metric of the recoil operators, which in

the non-supersymmetric (bosonic) string case lead to diffusion like terms in

the quantum evolution, and hence to non-linearities, cancel out in the super-

symmetric case, thereby leading to ordinary Schrödinger evolution under the

identification of the world-sheet RG scale with target time. This latter result

provides a highly non-trivial consistency check of the above identification,

at least in this specific context.

Logarithmic conformal field theories [6, 7] have been attracting a lot of

attention in recent years because of their diverse range of applications, from

condensed matter models of disorder [8, 9] to applications involving grav-
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itational dressing of two-dimensional field theories [10], a general analysis

of target space symmetries in string theory [11], D-brane recoil [1, 2], AdS

backgrounds in string theory and also M-theory [13], as well as PP -wave

backgrounds in string theory [14] (see [15] for reviews and more exhaustive

lists of references). They lie on the border between conformally invariant

and general renormalizable field theories in two dimensions. A logarithmic

conformal field theory is characterized by the property that its correlation

functions differ from the standard conformal field theoretic ones by terms

which contain logarithmic branch cuts. Nevertheless, it is a limiting case of

an ordinary conformal field theory which is still compatible with conformal

invariance and which can still be classified to a certain extent by means of

conformal data.

The current understanding of logarithmic conformal field theories lacks

the depth and generality that characterizes the conventional conformally in-

variant field theories. Most of the analyses so far pertain to specific models,

and usually to those involving free field realizations. Nevertheless, some

general properties of logarithmic conformal field theories are now very well

understood. For example, an important deviation from standard conformal

field theory is the non-diagonalizable spectrum of the Virasoro Hamiltonian

operator L0, which connects vectors in a Jordan cell of a certain size. This

implies that the logarithmic operators of the theory, whose correlation func-

tions exhibit logarithmic scaling violations, come in pairs, and they appear

in the spectrum of a conformal field theory when two primary operators be-

come degenerate. It would be most desirable to develop methods that would

classify and analyze the origin of logarithmic singularities in these models in

as general a way as possible, and in particular beyond the free field prescrip-

tions. Some modest steps in this direction have been undertaken recently

using different approaches. For instance, an algebraic approach is advocated

in [16, 17] and used to classify the logarithmic triplet theory as well as cer-

tain non-unitary, fractional level Wess-Zumino-Witten (WZW) models. The

characteristic features of logarithmic conformal field theories are described

within this setting in terms of the representation theory of the Virasoro alge-

bra. An alternative approach to the construction of logarithmic conformal

field theories starting from conformally invariant ones is proposed in [18].

In this setting, logarithmic behavior arises in extended models obtained by

appropriately deforming the fields, including the energy-momentum tensor,

in the chiral algebra of an ordinary conformal field theory.

From whatever point of view one wishes to look at logarithmic conformal

field theory, an important issue concerns the nature of the extensions of these
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models to include worldsheet supersymmetry. In many applications, most

notably in string theory, supersymmetry plays a crucial role in ensuring the

overall stability of the target space theory. A partial purpose of this review is

to analyze in some detail the general characteristics of the N = 1 supersym-

metric extension of logarithmic conformal field theory. These models were

introduced in [19–21], where some features of the Neveu-Schwarz (NS) sec-

tor of the superconformal algebra were described. In Ref. [22] we extended

and elaborated on these studies, and further incorporated the Ramond (R)

sector of the theory. In addition to unveiling some general features of log-

arithmic superconformal field theories, in this article we shall also study in

some detail how these novel structures emerge in the super D-particle recoil

problem [22] and connect it with the above mentioned problem of the linear-

ity of the emerging quantum mechanics of D-particles upon the identification

of the Liouville mode with target time.

The structure of this article is as follows. In Section 2 we discuss the

propagation of strings in recoiling D-brane backgrounds embedded in both

flat and (late times) Robertson-Walker cosmological Conformal Field Theory

as a result of the D-brane recoil. Although our recoil formalism is general,

for definiteness we restrict ourselves to the case of D-particles (D0-branes).

An interesting consequence of the LCFT is the possibility of the identifica-

tion of target time with a world-sheet Renormalization Group (RG) scale

(Liouville zero mode). In Section 3 we review some consequences of this

identification in bosonic D-particles, in particular the emergence (due to re-

coil) of diffusion-like terms in the probability distribution for the position

of the D-particles, and hence non-linearities in the associated temporal evo-

lution of their wavefunctionals. In Section 4 we give a general description

of N=1 superconformal logarithmic algebras on the world sheet, which is

used in Section 5 to discuss the recoil/impulse problem of supersymmetric

D particles under their scattering from a (macroscopic) number of closed

string states. It is shown that, as a result of special properties of the world-

sheet supersymmetric algebras involved, the non-linearities of the bosonic

case, associated with diffusion like terms in the probability distribution, dis-

appear (or, at least, are strongly suppressed), thereby restoring the linear

quantum mechanical Schrödinger evolution of the recoiling super D-particle.

This provides a non-trivial consistency check of the rôle of time as a Liouville

field in superstring theory. Our conclusions are presented in Section 6.
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2. Strings in Changing Backgrounds and Logarithmic

Conformal Field Theory

2.1. Logarithmic Conformal Field Theories

The Virasoro algebra of a two-dimensional conformal field theory is gen-

erated by the worldsheet energy-momentum tensor T (z) with the operator

product expansion

T (z)T (w) =
c/2

(z − w)4
+

2

(z −w)2
T (w) +

1

z − w
∂wT (w) + . . . , (2.1)

where c is the central charge of the theory, and an ellipsis always denotes

terms in the operator product expansion which are regular as z → w. For

a closed surface these relations are accompanied by their anti-holomorphic

counterparts, while for an open surface the coordinates z, w are real-valued

and parametrize the boundary of the worldsheet. In the following we will

be concerned with the latter case corresponding to open strings and so will

not write any formulas for the anti-holomorphic sector. We shall always set

the worldsheet infrared scale to unity to simplify the formulas which follow.

The simplest logarithmic conformal field theory is characterized by a pair

of operators C and D which become degenerate and span a 2×2 Jordan cell

of the Virasoro operators. The two operators then form a logarithmic pair

and their operator product expansion with the energy-momentum tensor

involves a non-trivial mixing [6, 7]

T (z)C(w) =
∆

(z − w)2
C(w) +

1

z − w
∂wC(w) + . . . ,

T (z)D(w) =
∆

(z − w)2
D(w) +

1

(z − w)2
C(w) +

1

z − w
∂wD(w) + . . . ,(2.2)

where ∆ is the conformal dimension of the operators determined by the

leading logarithmic terms in the conformal blocks of the theory, and an

appropriate normalization of the D operator has been chosen. Because of

(2.2), a conformal transformation z 7→ w(z) mixes the logarithmic pair as

(
C(z)

D(z)

)
=

(
∂w

∂z

)
0

@

∆ 0

1 ∆

1

A (
C(w)

D(w)

)
, (2.3)
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from which it follows that their two-point functions are given by [6, 7]
〈
C(z)C(w)

〉
= 0 ,

〈
C(z)D(w)

〉
=

ξ

(z − w)2∆
,

〈
D(z)D(w)

〉
=

1

(z − w)2∆

(
−2ξ ln(z − w) + d

)
, (2.4)

where the constant ξ is fixed by the leading logarithmic divergence of the

conformal blocks of the theory and the integration constant d can be changed

by the field redefinition D 7→ D + (const.)C. The vanishing of the CC cor-

relator in (2.4) is equivalent to the absence of double or higher logarithmic

divergences. From these properties it is evident that the operator C behaves

similarly to an ordinary primary field of scaling dimension ∆, while the prop-

erties of the D operator follow from the formal identification D = ∂C/∂∆.

2.2. Impulse Operators for Moving D-Branes

The bosonic part of the vertex operator describing the motion of the super

D-brane is given by [1, 2]

V bos
D = exp

(
− 1

2πα′

∫

Σ

d2σ ηαβ ∂α

[
Yi

(
x0(σ)

)
∂βx

i(σ)
] )

= exp
(
− 1

2πα′

1∫

0

dτ Yi

(
x0(τ)

)
∂⊥x

i(τ)
)
, (2.5)

where α′ is the string slope, ∂α = ∂/∂σα, and Yi(x
0) = δij Y

j(x0) describes

the trajectory of the D0-brane as it moves in spacetime.

The recoil of a heavy D-brane due to the scattering of closed string states

may be described in an impulse approximation by inserting appropriate fac-

tors of the usual Heaviside function Θ(x0) into (2.5). This describes a non-

relativistic 0-brane which begins moving at time x0 = 0 from the initial

position yi with a constant velocity ui. The appropriate trajectory is given

by the operator [1]

Yi(x
0) = yiCε(x

0) + uiDε(x
0) , (2.6)

where we have introduced the operators

Cε(x
0) = α′ εΘε(x

0) , Dε(x
0) = x0 Θε(x

0) , (2.7)
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with Θε(x
0) the regulated step function which is defined by the Fourier

integral transformation

Θε(x
0) =

1

2πi

∞∫

−∞

dω

ω − iε
e iωx0

. (2.8)

This integral representation is needed to make the Heaviside function well-

defined as an operator. In the limit ε→ 0+, it reduces via the residue theorem

to the usual step function. The operator Cε(x
0) is required in (2.6) by scale

invariance. Note that the center of mass coordinate yi appears with a factor

of ε → 0+, so that the first operator in (2.6) represents a small uncertainty

in the initial position of the D-brane induced by stringy effects [1]. The pair

of fields (2.7) are interpreted as functions of the coordinate z on the upper

complex half-plane, which is identified with the boundary variable τ in (2.5).

This interpretation is possible because the boundary vertex operator (2.5)

is a total derivative and so can be thought of as a bulk deformation of the

underlying free bosonic conformal σ-model on Σ (in the conformal gauge).

The impulse operator (2.5,2.6) then describes the appropriate change of state

of the D-brane background because it has non-vanishing matrix elements

between different string states. It can be thought of as generating the action

of the Poincaré group on the 0-brane, with yi parametrizing translations and

ui parametrizing boosts in the transverse directions.

By using the representation (2.8) and the fact that the tachyon vertex

operator e iωx0
has conformal dimension α′ω2/2, it can be shown [1] that

the operators (2.7) form a degenerate pair which generate a logarithmic

conformal algebra (2.2) with conformal dimension ∆ = ∆ε, where

∆ε = −α
′ε2

2
. (2.9)

The total dimension of the impulse operator (2.5,2.6) is hε = 1 + ∆ε, and

so for ε 6= 0 it describes a relevant deformation of the underlying worldsheet

conformal σ-model. The existence of such a deformation implies that the

resulting string theory is slightly non-critical and leads to the change of state

of the D-brane background.

The two-point functions of the operators (2.7) can be computed explicitly



September 2, 2004 9:45 WSPC/Trim Size: 9.75in x 6.5in for Proceedings mavromatos

LCFT and Strings 1265

to be [1]

〈
Cε(z)Cε(w)

〉
=

1

4π

√
(α′)3

ε2 lnΛ

[√
π

2 1F1

(
1
2 ,

1
2 ; 4ε2α′ ln(z − w)

)

− 2
√
ε2α′ ln(z − w) 1F1

(
1 , 3

2 ; 4ε2α′ ln(z − w)
)]

,

〈
Cε(z)Dε(w)

〉
=

1

4πε3

√
1

2α′ lnΛ

[√
π

8 1F1

(
1
2 , −1

2 ; 4ε2α′ ln(z −w)
)

+
16

3

(
ε2α′ ln(z − w)

)3/2

1F1

(
2 , 5

2 ; 4ε2α′ ln(z − w)
)]

,

〈
Dε(z)Dε(w)

〉
=

1

ε2α′

〈
Cε(z)Dε(w)

〉
, (2.10)

where Λ → 0 is the worldsheet ultraviolet cutoff which arises from the short-

distance propagator

lim
z→w

〈
x0(z)x0(w)

〉
= −2α′ lnΛ . (2.11)

Here we have used the standard bulk Green’s function in the upper half-

plane, as the effects of worldsheet boundaries will not be relevant for the

ensuing analysis.a This is again justified by the bulk form of the vertex

operator (2.5), and indeed it can be shown that using the full expression

for the propagator on the disc does not alter any results [2]. It is then

straightforward to see [1] that in the correlated limit ε,Λ → 0+, with

1

ε2
= −2α′ lnΛ , (2.12)

the correlators (2.10) reduce at order ε2 to the canonical two-point corre-

lation functions (2.4) of the logarithmic conformal algebra, with conformal

dimension (2.9) and the normalization constants

ξ =
π3/2 α′

2
, d = dε =

π3/2

2ε2
. (2.13)

Note that the singular behavior of the constant dε in (2.13) is not harmful,

because it can be removed by considering instead the connected correlation

functions of the theory [1].

a Boundary effects in logarithmic conformal field theories have been analyzed in [2,12].
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2.3. Target Space Formalism

Let us now describe the target space properties of the logarithmic (su-

per)conformal algebra that we have derived. A worldsheet finite-size scaling

Λ 7−→ Λ′ = Λ e−t/
√

α′
(2.14)

induces from (2.12) a transformation of the target space regularization pa-

rameter,

ε 7−→ ε′ = ε+ ε3 t
√
α′ +O(ε5) . (2.15)

By using (2.13) and the ensuing scale dependence of the correlation functions

(2.4) we may then infer the transformation rules

Cε′ = Cε , Dε′ = Dε −
t√
α′ Cε (2.16)

to order ε2. It follows that, in order to maintain conformal invariance, the σ-

model coupling constants in (5.25) must transform as yi 7→ yi + (t/
√
α′ )ui,

ui 7→ ui, and thus a worldsheet scale transformation leads to a Galilean

boost of the D-brane in target space. This provides a non-trivial indication

that a world-sheet RG scale can be identified with the target time. In fact

we shall discuss important consequences of this in section 3.

2.4. Recoiling D-particles in Robertson-Walker backgrounds

Above we discussed recoil in flat target space times. Placing D-branes in

curved space times is not understood well at present. The main problem

originates from the lack of knowledge of the complete dynamics of such

solitonic objects. One would hope that such a knowledge would allow a

proper study of the back reaction of such objects onto the surrounding space

time geometry (distortion), and eventually a consistent discussion of their

dynamics in curved spacetimes. Some modest steps towards an incorporation

of curved space time effects in D-brane dynamics have been taken in the

recent literature from a number of authors [24]. These works are dealing

directly with world volume effects of D-branes and in some cases string

dualities are used in order to discuss the effects of space time curvature.

A different approach has been adopted in [11], [2], [1], [25], in which

we have attempted to approach some aspects of the problem from a world

sheet view point, which is probably suitable for a study of the effects of the

(string) excitations of the heavy brane. We have concentrated mainly on

heavy D-particles, embedded in a flat target background space time. We
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have discussed the instantaneous action (impulse) of a ‘force’ on a heavy D-

particle. The impulse may be viewed either as a consequence of ‘trapping’

of a macroscopic number of closed string states on the defect, and their

eventual splitting into pairs of open strings, or, in a different context, as the

result of a more general phenomenon associated with the sudden appearance

of such defects. Our world sheet approach is a valid approximation only if

one looks at times long after the event. Such impulse approximations usually

characterize classical phenomena. In our picture we view the whole process

as a semi-classical phenomenon, due to the fact that the process involves

open string recoil excitations of the heavy D-particle, which are quantum in

nature. It is this point of view that we shall adopt in the present article.

Such an approach should be distinguished from the problem of studying

single-string scattering of a D-particle with closed string states in flat space

times [26]. We have shown in [11], [2], [25] that for a D-particle embedded in a

d-dimensional flat Minkowski space time such an impulse action is described

by a world-sheet σ-model deformed by appropriate ‘recoil’ operators, which

obey a logarithmic conformal algebra [7]. The appearance of such algebras,

which lie on the border line between conformal field theories and general

renormalizable field theories in the two-dimensional world sheet, but can still

be classified by conformal data, is associated with the fact that an impulse

action (recoil) describes a change of the string/D-particle background, and as

such it cannot be described by conformal symmetry all along. The transition

between the two asymptotic states of the system before and (long) after

the event is precisely described by deforming the associated σ-model by

operators which spoil the conformal symmetry.

In this section we shall extend [3] the flat space time results of [11],

[1], [25], reviewed above, to the physically relevant case of a Robertson-

Walker (RW) cosmological background space time. As is well known in

string σ-model perturbation theory, Robertson-Walker space times are not

solutions of the conformal invariance conditions of the σ-model, in the sense

of having σ-model β-function different from zero. This would affect in general

the two point correlator (c.f. below) 〈Xµ(z)Xν(w)〉 which is modified from

the standard Gµν ln |z − w|2 form by the inclusion of βµν -dependent terms.

Nevertheless, in the particular case of (large) cosmological times which we

are interested in here and describe well the present era of the Universe,

such terms are subleading, given that βµν ∝ Rµν ∼ 1/t2, and thus can be

safely neglected. In this sense, discussing recoil in such (almost conformal)

backgrounds is a physically interesting and non-trivial exercise in conformal

field theory, which we would like to pursue here.
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Although, our results do not depend on the target space dimension, for

definiteness we shall concentrate on the case of a D-particle embedded in

a four-dimensional RW spacetime. It must be stressed that we shall not

attempt here to present a complete discussion of the associated space time

curvature effects, which - as mentioned earlier - is a very difficult task, still

unresolved. Nevertheless, by concentrating on times much larger than the

moment of impulse on the D-particle defect, one may ignore such effects

to a satisfactory approximation. As we shall see, our analysis produces

results which look reasonable and are of sufficient interest to initiate further

research.

The vertex operators which describe the impulse in curved RW back-

grounds obey a suitably extended (higher-order) logarithmic algebra. The

algebra is valid at, and in the neighborhood of, a non-trivial infrared fixed

point of the world-sheet Renormalization Group. For a RW spacetime with

scale factor of the form tp, where t is the target time, and p > 1 in the

horizon case, the algebra is actually a set of logarithmic algebras up to order

[2p], which are classified by the appropriate higher-order Jordan blocks [6,7].

As in the flat case, which is obtained as a special limit of this more

general case, the recoil deformations are relevant operators from a world-

sheet Renormalization-Group viewpoint. One distinguishes two cases. In

the first, the initial RW spacetime does not possess cosmological horizons.

In this case it is shown that the limit to the conformal world-sheet non-trivial

(infrared) fixed point can be taken smoothly without problems and one has

a standard logarithmic algebra. On the other hand, in the case where the

initial spacetime has cosmological horizons, such a limit is plagued by world-

sheet divergences. These should be carefully subtracted in order to allow for

a smooth approach to the fixed point, leading to higher-order logarithmic

algebras. We find this an interesting result which requires further study. The

presentation below follows that in [3], where we refer the reader for more

details.

2.4.1. Geodesic paths and recoil

Let us consider a D-particle, located (for convenience) at the origin of the

spatial coordinates of a four-dimensional space time, which at a time t0
experiences an impulse. In a σ-model framework, the trajectory of the D-

particle yi(t), i a spatial index, is described by inserting the following vertex

operator

V =

∫

∂Σ
Gijy

j(t)∂nX
i (2.17)
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where Gij denotes the spatial components of the metric, ∂Σ denotes the

world-sheet boundary, ∂n is a normal world-sheet derivative, X i are σ-model

fields obeying Dirichlet boundary conditions on the world sheet, and t is a

σ-model field obeying Neumann boundary conditions on the world sheet,

whose zero mode is the target time.

This is the basic vertex deformation which we assume to describe the

motion of a D-particle in a curved geometry to leading order at least, where

spacetime back reaction and curvature effects are assumed weak. Such ver-

tex deformations may be viewed as a generalization of the flat target-space

case [31].

Perhaps a formally more desirable approach towards the construction of

the complete vertex operator would be to start from a T-dual (Neumann)

picture, where the deformation (2.17) should correspond to a proper Wil-

son loop operator of an appropriate gauge vector field. Such loop operators

are by construction independent of the background geometry. One can then

pass onto the Dirichlet picture by a T-duality transformation viewed as a

canonical transformation from a σ-model viewpoint [32]. In principle, such a

procedure would yield a complete form of the vertex operator in the Dirichlet

picture, describing the path of a D-particle in a curved geometry. Unfortu-

nately, such a procedure is not free from ambiguities at a quantum level [32],

which are still unresolved for general curved backgrounds. Therefore, for our

purposes here, we shall consider the problem of writing a complete form for

the operator (2.17) in a RW spacetime background in the Dirichlet picture

as an open issue. Nevertheless, for RW backgrounds at large times, ignoring

curvature effects proves to be a satisfactory approximation, and in such a

case one may consider the vertex operator (2.17) as a sufficient description

for the physical vertex operator of a D-particle. As we shall show below,

the results of such analyses appear reasonable and interesting enough to

encourage further studies along this direction.

For times long after the event, the trajectory yi(t) will be that of free

motion in the curved space time under consideration. In the flat space time

case, this trajectory was a straight line [1, 2, 31], and in the more general

case here it will be simply the associated geodesic. Let us now determine its

form, which will be essential in what follows.

The space time assumes the form

ds2 = −dt2 + a(t)2(dX i)2 , (2.18)

where a(t) is the RW scale factor. We shall work with expanding RW space
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times with scale factors

a(t) = a0t
p , p ∈ R+ . (2.19)

The geodesic equations in this case read

ẗ+ p t2p−1(ẏi)2 = 0 ,

ÿ + 2
p

t
(ẏi) ṫ = 0 , (2.20)

where the dot denotes differentiation with respect to the proper time τ of

the D-particle.

With initial conditions yi(t0) = 0, and dyi/dt(t0) ≡ vi, one easily finds

that, for long times t� t0 after the event, the solution acquires the form

yi(t) =
vi

1 − 2p

(
t1−2pt2p

0 − t0

)
+ O

(
t1−4p

)
, t� t0 . (2.21)

To leading order in t, therefore, the appropriate vertex operator (2.17), de-

scribing the recoil of the D-particle, is

V =

∫

∂Σ
a2

0

vi

1 − 2p
Θ(t− t0)

(
tt2p

0 − t0t
2p
)
∂nX

i , (2.22)

where Θ(t− t0) is the Heaviside step function, expressing an instantaneous

action (impulse) on the D-particle at t = t0 [1,25]. As we shall see later on,

such deformed σ-models may be viewed as providing rather generic math-

ematical prototypes for models involving phase transitions at early stages

of the Universe, leading effectively to time-varying speed of light. In the

context of the present work, therefore, we shall be rather vague as far as the

precise physical significance of the operator (2.22) is concerned, and merely

exploit the consequences of such deformations for the expansion of the RW

spacetime after time t0, from both a mathematical and physical viewpoint.

In [1], we have studied the case p = 0, a0 = 1, where the operators

assumed the form tΘε(t) to leading order in t, where Θε(t) is the regulated

form of the step function, given by [1],

Θε = −i
∫ +∞

−∞

dω

2π

1

ω − iε
eiω t , ε→ 0+ . (2.23)

As discussed in that reference, this operator forms a logarithmic pair [7]

with εΘε(t), expressing physically fluctuations in the initial position of the

D-particle.

In the current case, one may expand the integrand of (2.22) in a Taylor

series in powers of (t−t0), which implies the presence of a series of operators,
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Plane 
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Contour 

Figure 1. Contour of integration in the complex plane to define the recoil operators D(q), by

proper treatment of the associated cuts.

of the form (t − t0)
qΘε(t − t0), where q takes on the values 2p, 2p − 1, . . .,

i.e. it is not an integer in general. In a direct generalization of the Fourier

integral representation (2.23), we write

D(q) ≡ vi(t− t0)
qΘε(t− t0)∂nX

i = viNq

∫ +∞

−∞
dω

1

(ω − iε)q+1
eiω(t−t0)∂nX

i ,

Nq ≡ iq

Γ(−q)(1 − e−i2πq)
=

(−i)q+1Γ(q + 1)

2π
, (2.24)

where we have incorporated the velocity coupling vi in the definition of the

σ-model deformation, and we have defined the integral along the contour of

figure 1, having chosen the cut to be from +iε to +i∞.

2.4.2. Extended logarithmic world-sheet algebra of recoil in RW

backgrounds

Following the flat space time analysis of [1], we now proceed to discuss the

conformal structure of the recoil operators in RW backgrounds. We shall

do so by acting on the operator D(q) (2.24) with the world-sheet energy

momentum tensor operator Tzz ≡ T (in a standard notation). Due to the

form of the background space time (2.18), the stress tensor T assumes the

form

2T = −(∂t)2 + a2(t)(∂X i)2 , (2.25)
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where, from now on, ∂ ≡ ∂z, unless otherwise stated. One can then obtain

the relevant operator-product expansions (OPE) of T with the operators

D(q). For convenience in what follows we shall consider the action of each of

the two terms in (2.25) on the operators D(q) separately. For the first (time

t-dependent part), one has, as z → w,

−1

2
(∂t(z))2 · D(q)(w) =

vi

(z − w)2

[
Nq

∫ +∞

−∞
dω

ω2/2

(ω − iε)q+1
eiω t(w)

]
∂nX

i

=
1

(z −w)2

[
−ε

2

2
D(q) + qεD(q−1) +

q(q − 1)

2
D(q−2)

]
. (2.26)

The above formulæ were derived for asymptotically large time t, assuming

the two-point correlators

〈Xµ(z)Xν(w)〉 = 2Gµν ln |z − w|2 + · · · , (2.27)

where the · · · denote terms with negative powers of t, related to space-time

curvature, which are subleading in the limit t→ ∞.

At this point, we stress again that Robertson-Walker space times are not

solutions of the conformal invariance conditions of the σ-model, having β-

functions different from zero. Non-zero β functions affect in general the two

point correlators (2.27) by βµν -dependent terms.However, in the particular

case of (large) cosmological times, which describe well the present era of the

Universe we are interested in here, such terms are subleading, given that

βµν ∝ Rµν ∼ 1/t2, and thus can be safely neglected in the limit t→ ∞.

For the spatial part of (2.25) we consider

the OPE a(t(z))2(∂X i(z))2D(q)(w) as z → w. Again, for convenience we

shall do the time and space contractions separately,

t2p(z) · D(q)(w) =

∫
dωD̃(q)(ω)t2p(z) · eiω(t(w)−t0)

=

∫ ∞

0

dν

Γ(−2p)
ν−1−2p

∫
dωD̃(q)(ω)e−νt(z) · eiω(t(w)−t0) . (2.28)

Using the OPE e−νt(z) · e−iω(t(w)−t0) ∼ |z − w|iνωe−νt(z)−iω(t(z)−t0)+O(z−w)
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one obtains (as z ∼ w)

t(z)2p · D(q)(w) =

∫ ∞

0
dνΓ(−2p) ν−1−2pe−νt(z)D(q)(t− t0 − ν ln |z − w|)

= t2p

∫ ∞

0

dν

Γ(−2p)
ν−1−2pe−νD(q)(t− t0 −

ν

t
ln |z − w|) (2.29)

= t2p

[
D(q)(t− t0) −

1

t
ln |z − w|Γ(1 − 2p)

Γ(−2p)

d

dt
D(q)(t− t0) + O(t− t0)

q−2

]
.

We now observe that dD(q)

dt = qD(q−1)−ε D(q), where both terms have vacuum

expectation values of the same order in ε, as we shall see below, and hence

both should be kept in our perturbative expansion.

Expanding the various terms around t0,

ts = (t− t0)
s + s t0(t− t0)

s−1 +
t20
2

(s)(s− 1)(t − t0)
s−2 + O([t− t0]

s−3) ,

one has

t2p(z) · D(q)(w) = D(2p+q)(t− t0) + (2p t0 − 2p ε ln |z − w|) D(2p+q−1)

+
( t20

2
2p(2p− 1) +

[
2pq + (2p− 4p2)ε t0

]
ln |z − w|

)
D(2p+q−2)(t− t0)

+ O
(
[t− t0]

2p+q−3
)
, (2.30)

where it is worth mentioning that inside the subleading terms there are

higher logarithms of the form lnn |z − w|, where n = 2, 3, 4, . . . .

We now come to the OPE between the spatial parts. In view of (2.27),

upon expressing ∂z in normal ∂n and tangential parts, and imposing Dirichlet

boundary conditions on the world-sheet boundary where the operators live

on, we observe that such operator products take the form

(∂Xj(z))2·∂nX
i(w) ∼ Gii 1

(z − w)2
∂nX

i ∼ t−2p

(z − w)2
∂nX

i , (no sum over i) .

(2.31)

Performing the last contraction with t−2p, following the previous general
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formulæ and collecting appropriate terms, one obtains

T (z) · D(q)[(t− t0)(w)] =
1 − ε2

2

(z − w)2
D(q)[(t− t0)(w)]

+
qε

(z − w)2
Dq−1[(t− t0)(w)] +

q(q−1)
2 − 2p2 ln |z − w| − 2p2ε2 ln2 |z − w|

(z − w)2

×D(q−2)[(t− t0)(w)] + O([t− t0]
q−3) (2.32)

where again inside the subleading terms there are higher logarithms.

We next notice that, as a consistency check of the formalism, one can

calculate the OPE (2.32) in the case of matrix elements between on-shell

physical states. In the context of the σ-models that we are working with, the

physical state condition implies the constraint of the vanishing of the world-

sheet stress-energy tensor 2T = −(∂t)2 + a(t)2(∂X i)2 = 0. This condition

allows (∂X i)2 to be expressed in terms of (∂t)2, which is consistent even at

a correlation function level in the case of very target times t � t0, since

in that case, the correlator 〈X it〉 is subleading, as mentioned previously.

Implementing this, it can be then seen that the OPE between the spatial

parts of T and D(q) is

a2(t)(∂X i)2 · D(q)

= t−2p(∂t)2 ·
{
D(2p+q)(t− t0) + (2pt0 − 2pε ln |z − w|)D(2p+q−1)

+

(
t20
2

2p(2p− 1) +
[
2pq +

(
2p− 4p2

)
εt0
]
ln |z − w|

)
D(2p+q−2)(t− t0)

+O
(
[t− t0]

2p+q−3
)}
. (2.33)

Performing the appropriate contractions, and adding to this result the OPE

of the temporal part of T with D(q), i.e. the quantity − ε2

2 D(q) + qεD(q−1) +
1
2q(q − 1)D(q−2), we obtain

T · D(q)|on−shell =
(
−2pε− pt0ε

2 + pε2 ln
( a
L

))
D(q−1)

+

{
t20ε

22p(2p+ 1) − 3ε2p(2p+ q) ln
( a
L

)
− 2ε3

(
p+ p2

)
t0 ln

( a
L

)

− 2p2ε4 ln2
( a
L

)
+ ε(2p+ q)2pt0 −

(
4p2 + 4pq − 2p

)}
D(q−2)

+ O
(
[t− t0]

q−3
)
. (2.34)



September 2, 2004 9:45 WSPC/Trim Size: 9.75in x 6.5in for Proceedings mavromatos

LCFT and Strings 1275

From the above we observe that the on-shell operators become marginal as

they should, given that an on-shell theory ought to be conformal. Moreover,

and more important, the world-sheet divergences disappear upon imposing

the condition

ε2 ln

(
L

a

)2

= ξ0 = constant independent of ε, a, L , (2.35)

where L (a) is the world-sheet (ultraviolet) infrared cut-off on the world

sheet. As we shall discuss later on, this condition will be of importance for

the closure of the logarithmic algebra which characterizes the fixed point [1].

Hence, conformal invariance is preserved by the on-shell states, any deviation

from it being associated with off-shell states.

We next notice that, in the context of the RW metric (2.18), there are

two cases of expanding universes, one corresponding to 0 < p ≤ 1, and the

other to p > 1. Whenever p ≤ 1 (which notably incorporates the cases of

both radiation and matter dominated Universes) there is no horizon, given

that the latter is given by

δ(t) = a(t)

∫ ∞

t0

dt′

a(t′)
. (2.36)

In this case the relevant value for q is q = 2p ≤ 2. On the other hand, for the

case p > 1, i.e. q > 2 there is a non-trivial cosmological horizon, which as we

shall see requires special treatment from a conformal symmetry viewpoint.

We commence with the no-horizon case, 1 < q ≤ 2. We first notice that

the term linear in t in (2.22) leads to the conventional logarithmic algebra,

discussed in [1], corresponding to a pair of impulse (‘recoil’) operators C,D.

The main point of our discussion below is a study of the t2p terms in (2.22),

and their connection to other logarithmic algebras. Indeed, we observe that a

logarithmic algebra [1,7,11] can be obtained for these terms of the operators,

if we define D ≡ D(q) and C ≡ qεD(q−1). In this case the OPEs with T are

(z − w)2 T · D =

(
1 − ε2

2

)
D + C ,

(z − w)2 T · C =

(
1 − ε2

2

)
C + O

(
[t− t0]

q−2
)
, (2.37)

where throughout this work we ignore terms with negative powers in t− t0
(e.g. of order q − 2 and higher), for large t � t0. Notice that in the case

q < 1 (i.e. p < 1/2) the C operator defined above is absent.

In the second case p > 1 one faces the problem of cosmological horizons

(cf. (2.36)), which recently has attracted considerable attention in view of
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the impossibility of defining a consistent scattering S-matrix for asymptotic

states [29, 30]. In this case the operator D(q−2) is not subleading and one

has an extended (higher-order) logarithmic algebra defined by (2.32). It is

interesting to remark that now the logarithmic world-sheet terms in the

coefficient of the D(q−2) operator imply that the limit z → w is plagued

by ultraviolet world-sheet divergences, and hence the world-sheet conformal

invariance is spoiled. This necessitates Liouville dressing, in order to restore

the conformal symmetry [27]. Such a dressing implies the presence of an

extra space-time dimension given by the Liouville mode. The signature

depends on the signature of the central charge deficit. We shall not deal

with this procedure further in this article, the reason being that the RW

background is itself not conformal.

We now turn to a study of the correlators of the various D(q) operators,

which will complete the study of the associated logarithmic algebras, in anal-

ogy with the flat target-space case of [1]. From the algebra (2.32) we observe

that we need to evaluate correlators between D(q),D(q−n), n = 0, 1, 2, . . . We

shall evaluate correlators 〈. . . 〉 with respect to the free world-sheet action,

since we work to leading order in the (weak) coupling vi. For convenience

below we shall restrict ourselves only to the time-dependent part of the op-

erators D. The incorporation of the ∂nX
i is trivial, and will be implied in

what follows. With these in mind one has

〈D(q)(z)D(q−n)(w)〉 = NqNq−n

∫ ∫ +∞

−∞

dωdω′〈e−iωt(z) e−iω′t(w)〉
(ω − iε)q+1(ω′ − iε)q−n+1

(2.38)

where ε→ 0+. As already mentioned, we work to leading order in time t�
∞, and hence we can we apply the formula (2.27) for two-point correlators

of the Xµ fields to write b

〈e−iωt(z) e−iω′t(w)〉 = e−
ω2

2
〈t(z)t(z)〉−ω

′2
2

〈t(w)t(w)〉−ωω′〈t(z)t(w)〉

= e−(ω+ω′)2 ln(L/a)2+2ωω′ ln(|z−w|/a)2 , (2.39)

where we took into account that Limz→w 〈t(z)t(w)〉 = −2 ln(a/L)2. Given

that ln(L/a) is very large, one can approximate

e−(ω+ω′)2 ln(L/a)2 '
√
π√

ln(L/a)2
δ(ω + ω′) .

b Here we use simplified propagators on the boundary, with the latter represented by a straight

line; this means that the arguments of the logarithms are real [1]. To be precise, one should use

the full expression for the propagator on the disc, along the lines of [2]. As shown there, and can

be checked here as well, the results are unaffected.
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Thus we obtain

〈D(q)(z)D(q−n)(w)〉 = (−1)−q+n−1NqNq−nJ (q)
n ,

J (q)
n ≡

√
π

α

∫ +∞

−∞

dωe−ω2λ(ω + iε)n

(ω2 + ε2)q+1
, (2.40)

where λ ≡ 2 ln(|z −w|/a)2, and α ≡ ln(L/a)2.

Below, for definiteness, we shall be interested in the case 2 < q < 3, in

which the relevant correlators are given by n = 0, 1, 2. One has

J (q)
0 =

√
π

α
ε−2q−1fq

(
ε2λ
)
,

fq(ξ) =
√
π

Γ(1
2 + q)

Γ(1 + q)
F

(
1

2
,
1

2
− q; ξ

)
+ ξ

1
2
+qΓ

(
−1

2
− q

)
F

(
1 + q,

3

2
+ q; ξ

)
,

J (q)
1 = iεJ (q)

0 ,

J (q)
2 = −2ε2J (q)

0 + J (q−1)
0 = − ∂

∂λ
J (q)

0 − ε2J (q)
0 , (2.41)

where F (a, b; z) = 1 + a
b

z
1! + a(a+1)

b(b+1)
z2

2! + · · · is the degenerate (confluent)

hypergeometric function. Thus, the form of the algebra away from the fixed

point (‘off-shell form’), i.e. for ε2 6= 0, is

〈D(q)(z)D(q)(0)〉 = Ñ2
q

√
π

ξ0

(
fq(2ξ0)

(
α

ξ0

)q

+ 2f ′q(2ξ0)
(
α

ξ0

)q−1

ln

(∣∣∣ z
L

∣∣∣
2
)

+

+
1

2
f ′′q (2ξ0)

(
α

ξ0

)q−2

4 ln2

(∣∣∣ z
L

∣∣∣
2
)

+ O
(
αq−3

))
,

εq〈D(q)(z)D(q−1)(0)〉 =

= Ñ2
q

√
π

ξ0

(
fq(2ξ0)

(
α

ξ0

)q−1

+ 2f ′q(2ξ0)
(
α

ξ0

)q−2

ln

(∣∣∣ z
L

∣∣∣
2
)

+ O
(
αq−3

))
,

ε2q2〈D(q−1)(z)D(q−1)(0)〉 = Ñ2
q

√
π

ξ0
fq−1(2ξ0)

(
α

ξ0

)q−2

+ O
(
αq−3

)
,

ε2q(q − 1)〈D(q)(z)D(q−2)(0)〉 = −Ñ2
q

√
π

ξ0

(
fq(2ξ0) + f ′q(2ξ0)

)( α
ξ0

)q−2

+O
(
αq−3

)
,

ε3q2(q − 1)〈D(q−1)(z)D(q−2)(0)〉 = O
(
αq−3

)
,

ε4q2(q − 1)2〈D(q−2)(z)D(q−2)(0)〉 = O
(
αq−4

)
, (2.42)
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where Ñq = Γ(1+q)
2π , and ξ0 has been defined in (2.35).

Notice that the above algebra is plagued by world-sheet ultraviolet diver-

gences as ε2 → 0+, thereby making the approach to the fixed (conformal)

point subtle. As becomes obvious from (2.35), the non-trivial fixed point

ε → 0+ corresponds to L/a → +∞, i.e. it is an infrared world-sheet fixed

point. In order to understand the approach to the infrared fixed point, it is

important to make a few remarks first, motivated by physical considerations.

From the integral expression of the regularized Heaviside function [1]

(2.23) it becomes obvious that a scale 1/ε for the target time is introduced.

This, together with the fact that the scale ε is connected (2.35) to the world

renormalization-group scales L/a, implies naturally the introduction of a

‘renormalized’ σ-model coupling/velocity vR,i(1/ε) at the scale 1/ε where

vR,i

(
1

ε

)
∼
(

1

ε

)q−1

(2.43)

for a trajectory yi(t) ∼ tq. This normalization would imply the following

rescaling of the operators

D(q−n) → εq−1D(q−n) . (2.44)

As a consequence, the factors ε2(1−q) in (2.41), (2.42) are removed. In the

context of the world-sheet field theory this renormalization can be inter-

preted as a subtraction of the ultraviolet divergences by the addition of

appropriate counterterms in the σ model.

The approach to the infrared fixed point ε → 0+ can now be made by

looking at the connected two point correlators between the operators D (q)

defined by

〈AB〉c = 〈AB〉 − 〈A〉〈B〉 , (2.45)

where the one-point functions are given by

〈D(s)〉 = Ns

∫
dω

(ω − iε)s+1
〈eiωt〉 = Ns

∫
dω

(ω − iε)s+1
e−ω2α = Ñsε

−shs

(
ε2α
)
,

hs(x) = −x
s/2

2

(
4π

Γ(1+s
2 )

√
πF
(
1 +

s

2
,
3

2
, x
)
− 2π

Γ(1 + s
2)
F
(1 + s

2
,
1

2
, x
))

.

(2.46)

For the two-point function of the D(q) operator the result is

〈D(q)(z)D(q)(0)〉c = Ñqε
−2

(√
π

ξ0
fq

(
2ξ0 + 2ε2 ln

∣∣∣ z
L

∣∣∣
2
)
− h2

q(ξ0)

)
. (2.47)



September 2, 2004 9:45 WSPC/Trim Size: 9.75in x 6.5in for Proceedings mavromatos

LCFT and Strings 1279

Expanding in powers of ε, we obtain

〈D(q)(z)D(q)(0)〉c = Ñqε
−2

(√
π√
ξ0
fq(2ξ0) − h2

q(ξ0)

)
(2.48)

+Ñ2
q

√
π√
ξ0

f ′q(2ξ0)2 ln
∣∣∣ z
L

∣∣∣
2
+ +ε2Ñ2

q

√
π

ξ0

1

2
f ′′q (2ξ0)4 ln2

∣∣∣ z
L

∣∣∣
2
+ · · · ,

where · · · denote terms that vanish as ε→ 0+.

To avoid the divergences coming from the ε−2 factors, it is a condition

that there must be a solution ξ0 = ξ0(q) of the equation

H(ξ0) ≡
√
π√
ξ0
fq(2ξ0) − h2

q(ξ0) = 0 .

The existence of such a solution can be verified numerically (see figure 2).

Analytically this can be confirmed by looking at the asymptotic behavior of

the function H(x) as x→ ∞, which yields a negative value,

H(x→ ∞) ∼ − π3x2qe2x

Γ2(1+q
2 )Γ2(1 + q

2)
< 0 .

This behavior comes entirely from the term h2
q(x), given that

fq(x→ ∞) → 0+.

ξ
0
(q)

q0.5 1 1.5 2

2

4

6

8

10

12

0
0

14

Figure 2. Graph of the solution of the equation
√

π√
ξ0

fq(2ξ0) − h2
q(ξ0) = 0.

As we shall show below, for various values of q, near the fixed point
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ε→ 0+, one can construct higher order logarithmic algebras, whose highest

power is determined by the dominant terms in the operator algebra of corre-

lators (2.42), (2.37). To this end, we first remark that in the above analysis

we have dealt with a small but otherwise arbitrary parameter ε, which al-

lows us to keep as many powers as required by (2.42) in conjunction with

the value of q. The value of ε determines the distance from the fixed point.

For 1 < q < 2, there are only two dominant operators as the time t→ ∞,

D,C. In this case one obtains a conventional logarithmic conformal algebra

of two-point functions near the fixed point with

〈D(q)(z)D(0)(q)〉c = 〈D(z)D(0)〉c ∼ Ñ2
q

√
π√
ξ0
f ′q(2ξ0)2 ln

∣∣∣ z
L

∣∣∣
2
,

εq〈D(q−1)(z)D(q)(0)〉c = 〈C(z)D(0)〉c ∼ Ñ2
q

(
h2

q(ξ0) − hq−1hq(ξ0)
)
, (2.49)

and all the other correlators are subleading as t→ ∞.

Therefore, the on shell algebra is of the conventional logarithmic form [7],

between a pair of operators, and hence D(q−2) and subsequent operators,

which owe their existence to the non-trivial RW metric, do not modify the

two-point correlators of the standard logarithmic algebra of ‘recoil’ (im-

pulse) [1].c

Next, we consider the case where 2 < q < 3. In this case, from (2.42)

we observe that there are now three operators which dominate in the limit

t→ ∞, D, C and B = ε2 q (q−1)D(q−2), whose form is implied from (2.37), in

analogy with C. The corresponding algebra of correlators consists of parts

forming a conventional logarithmic algebra, and parts forming a second-

order logarithmic algebra, the latter being obtained from terms of order ε2

in the appropriate two-point connected correlators (cf. (2.48) etc.), which

c We note at this stage that, in our case of non-trivial cosmological RW spacetimes, the pairs of

operators D,C do not represent velocity and position as in the flat space time case of Ref. [1],

but rather velocity and acceleration. This implies that, under a finite-size scaling of the world

sheet, the induced transformations of these operators do not form a representation of the Galilean

transformations of the flat-space-time case.
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are denoted by a superscript 〈· · · 〉(2)c :

〈D(z)D(0)〉(2)c = Ñ2
q

√
π

ξ0

1

2
f ′′q (2ξ0)4 ln2

∣∣∣ z
L

∣∣∣
2
,

〈C(z)D(0)〉(2)c = Ñ2
q

√
π

ξ0
2f ′q(2ξ0) ln

∣∣∣ z
L

∣∣∣
2
,

〈C(z)C(0)〉(2)c = Ñ2
q

√
π

ξ0
fq−1(2ξ0) ,

〈B(z)D(0)〉(2)c = −Ñ2
q

√
π

ξ0

(
fq(2ξ0) + f ′q(2ξ0)

)
,

〈C(z)B(0)〉(2)c = 〈B(z)B(0)〉(2)c = 0 , (2.50)

where the last two correlators are of order ε4 and ε6 respectively, that is of

higher order than the ε2 terms, and hence they are viewed as zero to the

order we are working here.

An important relation in logarithmic conformal field theories is a “formal

derivative” relation with respect to the anomalous dimension ∆, between

the logarithmic set of operators [83]. In this respect, we mention that in the

case of logarithmic algebras of order [q] we encounter here one has

∂C
∂∆

= qD +
C

2∆
,

∂2B
∂∆2

= q(q − 1)D + 3
C

2∆
,

· · · (2.51)

where ∆ = −ε2/2, C, D and B have been defined previously (c.f. (2.37)), and

the . . . denote similar relations for the higher-order logarithmic algebras,

whose pattern can already be inferred easily. The first terms on the right-

hand-side of these relations would be exactly the derivative relation of a

standard logarithmic conformal field theory of order [q] [83]. However in

the recoil case one encounters singular 1/
√
−∆ ∼ 1/ε terms due to the

specific form of the operator C. Such singular terms also characterize the

corresponding derivative relations in the flat-space recoil case [1, 2]. It is

worth stressing, though, that such singularities seem to characterize only the

formal derivative relations and not the logarithmic O.P.E.’s or the connected

correlators, as we have seen in detail above.

In general, if one considers q > 3 one arrives at higher order logarithmic

algebras [7], with the highest power given by the integer part of q, [q]. This

is an interesting feature of the recoil-induced motion of D-particles in RW
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backgrounds with scale factors ∼ tp, p > 1, corresponding to cosmological

horizons and accelerating Universes. In such a case the order of the loga-

rithmic algebra is given by [2p]. It is interesting to remark that radiation

and matter (dust) dominated RW Universes would imply simple logarithmic

algebras.

We now notice that, under a world-sheet finite-size scaling,

L→ L′ = LeT K(q) , ε−2 → (ε′)−2 = ε−2 + T (2.52)

with K(q) a function of q determined by (2.49), the operators C,D, . . . , and

consequently the target-time t, transform in a non trivial way. In particular,

for t one has
(
ε′

ε

)q−1

Z(T )qt(T )q = tq + qεT tq−1 + O
(
ε2
)
, (2.53)

where Z(T ) is a wave function renormalization of the world-sheet field t(z),

which can be chosen in a natural way so that (ε′/ε)q−1Z (T )q = 1. This

implies

t(T )q = (t+ εT )q + O
(
ε2
)
,

t(T ) = t+ εT + O
(
ε2
)
, (2.54)

i.e. that a shift in the target time is represented as ε T . Of course, at the

fixed point, ε = 0, the field t(z) does not run, as expected.

2.4.3. Vertex operator for the path and associated spacetime geometry

In this subsection we shall discuss the implications of the world-sheet de-

formation (2.17) for the spacetime geometry. In particular, we shall show

that its rôle is to preserve the Dirichlet boundary conditions on the X i by

changing coordinate system, which is encoded in an induced change in the

space time geometry Gij . The final coordinates, then, are coordinates in the

rest frame of the recoiling particle, which naturally explains the preservation

of the Dirichlet boundary condition.

To this end, we first rewrite the world-sheet boundary vertex opera-

tor (2.17) as the bulk operator

V =

∫

∂Σ
Gijy

j(t)∂nX
i =

∫

Σ
∂α

(
yi(t)∂

αXi
)

=

∫

Σ

(
ẏi(t)∂αt∂

αXi + yi∂
2Xi

)
, (2.55)
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where the dot denotes derivative with respect to the target time t, and α is

a world-sheet index. Notice that it is the covariant vector yi which appears

in the formula, which incorporates the metric Gij , yi = Gijy
j .

To determine the background geometry, which the string is moving in,

it is sufficient to use the classical motion of the string, described by the

world-sheet equations

∂2Xi + Γi
µν∂αX

µ∂αXν = 0 , (2.56)

where µ, ν are space time indices, α = 1, 2 is a world-sheet index, ∂2 is the

laplacian on the world sheet, and i is a target spatial index.

The relevant Christoffel symbol in our RW background case, is Γi
ti, and

thus the operator (2.55) becomes
∫

Σ

(
ẏi − 2yi(t)Γ

i
ti

)
∂αt∂

αXi , (2.57)

from which we read an induced non-diagonal component for the space time

metric

2G0i = ẏi − 2yi(t)Γ
i
ti . (2.58)

In the RW background (2.18) the path yi(t) is described (2.21) by (notice

again we work with covariant vector yi)

yi(t) =
via

2
0

1 − 2p

(
tt2p

0 − t0t
2p
)
, (2.59)

which gives 2G0i = a2(t0)vi, yielding the metric line element

ds2 = −dt2 + via
2(t0)dtdX

i + a2(t)(dX i)2 , for t > t0 . (2.60)

As expected, this spacetime has precisely the form corresponding to a

Galilean-boosted frame (the D-particle’s rest frame), with the boost occur-

ring suddenly at time t = t0.

This can be understood in a general fashion by first noting that (2.58)

can be written in a general covariant form as

2G0i = ∇tyi (= ∇tyi + ∇it) , (2.61)

which is the general coordinate transformation associated with yi from a

passive (Lie derivative) point of view.

In general, given the boundary condition ∂nt = 0, one can write the

operator (2.17), in a covariant form by expressing it as a world-sheet bulk
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operator

V =

∫

∂Σ
yµ∂nX

µ =

∫

Σ
∂α (yµ∂

αXµ) =

∫

Σ
∇µyν∂αX

µ∂αXν , (2.62)

where in the last step we have used again the string equations of mo-

tion (2.56). From this expression, one then derives the induced change in

the metric

2δGµν = ∇µyν + ∇νyµ , (2.63)

which is the familiar expression of the Lie derivative under the coordinate

transformation associated with yµ.

In all the above expressions we have taken the limit ε → 0, which cor-

responds to considering the ratio of world-sheet cut-offs a/L → 0, implying

that one approaches the infrared fixed point in a Wilsonian sense. As noted

previously, in the context of the logarithmic conformal analysis of the path

yi(t), we have seen that this limit can be reached without problems only in

the case p ≤ 1, which corresponds to the absence of cosmological horizons.

On the other hand, the case of non-trivial horizons, p > 1, implies ultravio-

let divergences, which prevent one from taking this limit in a way consistent

with conformal invariance of the underlying σ model. In such a case, the

operators are relevant, with finite anomalous dimensions −ε2/2. One way to

deal with such relevant operators is by Liouville dressing [25,27] which would

in principle restore the conformal symmetry at the cost of implying an extra

target-space-time dimension. However in our case, such a restoration would

not solve the full problem, since as we mentioned above we have neglected

in our approach terms proportional to the graviton β-functions.

3. Time as a RG Scale and Non-Linear Dynamics of Bosonic

D-particles

3.1. General remarks

In [23] we formulated an effective Schrödinger wave equation describing the

quantum dynamics of a system of D0-branes by applying the Wilson renor-

malization group equation to the worldsheet partition function of a deformed

σ-model describing the system, which includes the quantum recoil due to the

exchange of string states between the individual D-particles. We arrived at

an effective Fokker-Planck equation for the probability density with diffusion

coefficient determined by the total kinetic energy of the recoiling system. We

used Galilean invariance of the system to show that there are three possi-

ble solutions of the associated non-linear Schrödinger equation depending on
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the strength of the open string interactions among the D-particles. When

the open string energies are small compared to the total kinetic energy of

the system, the solutions are governed by freely-propagating solitary waves.

When the string coupling constant reaches a dynamically determined criti-

cal value, the system is described by minimal uncertainty wavepackets which

describe the smearing of the D-particle coordinates due to the distortion of

the surrounding spacetime from the string interactions. For strong string

interactions, bound state solutions exist with effective mass determined by

an energy-dependent shift of the static BPS mass of the D0-branes.

The effective worldvolume dynamics of a single Dp-brane coupled to a

worldvolume gauge field and to background supergravity fields is described

by the action [33]

IDp = Tp

∫
dp+1σ e−φ

√
−det

α,β
[Gαβ +Bαβ + 2πα′Fαβ ]

+Tp

∫
dp+1σ

[
C ∧ e 2πα′F+B ∧ G

]
p+1

. (3.1)

The first term in (3.1) is the Dirac-Born-Infeld action with Tp the p-brane

tension, α′ the string Regge slope, φ the dilaton field, F = dA the worldvol-

ume field strength, and G and B the pull-backs of the target space metric

and Neveu-Schwarz two-form fields, respectively, to the Dp-brane worldvol-

ume. It is a generalization of the geometric volume of the brane trajectory.

The second term is the Wess-Zumino action (restricted to its p + 1-form

component) with C the pullback of the sum over all electric and magnetic

Ramond-Ramond (RR) form potentials and G a geometrical factor account-

ing for the possible non-trivial curvature of the tangent and normal bundles

to the p-brane worldvolume. It describes the coupling of the Dp-brane to the

supergravity RR p+ 1-form fields as well as to the topological charge of the

worldvolume gauge field and to the worldvolume gravitational connections.

The fermionic completion of the action (3.1), compatible with spacetime

supersymmetry and worldvolume κ-symmetry, has been described in [37].

For a recent review of the Born-Infeld action and its various extensions in

superstring theory, see [38].

While the generalization of the Wess-Zumino Lagrangian to multiple Dp-

branes is obvious (one simply traces over the worldvolume gauge group in

the fundamental representation), the complete form of the non-abelian Born-

Infeld action is not known. In [39] it was proposed that the background

independent terms can be derived using T -duality from a 9-brane action

obtained from the corresponding abelian version by symmetrizing all gauge
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group traces in the vector representation [38]. A direct calculation of the

leading terms in a weak supergravity background has been calculated using

Matrix Theory methods in [40]. Based on the Type I formulation, i.e. by

viewing a D-particle in the Neumann picture and imposing T -duality as a

functional canonical transformation in the string path integral [41], the ef-

fective moduli space Lagrangian was derived in [2] and shown to coincide

(to leading orders in a velocity expansion) with the non-abelian Born-Infeld

action of [39]. In the following we will use this moduli space approach to

D-brane dynamics to describe some properties of the multiple D-brane wave-

function.

The novel aspect of the approach of [2] is that the moduli space dynamics

induces an effective target space geometry for the D-branes which contains

information about the short-distance spacetime structure probed by multiple

D-particles. Based on this feature, string-modified spacetime and phase

space uncertainty relations can be derived and thereby represent a proper

quantization of the noncommutative spacetime seen by low-energy D-particle

probes [2]. The crucial property of the derivation is the incorporation of

proper recoil operators for the D-branes and the short open string excitations

connecting them. The smearing of the spacetime coordinates ya
i (in general

i = 1, . . . , 9 − p label the transverse coordinates of the Dp-brane and a =

1, . . . , N the component branes of the multiple D-brane configuration) of a

given D-particle as a result of its open string interactions with other branes

can be seen directly from the formula for the variance

(∆ya
i )2 ≡

[
(Yi − Y aa

i IN )2
]aa

=
∑

b6=a

|Y ab
i |2 , (3.2)

where Y ab
i are the u(N)-valued positions of the D-particles (a = b) and of

the open strings connecting branes a and b (a 6= b), and IN is the N × N

identity matrix. The recoil operators give a relevant deformation of the con-

formal field theory describing free open strings, and thus lead to non-trivial

renormalization group flows on the moduli space of coupling constants. The

moduli space dynamics is thereby governed by the Zamolodchikov metric

and the associated C-theorem. Physically, the recoil operators describe the

appropriate change of quantum state of the D-brane background after the

emission or absorption of open or closed strings. They are a necessary ingre-

dient in the description of multiple D-brane dynamics, in which coincident

branes interact with each other via the exchange of open string states. The

quantum uncertainties derived in [2] were found to exhibit quantum deco-

herence effects through their dependence on the recoil energies of the system
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of D-particles. This suggests that the appropriate quantum dynamics of

D0-branes should be described by some sort of stochastic string field theory

involving a Fokker-Planck Hamiltonian.

As in [38, 39], the derivation in [2] assumes constant background super-

gravity fields. However, another important ingredient missing in the moduli

space description is the appropriate residual fermionic terms from the su-

persymmetry of the initial static D-brane configuration. While the recoil of

the D-branes breaks supersymmetry, it is necessary to include these terms

to have a complete description of the stability of the D-particle bound state.

As shown in [42], the energy of the bound states of D-branes and strings is

determined by the central charge of the corresponding spacetime supersym-

metry algebra. Nonetheless, the bosonic formalism that we display below

can be exploited to a large extent to describe at least heuristically the quan-

tum phase structure of the multiple D-particle system and, in particular,

determine the mass and stability conditions of the candidate bound state.

One reason that this approach is expected to yield reliable results is that we

view the system of D-branes and strings as a quantum mechanical system

(rather than a quantum field theoretical system as might be the case from

the fact that T -duality is used to effectively integrate over the transverse co-

ordinates of the branes), with the D-brane recoil constituting an excitation

of this system. The recoiling system of D-branes and strings can be viewed

as an excited state of a supersymmetric (static) vacuum configuration. The

breaking of target space supersymmetry by the excited state of the sys-

tem may thereby constitute a symmetry obstruction situation in the spirit

of [43]. According to the symmetry obstruction hypothesis, the ground state

of a system of (static) strings and D-branes is a BPS state, but the excited

(recoiling) states do not respect the supersymmetry due to quantum dif-

fusion and other effects. Phenomenologically, the supersymmetry breaking

induced by the excited system of recoiling D-particles will distort the space-

time surrounding them and may result in a decohering spacetime foam, on

which low energy (point-like) excitations live. This motivates the study of

non-supersymmetric D-branes recoiling under the exchange of strings. Such

quantum mechanical systems exhibit diffusion and may be viewed as non-

equilibrium (open) quantum systems, with the non-equilibrium state being

related naturally to the picture of viewing the recoiling D-brane system as an

excited state of some (non-perturbative) supersymmetric D-brane vacuum

configuration.

The main relationship we shall exploit in obtaining the quantum dynam-

ics of multiple D-particle systems is that between the Dirichlet partition
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function in the background of Type II string fields and the semi-classical

(Euclidean) wavefunctional Ψ[Y i] of a Dp-brane. This relation is usually

expressed as [44, 45]

Z =

∫
DY i Ψ[Y i] . (3.3)

The wavefunction Ψ[Y i] is expressed in terms of the generating functional

which sums up all one-particle irreducible connected worldsheet diagrams

whose boundaries are mapped onto the D-brane worldvolume. Integration

over the worldvolume gauge field is implicit in Ψ to ensure Type II winding

number conservation. Dirichlet string perturbation theory yields

Ψ[Y i] = exp

∞∑

h=1

e (h−2)φ Sh[Y i] , (3.4)

where Sh denotes the amplitude with h holes, in which an implicit sum over

handles is assumed. However, as we will discuss in the following, the iden-

tification (3.3) is not the only one consistent with the approach to D-brane

dynamics advocated in [2], and one may instead identify the worldsheet

Dirichlet partition function, summed over all genera, with the probability

distribution corresponding to the wavefunction Ψ. Using this identification,

the Wilson renormalization group equation has been proposed as a defin-

ing principle for obtaining string field equations of motion, including the

appropriate Fischler-Susskind mechanism for the contributions from higher

genera [44]. When applied to Dirichlet string theory, we shall find that

the consistent D-brane equation of motion follows from the renormalization

group equation.

More precisely, within the framework of a perturbative logarithmic

conformal field theory approach to multiple D-brane dynamics [2], we

will show that the intricate quantum dynamics of a system of interact-

ing non-supersymmetric (bosonic) D-particles is described by a non-linear

Schrödinger wave equation. The corresponding probability density is of the

Fokker-Planck type, with quantum diffusion coefficient D given by the square

of the modulus of the recoil velocity matrix of the bound state system of non-

supersymmetric (bosonic) D-particles and strings,

D = cG
√
α′

9∑

i=1

tr |Ū i|2 , (3.5)

where cG is a numerical constant and Ū i
ab is the (renormalized) constant ve-

locity matrix of a system of N D-particles arising due to the D-particle recoil
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from the scattering of string states. This phenomenon is in fact characteristic

of Liouville string theory, on which the above approach is based. Since the

D-particle interactions distort their surrounding spacetime, these non-linear

structures may be thought of as describing short-distance quantum gravita-

tional properties of the D-brane spacetime. Non-linear equations of motion

for string field theories have been derived in other contexts in [46]. From this

nonlinear Schrödinger dynamics we shall describe a multitude of classes of

solutions, using Galilean invariance of the D-brane dynamics which is a con-

sequence of the corresponding logarithmic conformal algebra. We will show

that bound state solutions do indeed exist for string couplings gs larger than

a dynamically determined critical value. The effective bound state mass is

likewise determined as an energetically induced shift of the static, BPS mass

of the D0-branes. In fact, we shall find that there are essentially three dif-

ferent phases of the quantum dynamics in string coupling constant space.

Below the critical string coupling the multiple D-brane wavefunction is de-

scribed by solitary waves, in agreement with the description of free D-branes

as string theoretic solitons, while at the critical coupling the quantum dy-

namics is described by coherent Gaussian wavepackets which determine the

appropriate quantum smearing of the multiple D-particle spacetime. These

results are shown to be in agreement with the previous results concerning

the structure of quantum spacetime [2].

We close this subsection by summarizing some of the generic guidelines

that we used in [23], and shall review below, for constructing a wavefunc-

tional for the system of bosonic D-branes. We will use a field theoretic

approach by identifying the Hartle-Hawking wavefunction

Ψ0 ' e −SE , (3.6)

where SE is the effective Euclidean action. We shall discuss the extension to

string theory and highlight the advantages and disadvantages of using this

identification. We shall also identify the probability density with the genus

expansion of an appropriate worldsheet σ-model:

P = Ψ†
0Ψ0 =

∑

genera

∫
Dx e−Sσ [x] . (3.7)

The arguments in favor of this identification will be reality, and the oc-

currence of statistical probability distribution factors which appear in the

wormhole parameters after resummation of (3.7) over pinched genera. We

stress, however, that this turns out to be a feature of the bosonic D-particle

case. Upon supersymmetrization, the leading (ultraviolet) world-sheet mod-
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ular divergences associated with such degenerate two-dimensional surfaces

disappear, thereby making the summation over genera a quite complicated

technical issue not completely resolved to date. As we shall discuss in section

5, this will also have important physical consequences for the linearity of the

associated quantum dynamics of the super D-particles.

For the moment, we remark that the Wilson-Polchinski worldsheet renor-

malization group flow, coming from the sum over genera as in (3.7), yields

a Fokker-Planck diffusion equation for the bosonic D-particle case

∂tP = D∇2P −∇ · J , (3.8)

where D is the diffusion operator defined in (3.5) in terms of (renormalized)

recoil velocity matrices, and J is the associated probability current density.

The equation (3.8) will follow from the gradient flow property of the σ-

model β-functions, which is also necessary for the Helmholtz conditions or

equivalently for canonical quantization of the string moduli space.

The knowledge of the Fokker-Planck equation (3.8) alone does not lead

to an unambiguous construction of the wavefunction Ψ. There are ambigu-

ities associated with non-linear Ψ-dependent phase transformations of the

wavefunction,

Ψ 7→ e iNγ,λ(Ψ) Ψ ,

Nγ,λ(Ψ) = γ log |Ψ| + λ arg Ψ + θ
(
{Y ab

i }, t
)
, (3.9)

where t is the Liouville zero mode. Furthermore, Ψ is then necessarily deter-

mined by a non-linear wave equation if a diffusion coefficient D is present,

as will be the case in what follows. The non-linear Schrödinger equation has

the form

i~ ∂tΨ = H0Ψ +
i~

2
D ∇2P

P Ψ , (3.10)

where P = Ψ†Ψ is the probability density. This is a Galilean-invariant but

time-reversal violating equation, exactly as expected from previous consid-

erations of non-relativistic D-brane dynamics and Liouville string theory.

Eq. (3.10) will be the proposal in the following for the non-linear quantum

dynamics of matrix bosonic D-branes (this was noted in passing in [47]).

3.2. Quantum Mechanics on Moduli Space

In [2] it was shown how a description of non-abelian D-particle dynamics,

based on canonical quantization of a σ-model moduli space induced by the
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worldsheet genus expansion (i.e. the quantum string theory), yields quan-

tum fluctuations of the string soliton collective coordinates and hence a

microscopic derivation of spacetime uncertainty relations, as seen by short

distance D-particle probes. In the following we will proceed to construct

a wavefunction for the system of D0-branes which encodes the pertinent

quantum dynamics. To start, in this section we shall clarify certain facts

about wavefunctionals in non-critical string theories in general, completing

the discussion put forward in [45].

3.2.1. Liouville-dressed Renormalization Group Flows

Consider quite generally a non-critical string σ-model, defined as a defor-

mation of a conformal field theory S∗ with coupling constants {gI}. The

worldsheet action is

Sσ[x; {gI}] = S∗[x] +

∫

Σ

d2z gIVI [x] , (3.11)

where VI are the deformation vertex operators and an implicit sum over re-

peated upper and lower indices is always understood. We assume that the

deformation is relevant, so that the worldsheet theory must be dressed by

two-dimensional quantum gravity in order to restore conformal invariance in

the quantum string theory. The corresponding Liouville-dressed renormal-

ized couplings {λI} satisfy the renormalization group equations

λ̈I +Qλ̇I = −βI(λ) , (3.12)

where the dots denote differentiation with respect to the worldsheet zero

mode of the Liouville field. Here Q is the square root of the running central

charge deficit on moduli space and

βI(λ) = hIλI + cIJKλ
JλK + . . . (3.13)

are the flat worldsheet β-functions, expressed in terms of Liouville-dressed

coupling constants. In (3.13), hI are the conformal dimensions and cIJK

the operator product expansion coefficients of the vertex operators VI . The

minus sign in (3.12) arises because we confine our attention here to the case

of central charge c > 25 (corresponding to supercritical bosonic or fermionic

strings).

Upon interpreting the Liouville zero mode as the target space time evo-

lution parameter, Eq. (3.12) is reminiscent of the equation of motion for the

inflaton field φ in inflationary cosmological models [48, 49]. In the present
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case of course one has a collection of fields {gI}, but the analogy is never-

theless precise. The role of the Hubble constant H is played by the central

charge deficit Q. The precise correspondence actually follows from the gra-

dient flow property of the string σ-model β-functions for flat worldsheets

βI = GIJ ∂

∂gJ
C , (3.14)

where C = Q2 is the Zamolodchikov C-function which is associated with the

generating functional for one-particle irreducible correlation functions [50],

and GIJ is the matrix inverse of the Zamolodchikov metric

GIJ = 2|z|4 〈VI(z, z̄)VJ(0, 0)〉 (3.15)

on the moduli space M({gI}) of σ-model couplings {gI}. Then the right-

hand side of (3.12) also corresponds to the gradient of the potential V in

inflationary models

φ̈+ 3Hφ̇ = −dV
dφ

, (3.16)

where φ is the inflaton field in a sufficiently homogeneous domain of the

universe.

3.2.2. The Hartle-Hawking Wavefunction

In [2, 45] it was shown, through the energy dependence of quantum uncer-

tainties, that some sort of stochasticity characterizes non-critical Liouville

string dynamics, implying that the analogy of Eq. (3.12) with the equations

of motion in inflationary models should be made with those involving chaotic

inflation [49]. Let us now briefly review the properties of these latter mod-

els. In such cases, the ground state wavefunction of the universe may be

identified as [51]

ψ0(a, φ) = exp−SE(a, φ) , (3.17)

where SE is the Euclidean action for the scalar field a(τ) and the inflaton

scalar field φ(τ) which satisfy the boundary conditions:

a(0) = a , φ(0) = φ , (3.18)

and τ is the Euclidean time.

To understand how Eq. (3.17) comes about, we appeal to the Hartle-

Hawking interpretation [51]. Consider the Green’s function 〈x, t|0, t′〉 of a
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particle which propagates from the spacetime point (0, t′) to (x, t),

〈x, t|0, t′〉 =
∑

n

ψ†
n(x)ψn(0) e iEn(t−t′) =

∫
Dx e iS(x,|t−t′|), (3.19)

where {ψn} is the complete set of energy eigenstates with energy eigenvalues

En ≥ 0 (the sum in (3.19) should be replaced by an appropriate integration

in the case of a continuous spectrum). To obtain an expression for the ground

state wavefunction, we make a Wick rotation t = −iτ , and take the limit

τ → −∞ to recover the initial state. Then in the summation over energy

eigenvalues in (3.19), only the ground state (n = 0) term survives if E0 = 0.

The corresponding path integral representation becomes
∫
Dx e −SE(x), and

one obtains Eq. (3.17) in the semi-classical approximation.

For inflationary models which are based on the de Sitter spaces dS4 with

a(τ) = κ−1(φ) cos κ(φ)τ , (3.20)

one has

SE(a, φ) = − 3

16V (φ)
, (3.21)

and hence

ψ0(a, φ) = exp
3

16V (φ)
. (3.22)

Thus the probability density for finding the universe in a state with φ =

const., a = κ−1(φ) =
√

3
8πV (φ) is

P = |ψ0|2 = e 3/8V (φ) . (3.23)

The distribution function (3.23) has a sharp maximum as V (φ) → 0. For

inflationary models this is a bad feature, because it diminishes the possibility

of finding the universe in a state with a large φ field and thereby having a

long stage for inflation. However, from the point of view of Liouville string

theory, the result (3.23), if indeed valid, implies that the critical string theory

(since V ∝ Q2 there) is a favorable situation statistically, and hence any

consideration (such as those in [2]) made in the neighborhood of a fixed point

of the renormalization group flow on the moduli space of running coupling

constants is justified.
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3.2.3. Moduli Space Wavefunctionals

Let us now proceed to discuss the possibility of finding a Schrödinger wave

equation for the D-particle wavefunction. The identification (3.17) in the

inflationary case needs some careful verification in the case of the topological

expansion of the worldsheet σ-model (3.11). In Liouville string theory, the

genus expansion of the partition function may be identified [45] with the

wavefunctional of non-critical string theory in the moduli space of coupling

constants {gI},

Ψ({gI}) =
∑

genera

∫
Dx e−Sσ [x;{gI}] ≡ e−F [{gI}] , (3.24)

where

F [{gI}] =

∞∑

h=0

(gs)
h−2 Fh[{gI}] (3.25)

is the effective target space action functional of the non-critical string theory.

The sum on the right-hand side of (3.25) is over all worldsheet genera, which

sums up the one-particle irreducible connected worldsheet amplitudes Fh

with h handles. The gradient flow property (3.14) of the β-functions ensures

[2,45] that the Helmholtz conditions for canonical quantization are satisfied,

which is consistent with the existence of an off-shell action F [{gI}]. In that

case, the effective Lagrangian on moduli space whose equations of motion

coincide with the renormalization group equations (3.12) is given by [2]

LM(t) = −βI GIJ β
J (3.26)

and it coincides with the Zamolodchikov C-function. The semi-classical

wavefunction determined by (3.24) is thereby determined by the action C[λ]

regarded as an effective action on the space of two-dimensional renormal-

izable field theories. Thus the probability density is P[{gI}] = e−2F [{gI}],
which implies that the minimization of F [{gI}] yields a maximization of

P[{gI}], provided that the effective action is positive-definite. This is an

ideal situation, since then the minimization of F [{gI}], in the sense of solu-

tions of the equations δF/δgI = 0, corresponds to the conformally-invariant

fixed point of the σ-model moduli space, thereby justifying the analysis in a

neighborhood of a fixed point.

However, the identification (3.24) is not the only possibility in non-critical

string theory, as will be discussed below, in particular in connection with the

Schrödinger dynamics of D0-branes. The main point is that upon taking the
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topological expansion in Liouville string theory, the couplings gI become

quantized in such a way that

∑

genera

′
∫
Dx e−Sσ [x;{gI}] =

∫

M({gI})

DαI e − 1
2Γ2 αIGIJαJ

∫
Dx e−S

(0)
σ [x;{gI+αI}] ,

(3.27)

where the prime on the sum means that the genus expansion is truncated

to a sum over pinched annuli of infinitesimal strip size, S
(0)
σ [x; {gI}] is the

tree-level (disc or sphere) action for the σ-model, and αI are worldsheet

wormhole parameters on the moduli space M({gI}) of the two-dimensional

quantum field theory. The Gaussian spread in the αI in (3.27) can be inter-

preted as a probability distribution characterizing the statistical fluctuations

of the coupling constants gI . The width Γ is proportional to the logarithmic

modular divergences on the pinched annuli, which may be identified with

the short-distance infinities log Λ at tree-level [2] (Λ is the worldsheet ultra-

violet cutoff scale). The result (3.27) suggests that one may directly identify

the genus expansion of the worldsheet partition function as the probability

density,

∣∣Ψ({gI}, t)
∣∣2 ≡ P({gI}, t) , (3.28)

for finding non-critical strings in the moduli space configuration {gI} at Li-

ouville time t (the worldsheet zero mode of the Liouville field). In this way

one has a natural explanation for the reality of Eq. (3.27) on Euclidean world-

sheets. If the identification of the genera summed partition function with the

probability density holds, i.e. with the square of the wavefunction Ψ({gI}, t)
rather than the wavefunctional itself, then one may obtain a temporal evolu-

tion equation for (3.28) using the Wilson-Polchinski renormalization group

equation on the string worldsheet [44]. This will be described in details later

on.

One may argue formally in favor of the above identification in the case of

Liouville strings, within a world-sheet formalism, by noting [4] that the con-

ventional interpretation of the Liouville (world-sheet) correlators as target-

space S-matrix elements breaks down upon the interpretation of the Liouville

zero-mode as target time. Instead, the only well-defined concept in such a

case is the non-factorizable /S-matrix, which acts on target-space density ma-

trices rather than state vectors. This in turn implies that the corresponding

world-sheet partition function, summed over topologies, which in the case

of critical strings would be the generating functional of such S-matrix ele-

ments in target space, should be identified with the probability density in
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the moduli space of the non-critical strings (3.28).

Below we review briefly this approach [4] by focusing on those aspects of

the formalism that are most relevant to our purposes here. As we shall dis-

cuss, the above identification follows from specific properties of the Liouville

string formalism.

IR

IR

UV

A

Figure 3. Contour of integration in the analytically-continued (regularized) version of Γ(−s)

for s ∈ Z+. The quantity A denotes the (complex) world-sheet area. This is known in the

literature as the Saalschutz contour, and has been used in conventional quantum field theory to

relate dimensional regularization to the Bogoliubov-Parasiuk-Hepp-Zimmermann renormalization

method. Upon the interpretation of the Liouville field with target time, this curve resembles

closed-time-paths in non-equilibrium field theories.

We commence our analysis by considering the correlation functions

among vertex operators in a generic Liouville theory, viewing the Liouville

field as a local renormalization-group scale on the world sheet [4]. Stan-

dard computations [69] show that the N -point correlation function among

world-sheet integrated vertex operators Vi ≡
∫
d2zVi(z, z̄) is given by

AN ≡< Vi1 . . . ViN >µ= Γ(−s)µs <
(∫

d2z
√
γ̂eαφ

)s
Ṽi1 . . . ṼiN >µ=0 ,

(3.29)

where the tilde denotes removal of the Liouville field φ zero mode which has

been path-integrated out in (3.29). The world-sheet scale µ is associated with

cosmological constant terms on the world sheet, which are characteristic of

the Liouville theory. The quantity s is the sum of the Liouville anomalous

dimensions of the operators Vi

s = −
N∑

i=1

αi

α
− Q

α
, α = −Q

2
+

1

2

√
Q2 + 8 . (3.30)

The Γ function can be regularized [4, 5] (for negative-integer values of its
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argument) by analytic continuation to the complex-area plane using the the

Saalschultz contour of Fig. 3. Incidentally, this yields the possibility of an

increase of the running central charge due to the induced oscillations of the

dynamical world sheet area (related to the Liouville zero mode). This is

associated with an oscillatory solution for the Liouville central charge near

the fixed point. On the other hand, the bounce interpretation of the infrared

fixed points of the flow, given in Refs. [4, 5], provides an alternative picture

of the overall monotonic change at a global level in target space-time.

To see technically why the above formalism leads to a breakdown in

the interpretation of the correlator AN as a target-space string amplitude,

which in turn leads to the interpretation of the world-sheet partition function

as a probability density rather than a wave-function in target space, one

first expands the Liouville field in (normalized) eigenfunctions {φn} of the

Laplacian ∆ on the world sheet

φ(z, z̄) =
∑

n

cnφn = c0φ0 +
∑

n6=0

φn , φ0 ∝ A− 1
2 , (3.31)

where A is the world-sheet area and

∆φn = −εnφn , n = 0, 1, 2, . . . , ε0 = 0 , (φn, φm) = δnm .

(3.32)

The result for the correlation functions (without the Liouville zero mode)

appearing on the right-hand-side of Eq. (3.29) is

ÃN ∝
∫

Πn6=0dcn exp
(
− 1

8π

∑

n6=0

εnc
2
n − Q

8π

∑

n6=0

Rncn +
∑

n6=0

αiφn(zi)cn

)

×
(∫

d2ξ
√
γ̂eα

P

n6=0 φncn

)s
, (3.33)

where Rn =
∫
d2ξR(2)(ξ)φn. We can compute (3.33) if we analytically con-

tinue [69] s to a positive integer s→ n ∈ Z+. Denoting

f(x, y) ≡
∑

n,m 6=0

φn(x)φm(y)

εn
(3.34)

one observes that, as a result of the lack of the zero mode,

∆f(x, y) = −4πδ(2)(x, y) − 1

A
. (3.35)

We may choose the gauge condition
∫
d2ξ

√
γ̂φ̃ = 0. This determines the

conformal properties of the function f as well as its ‘renormalized’ local
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limit

fR(x, x) = lim
x→y

(
f(x, y) + ln d2(x, y)

)
, (3.36)

where d2(x, y) is the geodesic distance on the world sheet. Integrating over

cn one obtains

Ãn+N ∝ exp
[1
2

∑

i,j

αiαjf(zi, zj) +
Q2

128π2

∫ ∫
R(x)R(y)f(x, y)

−
∑

i

Q

8π
αi

∫ √
γ̂R(x)f(x, zi)

]
. (3.37)

We now consider infinitesimal Weyl shifts of the world-sheet metric,

γ(x, y) → γ(x, y)(1 − σ(x, y)), with x, y denoting world-sheet coordinates.

Under these, the correlator AN transforms as [4]

δÃN ∝
[∑

i

hiσ(zi) +
Q2

16π

∫
d2x
√
γ̂ R̂σ(x)

+
1

Â
{Qs

∫
d2x
√
γ̂ σ(x) + (s)2

∫
d2x
√
γ̂ σ(x)f̂R(x, x)

+Qs

∫ ∫
d2xd2y

√
γ̂ R(x)σ(y)Ĝ(x, y) − s

∑

i

αi

∫
d2x
√
γ̂ σ(x)Ĝ(x, zi)

−1

2
s
∑

i

αif̂R(zi, zi)

∫
d2x
√
γ̂ σ(x)

− Qs

16π

∫ ∫
d2xd2y

√
γ̂(x)γ̂(y) R̂(x)f̂R(x, x)σ(y)}]ÃN , (3.38)

where the hat notation denotes transformed quantities, and the function

G(x,y) is defined as

G(z, ω) ≡ f(z, ω) − 1

2
(fR(z, z) + fR(ω, ω)) (3.39)

and transforms simply under Weyl shifts [4]. We observe from (3.38) that if

the sum of the anomalous dimensions s 6= 0 (‘off-shell’ effect of non-critical

strings), then there are non-covariant terms in (3.38), inversely proportional

to the finite-size world-sheet area A. Thus the generic correlation function

AN does not have a well-defined limit as A→ 0.

In our approach to string time we identify [4] the target time as t = φ0 =

−logA, where φ0 is the world-sheet zero mode of the Liouville field. The

normalization follows from a consequence of the canonical form of the kinetic
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term for the Liouville field φ in the Liouville σ model [4, 70]. The opposite

flow of the target time, as compared to that of the Liouville mode, is, on

the other hand, a consequence of the ‘bounce’ picture [4,5] for Liouville flow

of Fig. 3. In view of this, the above-mentioned induced time (world-sheet

scale A-) dependence of the correlation functions AN implies the breakdown

of their interpretation as well-defined S-matrix elements, whenever there is

a departure from criticality s 6= 0.

In general, this is a feature of non-critical strings wherever the Liouville

mode is viewed as a local renormalization-group scale of the world sheet [4].

In such a case, the central charge of the theory flows continuously with

the world-sheet scale A, as a result of the Zamolodchikov c-theorem [71].

In contrast, the screening operators in conventional strings yield quantized

values [70]. Due to the analytic continuation curve illustrated in Fig. 3,

we observe that upon interpreting the Liouville field φ as time [4], t ∝
logA, the contour of Fig. 3 represents evolution in both directions of time

between fixed points of the renormalization group: Infrared fixed point →
Ultraviolet fixed point → Infrared fixed point.

When one integrates over the Saalschultz contour in fig. 3, the integration

around the simple pole at A = 0 yields an imaginary part [4, 5] associated

with the instability of the Liouville vacuum. We note, on the other hand,

that the integral around the dashed contour shown in Fig. 3, which does

not encircle the pole at A = 0, is well defined. This can be interpreted as

a well-defined /S-matrix element, which is not, however, factorizable into a

product of S− and S†−matrix elements, due to the t dependence acquired

after the identification t = −logA.

Note that this formalism is similar to the Closed-Time-Path (CTP) for-

malism used in non-equilibrium quantum field theories [72]. Such formalisms

are characterized by a ‘doubling of degrees of freedom’ (c.f. the two direc-

tions of the time (Liouville scale) curve of Fig. 3, in each of which one can

define a set of dynamical fields in target space). As we discussed above, this

prompts one to identify the corresponding Liouville correlators AN with

/S-matrix elements rather than S-matrix elements in target space. Such el-

ements act on the density matrices ρ = TrM|Ψ >< Ψ| rather than wave

vectors |Ψ > in the target space of the string; ρout = /Sρin (c.f. the analogy

with the S-matrix, |out >= S|in >).

This in turn implies that the world-sheet partition function Z̃χ,L of a

Liouville string at a given world-sheet genus χ, which is connected to the

generating functional of the Liouville correlators AN , when defined over the

closed Liouville (time) path (CTP) of Fig. 3, can be associated with the
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probability density (diagonal element of a density matrix) rather than the

wavefunction in the space of couplings. Indeed, one has

Z̃χ,L[gI ] =

∫

CTP
dφ0Zχ,L[φ0, g

I ] , (3.40)

where {gI} denotes the set of couplings of the (non-conformal) deforma-

tions, φ0 ∼ lnA is the Liouville zero mode, and A is the world-sheet area

(renormalization-group scale). If one naively interprets Zχ,L[φ0, g
I ] as a

wavefunctional in moduli space {gI}, Ψ[φ0, g
I ], then, in view of the double

contour of Fig. 3 over which Z̃χ,L is defined, one encounters at each slice of

constant φ0 a product of Ψ[φ0, g
I ]Ψ†[φ0, g

I ], the complex conjugate wave-

functional corresponding to the second branch of the contour of opposite

sense to the branch defining Ψ[φ0, g
I ]. This is analogous to the doubling of

degrees of freedom in conventional thermal field theories [72]. Such prod-

ucts represent clearly probability densities P[t, gI ] in moduli space of the

non-critical strings upon the identification of the Liouville zero mode φ0

with the target time t [4].

In the above spirit, one may then consider the (formal) summation over

world-sheet topologies χ, and identify the summed-up world-sheet partition

function
∑

χ Zχ,L[φ0, g
I ] with the associated probability density in moduli

space. In the case of D-particles, discussed in this work, the moduli space co-

incides with the configuration space (collective) coordinates of the D-particle

soliton, and hence the corresponding probability density is associated with

the position of the D-particle in target space. We stress once again that the

above conclusion is based on the crucial assumption of the definition of the

Liouville-string world-sheet partition function over the closed-time-path of

Fig. 3. As we demonstrate below, the specific D-brane example provides us

with highly non-trivial consistency checks of this approach.

We would like now to give an explicit demonstration of the above ideas

for the specific (simplified) case of recoiling (Abelian) D-particles. We shall

demonstrate below that, upon considering the non-critical σ-model of a re-

coiling D-particle at a fixed world-sheet (Liouville) scale φ0 = lnA, and

identifying the Liouville mode with the target time, the Euclideanized world-

sheet partition function can describe a probability density in moduli (collec-

tive coordinate) space.

To this end, let us first consider the pertinent σ model partition function

for a D-particle, at tree level and in a Minkowskian world-sheet Σ formalism,

Zχ=0,L =

∫
(DX i) e−i 1

4πα′
R

Σ ∂Xi∂Xjηij−i 1
2πα′

R

∂Σ(εgC
i +gD

i
1
ε )∂nXi

, (3.41)
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where ε−2 ∼ lnΛ2 = lnA (c.f. (3.55)), on account of the logarithmic alge-

bra [52]. In our approach ε−2 is identified with the target time. This is why

in (3.41) we have not path-integrated over X0, but we consider an integral

only over the spatial collective coordinates X i, i = 1, . . . 9 of the D-particle.

The combination of σ-model couplings εgC
i +gD

i
1
ε may be identified with the

generalized (Abelian) position εY i of the recoiling D-particle (3.50). Notice

that, since here we have already identified the time with the scale ε−2 > 0,

the step function in the recoil deformations of the σ-model (3.51) acquires

trivial meaning. We shall come back to a discussion on how one can incor-

porate a world-sheet dependence in the time coordinate later on.

Suppose now that, following the spirit of critical strings [44], one iden-

tifies the Minkowskian world-sheet partition function (3.41) with a wave-

functional Ψ[Y i, φ0 = t]. The probability density in Y i space, P[Y i, t] =

Ψ[Y i, t]Ψ∗[Y i, t], reads in this case,

∣∣Zχ=0,L[Y i, t]
∣∣2 =

∫
DXi

∫
DX ′j exp

[
− i

1

4πα′

∫

Σ
∂Xi∂Xjηij

+i
1

4πα′

∫

Σ
∂X ′i∂X ′jηij − i

1

2πα′

∫

∂Σ
εYi(t)∂n(Xi −X ′i)

]

=

(∫
DXi

− exp
[
i

1

4πα′

∫

Σ
∂Xi

−∂X
j
−ηij − i

1

2πα′

∫

∂Σ
Yi(t)∂nX

i
−
])

⊗
(∫

DXi
+ exp

[
−i 1

4πα′

∫

Σ
∂Xi

+∂X
j
+ηij

])
, (3.42)

where X i
± = Xi ±X ′i. Upon passing to a Euclidean world-sheet formalism,

and taking into account that the Yi independent factor can be absorbed in

appropriate normalization of the σ-model correlators, one then proves our

statement that σ-model partition functions in non-critical strings can be

identified with moduli space probability densities.

Notice that similar conclusions can be reached even in the case where

the time X0 is included in the analysis as a full fledged world-sheet field

and is only eventually identified with the Liouville mode. In such a case,

by considering the probability density as above, one is confronted with path

integration over X0
± = X0 ± X ′0 σ-model fields, which also appear in the

arguments of the step function operators Θε(X
0
±) in the recoil deformations

(c.f. below, (3.51)), that are non trivial in this case. However, upon Liouville

dressing and the requirement that the Liouville mode be identified with the

target time, one is forced to restrict oneself to the hypersurface X− = 0 in

the corresponding path integral
∫
DX0

+DX
0
−(. . . ). As a consequence, one
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is then left with a world-sheet partition function integrated only over the

Liouville mode X+ = 2φ (c.f. Z̃ in (3.40)), and hence the identification of a

Liouville string partition function with a probability density in moduli space

is still valid, upon passing onto a Euclideanized world-sheet formalism. It

can also be seen, in a straightforward manner, that summing upon higher

world-sheet topologies, as in [2], will not change this conclusion.

Notice that if one interprets the topological expansion of the worldsheet

partition function as the probability density for the non-critical string con-

figuration {gI}, then the simple argument leading to Eq. (3.17) is not valid

here. In such a situation the action in Eq. (3.19), which refers to the string

moduli space, is not the same as the effective target space action F [{gI}], but

rather something different, corresponding to the phase of the wavefunctional

Ψ({gI}, t) whose probability density (3.28) corresponds to the worldsheet

partition function summed over genera. This is not necessarily a bad fea-

ture, as we shall see, although in most treatments the target space effective

action F [{gI}] is identified with the moduli space action upon identifica-

tion of the Liouville zero mode (i.e. the local worldsheet renormalization

group scale) with target time. For this, we observe that the statistical inter-

pretation of the resummed worldsheet partition function is compatible with

the interpretation in [2] of the Gaussian wormhole parameter distribution

function in Eq. (3.27) as being responsible for the quantum uncertainties of

D-branes. This follows trivially from the fact that

∣∣Ψ({gI}, t)
∣∣2 = e −2F({gI},t) . (3.43)

Then, any correlation function may be written as

〈VI1 · · · VIn〉 =

∫

M({gI})

DgI
∣∣Ψ({gI}, t)

∣∣2 VI1 · · · VIn (3.44)

=

∫

M({gI})

DgI

∫

M({gI})

DαI e− 1
2Γ2 αIGIJαJ

∫
Dx e −S

(0)
σ [x;{gI+αI}] VI1 · · · VIn ,

which using Eq. (3.43) gives the connection between the two probability dis-

tributions.



September 2, 2004 9:45 WSPC/Trim Size: 9.75in x 6.5in for Proceedings mavromatos

LCFT and Strings 1303

3.3. Matrix D-brane Dynamics

In this section we shall briefly review the worldsheet description of [2] for

matrix D0-brane dynamics. The partition function is given by [41]

Z[A0, Y ]

=

∫
Dµ(x, ξ̄, ξ) exp

[
− 1

4πα′

∫

Σ

d2z ηµν ∂x
µ ∂̄xν+

1

2πα′

∮

∂Σ

dτ xi(τ) ∂σx
i(τ)

]

×W[x, ξ̄, ξ] , (3.45)

where

W[x, ξ̄, ξ] (3.46)

= exp
[
igs

∮

∂Σ

dτ
(
ξ̄a(τ)A

ab
0 ξb(τ) ∂τx

0(τ)+
i

2πα′ ξ̄a(τ)Y
ab
i (x0)ξb(τ) ∂σx

i(τ)
)]

is the deformation action of the free σ-model in (3.45). Here the indices

µ = 0, 1, . . . , 9 and i = 1, . . . , 9 label spacetime and spatial directions of

the target space, which we assume has a flat metric ηµν . The functional

integration measure in (3.45) is given by

Dµ(x, ξ̄, ξ) = Dxµ Dξ̄ Dξ exp
[
−

N∑

a=1

( ∮

∂Σ

dτ ξ̄a(τ) ∂τ ξa(τ) + ξ̄a(0)ξa(0)
)]

×
N∑

a=1

ξ̄a(0)ξa(1) . (3.47)

The complex auxiliary fields ξ̄a(τ) and ξa(τ), a = 1, . . . , N , transform in

the fundamental representation of the brane gauge group, and they live

on the boundary of the worldsheet Σ which at tree-level is a disc whose

boundary is a circle ∂Σ with periodic longitudinal coordinate τ ∈ [0, 1]

and normal coordinate σ ∈ R. They have the propagator 〈ξ̄a(τ)ξb(τ ′)〉 =

δab Θ(τ ′ − τ), where Θ denotes the usual step function. The integration

over the auxiliary fields with the measure (3.47) therefore turns (3.47) into a

path-ordered exponential functional of the fields x which is the T -dual of the

usual Wilson loop operator for the ten-dimensional gauge field (A0,− 1
2πα′Y

i)

dimensionally reduced to the D-particle worldlines. In this picture, A0 is

thought of as a gauge field living on the brane worldline, while Y aa
i , a =

1, . . . , N , are the transverse coordinates of the N D-particles and Y ab
i , a 6= b,

of the short open string excitations connecting them. We shall subtract out

the center of mass motion of the assembly of N D-branes and assume that
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Yi ∈ su(N). We shall also use SU(N)-invariance of the theory (3.45) to

select the temporal gauge A0 = 0.

The action in (3.45) may be formally identified with the deformed con-

formal field theory (3.11) by taking the couplings gI ∼ Y ab
i and introducing

the one-parameter family of bare matrix-valued vertex operators

V i
ab(x; τ) =

gs

2πα′ ∂σx
i(τ) ξ̄a(τ)ξb(τ) . (3.48)

This means that there is a one-parameter family of Dirichlet boundary con-

ditions for the fundamental string fields xi on ∂Σ, labeled by τ ∈ [0, 1] and

the configuration fields

yi(x
0; τ) = ξ̄a(τ)Y

ab
i (x0(τ)) ξb(τ) . (3.49)

Instead of being forced to sit on a unique hypersurface as in the case of a

single D-brane, in the non-abelian case there is an infinite set of hypersurfaces

on which the string endpoints are situated. In this sense the coordinates

(3.49) may be thought of as an “abelianization” of the non-abelian D-particle

coordinate fields Y ab
i .

To describe the non-relativistic dynamics of heavy D-particles, the nat-

ural choice is to take the couplings to correspond to the Galilean boosted

configurations Y ab
i (x0) = Y ab

i + Uab
i x0, where Ui is the non-relativistic ve-

locity matrix. However, logarithmic modular divergences appear in matter

field amplitudes at higher genera when the string propagator L0 is com-

puted with Dirichlet boundary conditions. These modular divergences are

canceled by adding logarithmic recoil operators [2,52] to the matrix σ-model

action in (3.45). From a physical point of view, if one is to use low-energy

probes to observe short-distance spacetime structure, such as a generalized

Heisenberg microscope, then one needs to consider the scattering of string

matter off the assembly of D-particles. For the Galilean-boosted multiple

D-particle system, the recoil is described by taking the deformation of the

σ-model action in (3.45) to be of the form [2]

Y ab
i (x0) =

√
α′ Y ab

i Cε(x
0) + Uab

i Dε(x
0) =

(√
α′ εY ab

i + Uab
i x0

)
Θε(x

0) ,

(3.50)

where

Cε(x
0) = εΘε(x

0) , Dε(x
0) = x0 Θε(x

0) , (3.51)
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and

Θε(x
0) =

1

2πi

+∞∫

−∞

dq

q − iε
e iqx0

(3.52)

is the regulated step function whose ε→ 0+ limit is the usual step function.

The operators (3.51) have non-vanishing matrix elements between different

string states and therefore describe the appropriate change of quantum state

of the D-brane background. They can be thought of as describing the recoil

of the assembly of D-particles in an impulse approximation, in which it starts

moving as a whole only at time x0 = 0. The collection of constant matrices

{Y i
ab, U

j
cd} now forms the set of coupling constants {gI} for the worldsheet

σ-model (3.45).

As discussed previously, the recoil operators (3.51) possess a very impor-

tant property. They lead to a deformation of the free σ-model action in

(3.45) which is not conformally-invariant, but rather defines a logarithmic

conformal field theory [6,7]. Such a quantum field theory contains logarith-

mic scaling violations in its correlation functions on the worldsheet, which

can be seen in the present case by computing the pair correlators of the fields

(3.51) [52]
〈
Cε(z)Cε(0)

〉
= 0 ,

〈
Cε(z)Dε(0)

〉
=

b

zhε
,

〈
Dε(z)Dε(0)

〉
=
b α′

zhε
log z , (3.53)

where

hε = −|ε|2 α′

2
(3.54)

is the conformal dimension of the recoil operators. The constant b is fixed

by the leading logarithmic divergence of the conformal blocks of the theory.

Note that (3.54) vanishes as ε→ 0, so that the logarithmic worldsheet diver-

gences in (3.53) cancel the modular annulus divergences mentioned above.

An essential ingredient for this cancellation is the identification [52]

1

ε2
= −2α′ log Λ (3.55)

which relates the target space regularization parameter ε to the worldsheet

ultraviolet cutoff scale Λ.
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Logarithmic conformal field theories are characterized by the fact that

their Virasoro generator L0 is not diagonalizable, but rather admits a Jordan

cell structure. Here the operators (3.51) form the basis of a 2 × 2 Jordan

block and they appear in the spectrum of the two-dimensional quantum field

theory as a consequence of the zero modes that arise from the breaking of the

target space translation symmetry by the topological defects. The mixing

between C and D under a conformal transformation of the worldsheet can

be seen explicitly by considering a scale transformation

Λ → Λ′ = Λ e −t/
√

α′
. (3.56)

Using (3.55) it follows that the operators (3.51) are changed according to

D′
ε = Dε+t

√
α′Cε and C ′

ε = Cε. Thus in order to maintain scale-invariance of

the theory (3.45) the coupling constants must transform under (3.56) as [52,

53] Y ′i = Y i +U it and U ′i = U i, which are just the Galilean transformation

laws for the positions Y i and velocities U i. Thus a scale transformation

of the worldsheet is equivalent to a Galilean transformation of the moduli

space of σ-model couplings, with the parameter ε−2 identified with the time

evolution parameter t = −
√
α′ log Λ. The corresponding β-functions for the

worldsheet renormalization group flow are

βYi ≡
dYi

dt
= hε Yi +

√
α′ Ui ,

βUi ≡
dUi

dt
= hε Ui , (3.57)

and they generate the Galilean group G(9)N2
in nine-dimensions.

The associated Zamolodchikov metric,

Gij
ab;cd = 2NΛ2

〈
V i

ab(x; 0)V
j
cd(x; 0)

〉
, (3.58)

can be evaluated to leading order in σ-model perturbation theory using the

logarithmic conformal algebra (3.53) and the propagator of the auxiliary

fields to give [2]

Gij
ab;cd =

4ḡ2
s

α′

[
ηij IN ⊗ IN +

ḡ2
s

36

{
IN ⊗

(
Ū iŪ j + Ū jŪ i

)
(3.59)

+ Ū i ⊗ Ū j + Ū j ⊗ Ū i +
(
Ū iŪ j + Ū jŪ i

)
⊗ IN

}]

db;ca

+ O
(
ḡ6
s

)
,

where IN is the identity operator of SU(N) and we have introduced the
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renormalized coupling constants

ḡs = gs/
√
α′ε , Ū i = U i/

√
α′ε . (3.60)

From the renormalization group equations (3.57) it follows that the renor-

malized velocity operator in target space is truly marginal,

dŪ i

dt
= 0 , (3.61)

which ensures uniform motion of the D-branes. It can also be shown that

the renormalized string coupling ḡs is time-independent [2]. If we further

define the position renormalization

Ȳ i = Y i/
√
α′ε (3.62)

then the β-function equations (3.57) coincide with the Galilean equations of

motion of the D-particles, i.e.

dȲ i

dt
= Ū i . (3.63)

Note that the Zamolodchikov metric (3.60) is a complicated function of the

D-brane dynamical parameters, and as such it represents the appropriate

effective target space geometry of the D-particles. The moduli space La-

grangian (3.26) is then readily seen to coincide with the expansion to O(ḡ4
s )

of the symmetrized form of the non-abelian Born-Infeld action for the D-

brane dynamics [39],

LNBI =
1√

2πα′ḡs

tr Sym
√

det
µ,ν

[ηµν IN + 2πα′ḡ2
s Fµν ] (3.64)

where tr denotes the trace in the fundamental representation of SU(N) and

Sym(M1, . . . ,Mn) =
1

n!

∑

π∈Sn

Mπ1 · · ·Mπn (3.65)

is the symmetrized matrix product and the components of the dimensionally

reduced field strength tensor are given by

F0i =
1

2πα′
dȲi

dt
, Fij =

ḡs

(2πα′)2
[
Ȳi , Ȳj

]
. (3.66)
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3.4. Evolution Equation for the Probability Distribution

In this section we will derive the temporal evolution equation for the proba-

bility density P({gI}, t) following the identification of time with a worldsheet

renormalization group scale (i.e. the Liouville zero mode). The basic iden-

tity is the Wilson-Polchinski equation for the case of the worldsheet action

(3.11) which reads [44]

0 =
∂Z

∂ log Λ
=

∫
Dxµ e −Sσ[x;{gI}]

{
∂Sint

∂ log Λ
(3.67)

−
∫

Σ

d2z

∫

Σ

d2w

(
∂

∂ log Λ
G(z − w)

)[
δ2Sint

δxµ(z)δxµ(w)
+

δSint

δxµ(z)

δSint

δxµ(w)

]


and is required for conformal invariance of the quantum string theory. Here

Sint = Sσ − S∗, Z is the partition function of the σ-model, and

G(z − w) =
〈 ◦

◦ x
µ(z)xµ(w) ◦

◦
〉
∗ (3.68)

is the two-point function computed with respect to the conformal field the-

ory action S∗[x]. The basic assumption in arriving at Eq. (3.68) is that the

ultra-violet cutoff Λ on the string worldsheet appears explicitly only in the

propagator G(z −w), as can always be arranged by an appropriate regular-

ization [44].

Henceforth we shall concentrate on the specific case of interest of a system

of N interacting D-particles. Then, upon summing up over pinched genera,

there are extra logarithmic divergences in the Green’s function (3.68) coming

from pinched annulus diagrams, which may be removed by the introduction

of logarithmic recoil operators, as explained in the previous section. Using

primes to denote the result of resumming the topological expansion over

pinched genera, we then have that

∂

∂ log Λ
G(z − w)′ =

∂

∂ log Λ

∑

genera

′ 〈 ◦
◦ x

µ(z)xµ(w) ◦
◦
〉

=
∂

∂ log Λ

〈 ◦
◦ x

µ(z)xµ(w) ◦
◦
〉
int

, (3.69)

where the correlator 〈·〉int includes the disc and recoil interaction contribu-

tions. Subtracting the disc Λ-dependence in normal ordering, the remaining

dependence on the worldsheet cutoff comes from the two-point functions of
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the logarithmic recoil operators, giving terms of the form

∂

∂ log Λ

〈 ◦
◦ x

µ(z)xµ(w) ◦
◦

×
(
aCCCε(z)Cε(w) + aCDCε(z)Dε(w) + aDDDε(z)Dε(w)

)〉
∗
. (3.70)

The leading divergence comes from the correlation function 〈Dε(z)Dε(w)〉∗ ∼
log Λ, which follows upon the identification (3.55). Thus we may write

∂

∂ log Λ
G(z −w) ' cG (α′)2 log |z −w|

9∑

i=1

N∑

a,b=1

|U i
ab|2 (3.71)

where cG > 0 is a numerical coefficient whose precise value is not important,

and we have used the fact that U i ∈ su(N).

Next, we observe that in the case of D-particles the second term in

Eq. (3.68) becomes

∫
Dµ(x, ξ̄, ξ) e −Sσ

∮

∂Σ

dτ

∮

∂Σ

dτ ′ (α′)2cG
9∑

i=1

N∑

a,b=1

|U i
ab|2 log[2 − 2 cos(τ − τ ′)]

×
[

δ2Sint

δxµ(τ)δxµ(τ ′)
+

δSint

δxµ(τ)

δSint

δxµ(τ ′)

]
, (3.72)

where the interaction Lagrangian is given by

Sint =
gs

2πα′

∮

∂Σ

dτ ∂σx
i(τ) ξ̄a(τ)Y

ab
i (x0) ξb(τ) . (3.73)

In the case of a system of recoiling D0-branes, the σ-model couplings in

Eq. (3.73) are given by (3.50) with the abelianized couplings (3.49) of Y ab
i

viewed as the boundary values for the open string embedding fields xi(τ)

on the D-brane. This means that the fields xi(τ) are simply identified with

ξ̄a(τ)Y
ab
i ξb(τ). All the non-trivial dependence comes from the x0 field which

obeys Neumann boundary conditions and is not constant on the boundary

of Σ. Then we may write

δ2Sint

δxµ(τ)δxµ(τ ′)
+

δSint

δxµ(τ)

δSint

δxµ(τ ′)

= ∇2
yi
Sint + (∇yiSint)

2 +
( gs

2πα′

)2
Uab

i U cd
j ξ̄a(τ)ξb(τ)ξ̄c(τ

′)ξd(τ
′)

×∂σx
i(τ)∂σx

j(τ ′)Θε(x
0(τ))Θε(x

0(τ ′)) , (3.74)
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where yi denotes the constant abelianized zero modes of xi(τ) on ∂Σ. Here

we have used the fact that terms of the form x0δ(x0) and Θ(x0)δ(x0) vanish

with the regularization (3.52) [2]. The terms involving ∂σx
i(τ)∂σx

j(τ ′) will

average out to yield terms of the form

|U i
ab|2

〈
Θε(x

0(τ))Θε(x
0(τ ′))

〉
∗ = α′|Ū i

ab|2
〈
Cε(τ)Cε(τ

′)
〉
∗ ∼ O(ε2) (3.75)

where we have used the logarithmic conformal algebra. At leading orders,

these terms vanish, but we shall see the importance of such sub-leading terms

later on.

Using the Dirichlet correlator

〈
∂σx

i(τ)∂σxi(τ
′)
〉
∗ = − 36π2α′

1 − cos(τ − τ ′)
(3.76)

we find that the boundary integrations in Eq. (3.72) are of the form [2]

∮

∂Σ

dτ

∮

∂Σ

dτ ′
log[2 − 2 cos(τ − τ ′)]

1 − cos(τ − τ ′)
∼ log Λ , (3.77)

which has the effect of renormalizing the velocity matrix U i
ab → Ū i

ab. Thus,

ignoring the O(ε2) terms for the moment, we find that the remaining terms in

the Wilson-Polchinski renormalization group equation (3.68) yield a diffusion

term for the probability density,

∂tP[Y,U ; t] = cG
√
α′

9∑

j=1

N∑

a,b=1

|Ū j
ab|2 ∇2

yi
P[Y,U ; t] + O(ε2) . (3.78)

This equation is of the Fokker-Planck type, with diffusion coefficient

D = cG
√
α′

9∑

i=1

N∑

a,b=1

|Ū i
ab|2 (3.79)

coming from the quantum recoil of the assembly of D-particles. The diffusion

disappears when there is no recoil. Note that (3.79) naturally incorporates

the short-distance quantum gravitational smearings for the open string inter-

actions (compare with Eq. (3.2)), and it arises as an abelianized velocity for

the constant auxiliary field configuration ξ̄a(τ) = ξa(τ) = 1, ∀a = 1, . . . , N .

The evolution equation (3.78) should be thought of as a modification of

the usual continuity equation for the probability density. Indeed, as we will

now show, the O(ε2) terms in Eq. (3.78) coming from (3.75) are of the form
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−∇yiJi, where

Ji =
~M

2im

(
Ψ†∇yiΨ − Ψ∇yiΨ

†
)

(3.80)

is the probability current density. Here

m =
1√
α′ḡs

, ~M = 4ḡs (3.81)

are, respectively, the BPS mass of the D-particles and the moduli space

“Planck constant”. d

For this, we note first of all that such terms should generically come in

the form

−∇yiJi = −~M

m

(
∇2

yi
arg Ψ

)
P − ~M

m
(∇yi arg Ψ)∇yiP . (3.82)

The second term in Eq. (3.82), upon identification of the probability density

P with the genera resummed partition function on the string worldsheet, is

proportional to the worldsheet renormalization group β-function, given the

gradient flow property (3.14) of the string effective action [50], so that

∇yiP = −2P Gijβ
j , (3.83)

which is to be understood in terms of abelianized quantities. In the present

case the renormalization group equations are given by (3.61) and (3.63)

and, since the couplings Ūab
i are truly marginal, we are left in (3.83) with

only a Zamolodchikov metric contribution GCC = 2NΛ4〈Cε(τ)Cε(τ)〉∗ (Note

that here one should use suitably normalized correlators 〈·〉∗ which yield the

behavior (3.83)). From the logarithmic conformal algebra it therefore follows

that a term with the structure of the second piece in Eq. (3.82) is hidden

d The identification (3.81) of Planck’s constant in the D-particle quantum mechanics on moduli

space with the string coupling constant is actually not unique in the present context of considering

only the exchange of strings between D-particles. As discussed in [2], the most general relation,

compatible with the logarithmic conformal algebra, involves an arbitrary exponent χ through

~
M

= 4(ḡs)1+χ/2. The exponent χ arises from specific mechanisms for the cancellation of modular

divergences on pinched annular surfaces by appropriate world-sheet short-distance infinities at

lower genera. The only restriction imposed on χ is that it be positive definite. As shown in [2], the

standard kinematical properties of D-particles are reproduced by the choice χ = 2
3
. A choice of

χ 6= 0 seems more natural from the point of view that modular divergences should be suppressed

for weakly interacting strings. However, in the present case, we assume for simplicity the value

χ = 0, which yields the standard string smearing
√

α′ for the minimum length uncertainty. The

incorporation of an arbitrary χ ≥ 0 in the formalism is straightforward and would not affect the

qualitative properties of the following results.
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in the contributions (3.75) which were dropped as being subleading in ε.

Furthermore, from (3.60), (3.82), (3.71), (3.74) and (3.75) it follows that to

leading order

∇yi arg Ψ = − cG√
α′ūi

(
9∑

j=1

N∑

a,b=1

|Ū j
ab|2
)2

, (3.84)

where ūi = dȳi/dt is the worldsheet zero mode of the abelianized, renor-

malized velocity operator. It then follows that to leading order we have

∇2
yi

arg Ψ = 0.e

Thus, keeping the subleading terms in the target space regularization

parameter ε leads to the complete Fokker-Planck equation for the probability

density P = Ψ†Ψ,

∂tP[Y,U ; t] = −∇yiJi[Y,U ; t] + D∇2
yi
P[Y,U ; t] , (3.85)

where Ji is the probability current density (3.80) and Ψ the wavefunctional

for the system of D-branes,

Ψ[Y,U ; t] =
9∏

i=1

exp


− icG√

α′
yi

ūi

(
9∑

j=1

tr |Ū j |2
)2


∣∣∣Ψ[Y,U ; t]

∣∣∣ (3.86)

Such quantum diffusion is characteristic of all Liouville string theories [45,

47, 54]. The resulting quantum dynamics, including the quantum diffusion

which arises from the D-brane recoil, is described by the Schrödinger wave

equation which corresponds to this Fokker-Planck equation. This equation

is analyzed in detail in the next section.

3.5. Non-linear Schrödinger Wave Equations

Given the Fokker-Planck equation (3.85), there is no unique solution for the

wavefunction Ψ, as we discuss below, and the resulting Schrödinger wave

equation is necessarily non-linear, due to the diffusion term [55,56]. Consider

e Noncommutative position dependent terms arising from commutators [Yi, Yj ] appear only at two-

loop order in σ-model perturbation theory [2]. An interesting extension of the present analysis

would be to generalize the results to include these higher-order terms into the quantum dynamics.

However, given that the pertinent equations involve only the abelianized coordinates (3.49), we

do not expect the inclusion of such terms to affect the ensuing qualitative conclusions. The effect

of the noncommutativity is to render the quantum wave equation for the system of D-particles

non-linear, through the recoil-induced diffusion from the multi-brane interactions, as we discuss in

the subsequent sections (for a single brane one would obtain a free wave equation governing the

quantum dynamics).
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the quantum mechanical system with diffusion which is described by the

Fokker-Planck equation (3.85) for the probability density P = Ψ†Ψ. In [55]

it was shown that, by imposing diffeomorphism invariance in the space ~y ∈ M

and representing the symmetry through the infinite-dimensional kinematical

symmetry algebra C∞(M) ⊃+ Vect(M), one may arrive at the non-linear

Schrödinger wave equation

i~M

∂Ψ

∂t
= H0Ψ + iI(Ψ)Ψ , (3.87)

where H0 is the linear Hamiltonian operator

H0 = −~
2
M

2m
∇2

yi
+ VM(~y, ~u; t) , (3.88)

and

I(Ψ) =
1

2
~M D

∇2
yi

(Ψ†Ψ)

Ψ†Ψ
. (3.89)

Here VM(~y, ~u; t) is the interaction potential on moduli space and the real

continuous quantum number D in (3.79) is the classification parameter of the

unitarily inequivalent diffeomorphism group representations. Other models

which have more than one type of diffusion coefficient can be found in [55,56].

A crucial point [56] is that there exist non-linear phase transformations

of the wavefunction Ψ (known as quantum mechanical “gauge transforma-

tions”) which leave invariant appropriate families of non-linear Schrödinger

equations, and also the probability density P. Such transformations do not

affect any physical observables of the system. This implies that the choice of

Ψ is ambiguous, once a density P is found as a solution of Eq. (3.85) on the

collective coordinate space {Y ab
i } of the D-branes. An important ingredient

in finding such transformations is the assumption [56, 57] that all measure-

ments of quantum mechanical systems can be made so as to reduce eventually

to position and time measurements. Because of this possibility, a theory for-

mulated in terms of position measurements is complete enough in principle

to describe all quantum phenomena. This point of view is certainly met by

the D-brane moduli space, where the wavefunctional depends only on the

couplings {gI} and not on the conjugate momenta pI = −i~M ∂/∂gI . The

group of non-linear gauge transformations acts on each leaf in a foliation of

a family of non-linear Schrödinger equations, such that the two-dimensional

leaves of the foliation consist of sets of equivalent quantum mechanical evo-

lution equations.
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It follows that then one can perform the local, two-parameter projective

gauge transformation of the wavefunction [56],

Ψ′ = Nγ,λ(Ψ) = |Ψ| exp(iγ log |Ψ| + iλ arg Ψ) , (3.90)

under which the probability density is invariant, but the probability current

transforms as

J ′
i = λJi +

γ

2
∇yiP . (3.91)

Here γ(t) and λ(t) 6= 0 are some real-valued time-dependent functions. The

collection of all non-linear transformations Nγ,λ obeys the multiplication

law of the one-dimensional affine Lie group Aff(1). Under (3.90) there are

families of non-linear Schrödinger equations that are closed (in the sense of

“gauge closure”). A generic form of such a family, to which the non-linear

Schrödinger equation (3.87) belongs, is

i
∂Ψ

∂t
=

1

~M

H0Ψ + iν2R2[Ψ]Ψ + µ1R1[Ψ]Ψ +
(
µ2 − 1

2 ν1

)
R2[Ψ]Ψ

+ (µ3 + ν1)R3[Ψ]Ψ + µ4R4[Ψ]Ψ +
(
µ5 + 1

4 ν1

)
R5[Ψ]Ψ

= i
∑

i=1,2

νiRi[Ψ]Ψ +

5∑

j=1

µjRj [Ψ]Ψ +
1

~M

VM(~y, ~u; t)Ψ , (3.92)

where νi, µj are real-valued coefficients which are related to diffusion coeffi-

cients D and D′ by

ν1 = −~M

2m
,

ν2 =
1

2
D ,

µ1 = c1D′ ,

µ2 = −~M

4m
+ c2D′ ,

µ3 =
~M

2m
+ c3D′ ,

µ4 = c4D′ ,

µ5 =
~M

8m
+ c5D′ , (3.93)

and Rj [Ψ] are non-linear homogeneous functionals of degree 0 which are



September 2, 2004 9:45 WSPC/Trim Size: 9.75in x 6.5in for Proceedings mavromatos

LCFT and Strings 1315

defined by

R1 =
m

~M

∇yiJi

P ,

R2 =
∇2

yi
P

P ,

R3 =
m2

~2
M

J 2
i

P2
,

R4 =
m

~M

Ji ∇yiP
P2

,

R5 =
(∇yiP)2

P2
. (3.94)

In Eq. (3.93) the cj are constants, while in Eq. (3.94) the probability current

density is given by (3.80) with P = Ψ†Ψ.

The gauge group Aff(1) acts on the parameter space of the family

(3.92). Some members of this family are thereby linearizable to an ordi-

nary Schrödinger wave equation under the action of (3.90). These are the

members for which there exists a specific relation between D and D ′ [56],

and for which Ehrenfest’s theorem of quantum mechanics receives no dissi-

pative corrections. The quantum mechanics of D-particles is not of this type,

given that there is definite diffusion, dissipation and thus time irreversabil-

ity. However, as discussed in [2, 52, 53], one needs to also maintain Galilean

invariance, which is a property originating from the logarithmic conformal

algebra of the recoil operators. As described in [56], there is a class of

non-linear Schrödinger wave equations which is Galilean invariant but which

violates time-reversal symmetry. For this, it is useful to first construct a

parameter set of equations of the form (3.93) which remain invariant under

the gauge transformations (3.90). We may describe the parameter family

of equations (3.92) in terms of orbits of Aff(1) by regarding γ = 2mµ1

and λ = 2mν1 as the group parameters of an Aff(1) gauge transformation

(3.90). Then the remaining five parameters in (3.93) are taken to be the

functionally-independent parameters ηj , j = 1, . . . , 5, which are invariant
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under Aff(1) and are defined by

η1 = ν2 −
1

2
µ1 ,

η2 = ν1µ2 − ν2µ1 ,

η3 =
µ3

ν1
,

η4 = µ4 − µ1
µ3

ν1
,

η5 = ν1µ5 − ν2µ4 + (ν2)
2 µ3

ν1
. (3.95)

A detailed discussion of the corresponding physical observables is given in

[56]. For our purposes, we simply select the following relevant property of

the non-linear Schrödinger equation based on the parameter set (3.95).

Consider the effect of time-reversal on the non-linear Schrödinger wave

equation. Setting t → −t is equivalent to introducing the following new set

of coefficients,

(νi)
T = −νi , i = 1, 2 ,

(µj)
T = −µj , j = 1, . . . , 5 ,

(VM)T = −VM , (3.96)

where the superscript T denotes the time-reversal transformation. It is

straightforward to show [56] that, in terms of the ηj ’s, there is time-reversal

invariance in the non-linear Schrödinger equation if the two parameters η1

and η4 are both non-vanishing. On the other hand, a straightforward calcu-

lation also shows [56] that Galilean invariance sets η4 = 0, thereby implying

that a family of non-linear Schrödinger wave equations which is invariant

under G(9) but not time-reversal invariant indeed exists. For a single diffu-

sion coefficient D 6= 0, as in the case (3.79) of recoiling D-branes, one may

set D′cj = 0 (corresponding to the Aff(1) gauge choice µ1 = 0) and thereby

obtain the set of gauge invariant parameters:

η1 =
1

2
D ,

η2 = 2α′ḡ4
s ,

η3 = −1 ,

η4 = 0 ,

η5 = −α′ḡ4
s − 1

4
D2 . (3.97)
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The parameter set (3.97) breaks time-reversal invariance, as expected from

the non-trivial entropy production and decoherence characterizing the world-

sheet renormalization group approach to target space time involving Liou-

ville string theory [2, 45, 58]. But it does preserve Galilean invariance, as is

required by conformal invariance of the non-relativistic, recoiling system of

D-particles.

One may therefore propose that the Fokker-Planck equation for the prob-

ability density P on the moduli space of collective coordinates of a system of

interacting D-branes implies a Schrödinger wave equation for the pertinent

wavefunctional which is non-linear, Galilean-invariant and has a time ar-

row, corresponding to entropy production, and hence explicitly broken time-

reversal invariance. The existence of a dissipation D ∝ tr |Ū i|2, due to the

quantum recoil of the D-branes, implies that the Ehrenfest relations acquire

extra dissipative terms for this family of non-linear Schrödinger equations.

For example, one can immediately obtain the relations [55]

d

dt

〈〈
p̂i

〉〉
= −

〈〈
∇yiVM

〉〉
−m

∫

M

d~y Ψ†
(
J (D=0)

i

P

)(
−

D∇2
yj
P

P

)
Ψ

+m

∫

M

d~y Ψ†
(

− D∇yiP
P

)(
∇yjJ

(D=0)
j

P

)
Ψ ,

d

dt

〈〈̂̄yi

〉〉
=
〈〈̂̄ui

〉〉
(3.98)

where J (D=0)
i is the undissipative current density (3.80). Note that the fun-

damental renormalization group equations (3.57) receive no corrections due

to the dissipation. The existence of extra dissipation terms in (3.98) in the

Ehrenfest relation for the momentum operator p̂i = −i~M ∇yi , which are

proportional to tr |Ū i|2, may now be compared to the generalized Heisen-

berg uncertainty relations that were derived in [2]. These extra terms are

determined by the total kinetic energy of the D-branes and their open string

excitations, and they show how the recoil of the D-brane background pro-

duces quantum fluctuations of the classical spacetime dynamics [23].

Thus, it seems that in this example, the identification of the world-sheet

RG scale with the target time of the string leads to non-linear quantum

mechanical equations for the D-particle. Such equations have caused some

controversy as far as their physical meaning and uniqueness are concerned.

One may therefore question the above identification of the Liouville field

with target time. However, as we shall discuss below, supersymmetrization
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of the world-sheet formalism, as required for the target-space stability of the

D-particles, eliminates the leading ultraviolet world-sheet divergences (3.70)

leading to the diffusion term (3.71). We next proceed to discuss this issue.

For pedagogical purposes we also give the definition of the associated N=1

Logarithmic superconformal algebras used in the construction of the super

D-brane recoil problem.

4. Definition and Properties of the N = 1 Logarithmic

Superconformal Algebra

We will start by looking at an abstract logarithmic superconformal field

theory to see what some of the general features are. Throughout we will

deal for simplicity with situations in which the two-dimensional field theory

contains only a single Jordan cell of rank 2, but our considerations easily

extend to more general situations. In this section we shall begin by discussing

how to incorporate the Ramond sector of the theory properly.

4.1. Operator Product Expansions

Consider a logarithmic superconformal field theory defined on the complex

plane C (or the Riemann sphere C∪ {∞}) with coordinate z. For the most

part we will only write formulas explicitly for the holomorphic sector of the

two-dimensional field theory. We will also use a superspace notation, with

complex supercoordinates z = (z, θ), where θ is a complex Grassmann vari-

able, θ2 = 0. The superconformal algebra is generated by the holomorphic

super energy-momentum tensor

T(z) = G(z) + θ T (z) , (4.1)

which is a chiral superfield of dimension 3
2 . Here T (z) is the bosonic energy-

momentum tensor of conformal dimension 2, while G(z) is the fermionic

supercurrent of dimension 3
2 with the boundary conditions

G( e 2π i z) = e π i λG(z) , (4.2)

where λ = 0 in the NS sector of the theory (corresponding to periodic bound-

ary conditions on the fermion fields) and λ = 1 in the R sector (corresponding

to anti-periodic boundary conditions).

The N = 1 superconformal algebra may then be characterized by the
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anomalous operator product expansion

T(z1)T(z2)=
ĉ

4

1

(z12)3
+

2θ12
(z12)2

T(z2)+
1

2

1

z12
Dz2T(z2) +

θ12
z12

∂z2T(z2)+. . . ,

(4.3)

where in general we introduce the variables

zij = zi − zj − θiθj , θij = θi − θj (4.4)

corresponding to any set of holomorphic superspace coordinates zi = (zi, θi).

Here

Dz = ∂θ + θ ∂z , D2
z = ∂z (4.5)

is the superspace covariant derivative, and ĉ = 2c/3 is the superconformal

central charge with c the ordinary Virasoro central charge. An ellipsis will

always denote terms which are regular in the operator product expansion as

z1 → z2. Now introduce the usual mode expansions

T (z) =

∞∑

n=−∞
Ln z

−n−2 ,

G(z) =
∞∑

n=−∞

1

2
Gn+(1−λ)/2 z

−n−2+λ/2 , (4.6)

where L†
n = L−n and G†

r = G−r. The operator product expansion (4.3) is

then equivalent to the usual relations of the N = 1 supersymmetric extension

of the Virasoro algebra,

[Lm, Ln] = (m− n)Lm+n +
ĉ

8

(
m3 −m

)
δm+n,0 ,

[Lm, Gr] =
(m

2
− r
)
Gm+r ,

{Gr, Gs} = 2Lr+s +
ĉ

2

(
r2 − 1

4

)
δr+s,0 , (4.7)

where m,n ∈ Z, and r, s ∈ Z + 1
2 for the NS algebra while r, s ∈ Z for the

R algebra. In particular, the five operators L0, L±1 and G±1/2 generate the

orthosymplectic Lie algebra of the global superconformal group OSp(2, 1).

In the simplest instance, logarithmic superconformal operators of weight
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∆C correspond to a pair of superfields

C(z) = C(z) + θ χC(z) ,

D(z) = D(z) + θ χD(z) (4.8)

which have operator product expansions with the super energy-momentum

tensor given by [20, 21]

T(z1)C(z2) =
∆C θ12
(z12)2

C(z2) +
1

2

1

z12
Dz2C(z2) +

θ12
z12

∂z2C(z2) + . . . ,

T(z1)D(z2) =
∆C θ12
(z12)2

D(z2) +
θ12

(z12)2
C(z2) +

1

2

1

z12
Dz2D(z2)

+
θ12
z12

∂z2D(z2) + . . . . (4.9)

Note that C(z) is a primary superfield of the superconformal algebra of di-

mension ∆C , which is necessarily an integer [8]. The appropriately normal-

ized superfield D(z) is its quasi-primary logarithmic partner. This latter

assumption, i.e. that [Ln,D(z)] = [Gr,D(z)] = 0 for n, r > 0, is not neces-

sary, but it will simplify some of the arguments which follow. The operators

C(z) and D(z) correspond to an ordinary logarithmic pair and their su-

perpartners χC(z) and χD(z) are generated through the operator products

with the fermionic supercurrent as (in the Neveu-Schwarz sector of the the-

ory, corresponding to the choice of anti-periodic boundary conditions on the

worldsheet spinor fields)

G(z)C(z) =
1/2

z − w
χC(w) + . . . ,

G(z)D(z) =
1/2

z − w
χD(w) + . . . . (4.10)

In particular, in the NS algebra we may write the superpartners as χC(z) =

[G−1/2, C(z)] and χD(z) = [G−1/2, D(z)].

For later use we give here the component form the N = 1 supersymmetric

completion of the logarithmic conformal algebra (2.2) and the associated

OPEs. They are

T (z)G(w) =
3/2

(z − w)2
G(w) +

1

z − w
∂wG(w) + . . . ,

G(z)G(w) =
ĉ

(z − w)3
+

2

z − w
T (w) + . . . , (4.11)
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where ĉ = 2c/3 is the superconformal central charge. We introduce fermionic

fields χC and χD which are the worldsheet superpartners of the operators

C and D, respectively. The pair (C,χC) satisfies the standard algebraic

relations of a primary superconformal multiplet of dimension ∆, while the

additional relations for χD can be obtained by differentiating those involving

χC with the formal identification χD = ∂χC/∂∆. The N = 1 logarithmic

superconformal algebra is thereby characterized by the operator product

expansions (2.2), (4.10), and

T (z)χC(w) =
∆ + 1/2

(z − w)2
χC(w) +

1

z − w
∂wχC(w) + . . . , (4.12)

T (z)χD(w) =
∆ + 1/2

(z − w)2
χD(w) +

1

(z − w)2
χC(w) +

1

z −w
∂wχD(w) + . . . ,

G(z)χC(w) =
∆

(z − w)2
C(w) +

1/2

z − w
∂wC(w) + . . . ,

G(z)χD(w) =
∆

(z − w)2
D(w) +

1

(z − w)2
C(w) +

1/2

z − w
∂wD(w) + . . . .

In addition to the Green’s functions (2.4), the two-point functions involving

the extra fields can also be readily worked out to be

〈
φ(z)χφ′(w)

〉
= 0 , φ, φ′ = C,D , (4.13)

〈
χC(z)χC(w)

〉
= 0 ,

〈
χC(z)χD(w)

〉
=

2∆ξ

(z − w)2∆+1
,

〈
χD(z)χD(w)

〉
=

2

(z − w)2∆+1

(
−2∆ξ ln(z − w) + ξ + ∆d

)
.

Analogous results can be obtained for higher order correlators. It is also

possible to generalize these results to the case where there is more than one

Jordan block. Note that, under the assumption that the logarithmic partner

fields are quasi-primary, any such Jordan block implies the existence of a

Jordan cell for the identity operator, which has vanishing scaling dimension.

Thus, if there exists a Jordan block with ∆ 6= 0, then there are automatically

at least two Jordan blocks for the logarithmic conformal field theory.
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4.2. Highest-Weight Representations

The quantum Hilbert space H of the superconformal field theory decomposes

into two subspaces,

H = HNS ⊕HR , (4.14)

corresponding to the two types of boundary conditions obeyed by the

fermionic fields. They carry the representations of the NS and R algebras,

respectively. In this space, we assume that some of the highest-weight repre-

sentations of the N = 1 superconformal algebra are indecomposable [16,76].

Then a (rank 2) highest-weight Jordan cell of energy ∆C is generated by a

pair of appropriately normalized states |C〉, |D〉 obeying the conditions

L0|C〉 = ∆C |C〉 ,
L0|D〉 = ∆C |D〉 + |C〉 ,
Ln|C〉 = Ln|D〉 = 0 , n > 0 ,

Gr|C〉 = Gr|D〉 = 0 , r > 0 . (4.15)

A highest-weight representation of the logarithmic superconformal algebra

is then generated by applying the raising operators Ln, Gr, n, r < 0 to

these vectors giving rise to the descendant states of the theory. Note that

|C〉 is a highest-weight state of the irreducible sub-representation of the

superconformal algebra contained in the Jordan cell.

Neveu-Schwarz Sector

The NS sector HNS of the Hilbert space contains the normalized, OSp(2, 1)-

invariant vacuum state |0〉 which is the unique state of lowest energy ∆ = 0

in a unitary theory,

L0|0〉 = 0 . (4.16)

In this sector, the states defined by (4.15) are in a one-to-one correspondence

with the logarithmic operators satisfying the operator product expansions

(4.9). Namely, under the usual operator-state correspondence of local quan-

tum field theory, the superfields C(z) and D(z) are associated with highest
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weight states of energy ∆C through

C(0)|0〉 = |C〉NS ,

χC(0)|0〉 = G−1/2|C〉NS ,

D(0)|0〉 = |D〉NS ,

χD(0)|0〉 = G−1/2|D〉NS . (4.17)

In this way, the NS sector is formally analogous to an ordinary, bosonic

logarithmic conformal field theory. Note that the vacuum state |0〉 itself

corresponds to the identity operator I.

Ramond Sector

Things are quite different in the R sector HR. Consider a highest weight

state |∆〉R of energy ∆,

L0|∆〉R = ∆|∆〉R . (4.18)

From the superconformal algebra (4.7), we see that the operators L0 and

G0 commute in the R sector, so that the supercurrent zero mode G0 acts

on the highest weight states. As a consequence, the state G0|∆〉R also has

energy ∆. Therefore, the highest weight states of the R sector HR come

in orthogonal pairs |∆〉R, G0|∆〉R of the same energy. Under the operator-

state correspondence, the Ramond highest weight states are created from the

vacuum |0〉 by the application of spin fields Σ±
∆(z) [73] which are ordinary

conformal fields of dimension ∆,

Σ+
∆(0)|0〉 = |∆〉R ,

Σ−
∆(0)|0〉 = G0|∆〉R . (4.19)

The operator product expansions of the spin fields with the super energy-

momentum tensor may be computed from (4.18) and (4.19) and are given

by

T (z)Σ±
∆(w) =

∆

(z − w)2
Σ±

∆(w) +
1

z − w
∂wΣ±

∆(w) + . . . , (4.20)

G(z)Σ+
∆(w) =

1

2

1

(z − w)3/2
Σ−

∆(w) + . . . , (4.21)

G(z)Σ−
∆(w) =

1

2

(
∆ − ĉ

16

)
1

(z − w)3/2
Σ+

∆(w) + . . . , (4.22)
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where we have used the super-Virasoro algebra (4.7) to write

G2
0 = L0 −

ĉ

16
. (4.23)

The operator product (4.20) merely states that Σ±
∆(z) is a dimension ∆ pri-

mary field of the ordinary, bosonic Virasoro algebra, while (4.21) and (4.22)

show that the fermionic supercurrent G(z) is double-valued with respect to

the spin fields, since they are equivalent to the monodromy conditions

G( e 2π i z)Σ±
∆(w) = −G(z)Σ±

∆(w) . (4.24)

It follows that Ramond boundary conditions can be regarded as due to a

branch cut in the complex plane connecting the spin fields Σ±
∆(z) at z = 0

and z = ∞. The spin fields make the entire superconformal field theory

non-local, and correspond to the irreducible representations of the Ramond

algebra. Note that the ordinary superfields are block diagonal with respect

to the decomposition (4.14), i.e. they are operators on HNS → HNS and

HR → HR, while the spin fields Σ±
∆ : HNS → HR are block off-diagonal.

The spin fields Σ±
∆(z) do not affect the integer weight fields C(z) and

D(z), while their operator product expansions with the fermionic partners

to the logarithmic operators in the R sector are given by

χC(z)Σ±
∆(w) =

1√
z − w

Σ̃±
C,∆(w) + . . . ,

χD(z)Σ±
∆(w) =

1√
z − w

Σ̃±
D,∆(w) + . . . . (4.25)

The relations (4.25) define two different excited twist fields Σ̃±
C,∆(z) and

Σ̃±
D,∆(z) which are conjugate to the spin fields Σ±

∆(z). They are also double-

valued with respect to χC and χD, respectively, and they each act within

the Ramond sector as operators on HNS → HR. The relative non-locality

of the operator product expansions (4.25) yields the global Z2-twists in the

boundary conditions required of the R sector fermionic fields.

While Σ̃±
C,∆(z) are primary fields of conformal dimension ∆C + ∆, the

conjugate spin fields Σ̃±
D,∆(z) exhibit logarithmic mixing behavior. This can

be seen explicitly by applying the operator product expansions to both sides
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of (4.25) using (4.9) and (4.20)–(4.22) to get

T (z) Σ̃±
C,∆(w) =

∆C + ∆

(z − w)2
Σ̃±

C,∆(w) +
1

z − w
∂wΣ̃±

C,∆(w) + . . . , (4.26)

T (z) Σ̃±
D,∆(w) =

∆C + ∆

(z − w)2
Σ̃±

D,∆(w) +
1

(z − w)2
Σ̃±

C,∆(w)

+
1

z − w
∂wΣ̃±

D,∆(w) + . . . , (4.27)

(4.28)

G(z) Σ̃+
C,∆(w) =

1

2

1

(z − w)3/2
Σ̃−

C,∆(w) + . . . , (4.29)

G(z) Σ̃−
C,∆(w) =

1

2

(
∆ − ĉ

16

)
1

(z − w)3/2
Σ̃+

C,∆(w) + . . . , (4.30)

G(z) Σ̃+
D,∆(w) =

1

2

1

(z − w)3/2
Σ̃−

D,∆(w) + . . . , (4.31)

G(z) Σ̃−
D,∆(w) =

1

2

(
∆ − ĉ

16

)
1

(z − w)3/2
Σ̃+

D,∆(w) + . . . . (4.32)

The operator product expansions (4.26) and (4.28) yield a pair of ordinary,

bosonic logarithmic conformal algebras, while (4.29)–(4.32) show that both

Σ̃±
C,∆(z) and Σ̃±

D,∆(z) twist the fermionic supercurrent G(z) in exactly the

same way that the original spin fields Σ±
∆(z) do. In particular, the set of

degenerate spin fields Σ̃±
C,∆(z), Σ̃±

D,∆(z) generate a pair of reducible but

indecomposable representations (4.15) of the R algebra, of the same shifted

weight ∆C + ∆. The corresponding excited highest-weight states |C,∆〉±R ,

|D,∆〉±R of the mutually orthogonal degenerate Jordan blocks for the action

of the Virasoro operator L0 on HR are created from the NS ground state

through the application of the logarithmic spin operators as

Σ̃±
C,∆(0)|0〉 = |C,∆〉±R ,

Σ̃±
D,∆(0)|0〉 = |D,∆〉±R , (4.33)

with

L0|C,∆〉±R = (∆C + ∆)|C,∆〉±R ,

L0|D,∆〉±R = (∆C + ∆)|D,∆〉±R + |C,∆〉±R . (4.34)

In the following we will be primarily interested in the spin fields associ-

ated with the Ramond ground state |∆〉R which is defined by the condition
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G0|∆〉R = 0. This lifts the degeneracy of the highest weight representation

which by (4.23) necessarily has dimension ∆ = ĉ/16, corresponding to the

lowest energy in a unitary theory whereby G2
0 ≥ 0. In this case, the Ramond

state G0|∆〉R is a null vector and the R sector contains a single copy of the

logarithmic superconformal algebra, as in the NS sector. We will return to

the issue of logarithmic null vectors within this context in section 4.4. The

spin field Σ−
ĉ/16(z) is then an irrelevant operator and may be set to zero, while

the other spin field will be simply denoted by Σ(z) ≡ Σ+
ĉ/16(z). The spin field

Σ(z) corresponds to the unique supersymmetric ground state | ĉ
16 〉R of the

Ramond system, with supersymmetry generator G0, in the logarithmic su-

perconformal field theory. Similarly, we may set Σ̃−
C,ĉ/16(z) = Σ̃−

D,ĉ/16(z) = 0,

and we denote the remaining excited spin fields simply by Σ̃C(z) ≡ Σ̃+
C,ĉ/16(z)

and Σ̃D(z) ≡ Σ̃+
D,ĉ/16(z).

4.3. Correlation Functions

Carrying on with an abstract logarithmic superconformal algebra, we shall

now describe the structure of logarithmic correlation functions in both the

NS and R sectors. In particular, we will determine all two-point correlators

involving the various logarithmic operators.

4.3.1. Ward Identities and Neveu-Schwarz Correlation Functions

In the NS sector, we define the correlator of any periodic operator O as its

vacuum expectation value

〈O〉NS = 〈0|O|0〉 . (4.35)

Such correlators of logarithmic operators, and their descendants, may be de-

rived as follows. Consider a collection of Jordan blocks in the superconfor-

mal field theory of rank 2, weight ∆Ci , and spanning logarithmic superfields

Ci(z), Di(z). Then, in the standard way, we may deduce from the operator

product expansions (4.9) the superconformal Ward identities
〈
T(z)Cn(zn) · · ·Cn+k(zn+k)Dm(wm) · · ·Dm+l(wm+l)

〉
NS

(4.36)

=

(
n+k∑

i=n

[
1

2

1

z − zi − θ θi
Dzi +

θ − θi

z − zi − θ θi
∂zi +

∆Ci (θ − θi)

(z − zi − θ θi)2

]

+

m+l∑

i=m

[
1

2

1

z − wi − θ ζi
Dwi +

θ − ζi
z − wi − θ ζi

∂wi +
∆Ci (θ − ζi)

(z − wi − θ ζi)2

])
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×
〈
Cn(zn) · · ·Cn+k(zn+k)Dm(wm) · · ·Dm+l(wm+l)

〉
NS

+
m+l∑

i=m

θ − ζi
(z −wi − θ ζi)2

〈
Cn(zn) · · ·Cn+k(zn+k)

× Dm(wm) · · ·Di−1(wi−1)Ci(wi)Di+1(wi+1) · · ·Dm+l(wm+l)
〉

NS
,

where the supercoordinates in (4.37) are z = (z, θ), zi = (zi, θi) and

wi = (wi, ζi). These identities can be used to derive correlation functions

of descendants of the logarithmic operators in terms of those involving the

original superfields Ci and Di. Notice, in particular, that the Ward identity

connects amplitudes of the descendants of Di with amplitudes involving the

primary superfields Ci.

By expanding the super energy-momentum tensor into modes using (4.6)

we may equate the coefficients on both sides of (4.37) corresponding to the

actions of the OSp(2, 1) generators L0, L±1 and G±1/2. By using global

superconformal invariance of the vacuum state |0〉, we then arrive at a set

of superfield differential equations

0=

(
n+k∑

i=n

Dzi +

m+l∑

i=m

Dwi

)〈
Cn(zn) · · ·Cn+k(zn+k)Dm(wm) · · ·Dm+l(wm+l)

〉
NS

,

0=

(
n+k∑

i=n

[
zi Dzi + θi ∂θi

+ 2∆Ci

]
+

m+l∑

i=m

[
wi Dwi + ζi ∂ζi

+ 2∆Ci

])

×
〈
Cn(zn) · · ·Cn+k(zn+k)Dm(wm) · · ·Dm+l(wm+l)

〉
NS

+2

m+l∑

i=m

〈
Cn(zn) · · ·Cn+k(zn+k)

×Dm(wm) · · ·Di−1(wi−1)Ci(wi)Di+1(wi+1) · · ·Dm+l(wm+l)
〉

NS
,

0 =

(
n+k∑

i=n

[
z2
i Dzi + zi (θi ∂θi

+ 2∆Ci)
]
+

m+l∑

i=m

[
w2

i Dwi + wi (ζi ∂ζi
+ 2∆Ci)

]
)

×
〈
Cn(zn) · · ·Cn+k(zn+k)Dm(wm) · · ·Dm+l(wm+l)

〉
NS

+2

m+l∑

i=m

wi

〈
Cn(zn) · · ·Cn+k(zn+k)

×Dm(wm) · · ·Di−1(wi−1)Ci(wi)Di+1(wi+1) · · ·Dm+l(wm+l)
〉

NS
. (4.37)
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These equations can be used to determine the general structure of the loga-

rithmic correlators.

For the two-point correlation functions of the logarithmic superfields one

finds [20]
〈
C(z1)C(z2)

〉
NS

= 0 , (4.38)

〈
C(z1)D(z2)

〉
NS

=
〈
D(z1)C(z2)

〉
NS

=
b

(z12)2∆C
, (4.39)

〈
D(z1)D(z2)

〉
NS

=
1

(z12)2∆C

(
−2b ln z12 + d

)
, (4.40)

where the constant b is fixed by the leading logarithmic divergence of the

conformal blocks of the theory (equivalently by the normalization of the D

operator), and the integration constant d can be changed by the field redefi-

nitions D(z) 7→ D(z)+λC(z) which are induced by the scale transformations

z 7→ e λ z. In particular, the equality of two-point functions in (4.39) imme-

diately implies that the conformal dimension ∆C of the logarithmic pair is

necessarily an integer [8]. For the three-point functions one gets [20]
〈
C(z1)C(z2)C(z3)

〉
NS

= 0 , (4.41)

〈
C(z1)C(z2)D(z3)

〉
NS

=
1

(z12)∆C (z13)∆C (z23)∆C

(
b1 + β1 θ123

)
, (4.42)

〈
C(z1)D(z2)D(z3)

〉
NS

=
1

(z12)∆C (z13)∆C (z23)∆C

×
(
b2 + β2 θ123 − 2(b1 + β1 θ123) ln z23

)
, (4.43)

〈
D(z1)D(z2)D(z3)

〉
NS

=
1

(z12)∆C (z13)∆C (z23)∆C

[
b3 + β3 θ123

− (b2 + β2 θ123) ln z12 z13 z23 + (b1 + β1 θ123)
(
2 ln z12 ln z13

+ 2 ln z12 ln z23 + 2 ln z13 ln z23 − ln2 z12 − ln2 z13 − ln2 z23

)]
, (4.44)

where bi and βi are undetermined Grassmann even and odd constants, re-

spectively, and we have generally defined

θijk =
1

√
zij zjk zki

(
θi zjk + θj zki + θk zij + θi θj θk

)
. (4.45)

The remaining three-point correlation functions can be obtained via cyclic

permutation of the superfields in (4.42) and (4.43). The general form of the

four-point functions may also be found in [20].
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4.3.2. Ramond Correlation Functions

In the R sector, we define the correlator of any operator O to be its normal-

ized expectation value in the supersymmetric Ramond ground state,

〈O〉R =
〈0|Σ(∞)OΣ(0)|0〉
〈0|Σ(∞)Σ(0)|0〉 , (4.46)

where we have used the standard asymptotic out-state definition

〈0|Σ(∞) = lim
z→∞

〈0|Σ(z) z ĉ/8 (4.47)

and the fact that the spin field Σ(z) is a primary field of the ordinary Virasoro

algebra of dimension ∆ = ĉ/16. In particular, the two-point function of the

(appropriately normalized) spin operator is given by

〈0|Σ(z)Σ(w)|0〉 =
1

(z − w)ĉ/8
. (4.48)

Since Σ(z) does not act on the bosonic fields C(z) and D(z), their R sector

correlation functions coincide with those of the NS sector, i.e. with those

of an ordinary logarithmic conformal field theory. In particular, for the

two-point functions we find [6–8]

〈
C(z)C(w)

〉
R

= 0 ,

〈
C(z)D(w)

〉
R

=
〈
D(z)C(w)

〉
R

=
b

(z − w)2∆C
,

〈
D(z)D(w)

〉
R

=
d− 2b ln(z − w)

(z − w)2∆C
. (4.49)

For the correlation functions of the fermionic fields, we proceed as follows.

Let us introduce the function

gC(z, w|z1, z2) =
〈0|Σ(z1)χC(z)χC(w)Σ(z2)|0〉

〈0|Σ(z1)Σ(z2)|0〉
. (4.50)

All fields appearing in (4.50) behave as ordinary primary fields

under the action of the Virasoro algebra. The Green’s func-

tion (4.50) can therefore be evaluated using standard conformal

field theoretic methods [82]. It obeys the asymptotic conditions



September 2, 2004 9:45 WSPC/Trim Size: 9.75in x 6.5in for Proceedings mavromatos

1330 N.E. Mavromatos

gC(z, w|z1, z2) ' 0 + . . . as z → w , (4.51)

' (z1 − z2)
ĉ/8

√
z − z1

〈0|Σ̃C(z1)χC(w)Σ(z2)|0〉 + . . . as z → z1 ,

(4.52)

' (z1 − z2)
ĉ/8

√
z − z2

〈0|Σ(z1)χC(w) Σ̃C(z2)|0〉 + . . . as z → z2 .

(4.53)

The first condition (4.51) arises from the fact that the short distance be-

havior of the quantum field theory is independent of the global boundary

conditions, so that in the limit z → w the function (4.50) should coin-

cide with the corresponding Neveu-Schwarz two-point function determined

in (4.38), i.e. 〈χC(z)χC(w)〉NS = 0. The local monodromy conditions (4.52)

and (4.53) follow from the operator product expansions (4.25). In addition,

by Fermi statistics the Green’s function (4.50) must be antisymmetric under

the exchange of its arguments z and w,

gC(z, w|z1, z2) = −gC(w, z|z1, z2) . (4.54)

By translation invariance, the conditions (4.51) and (4.54) are solved by

any odd analytic function f of z−w. Since the correlators appearing in (4.52)

and (4.53) involve only ordinary, primary conformal fields, global conformal

invariance dictates that the function f(z−w) must multiply a quantity which

is a function only of the SL(2,C)-invariant anharmonic ratio x of the four

points of gC(z, w|z1, z2) given by

x =
(z − z1)(w − z2)

(z − z2)(w − z1)
. (4.55)

By conformal invariance, the odd analytic function f(z − w) is therefore

identically 0, and hence

gC(z, w|z1, z2) = 0 . (4.56)

Using this result we can determine a number of correlation functions.

Setting z1 = ∞ and z2 = 0 gives the Ramond correlator
〈
χC(z)χC(w)

〉
R

= 0 . (4.57)

From (4.53) and (4.56) we obtain in addition the vanishing mixed correlator

〈0|Σ(z1)χC(z2) Σ̃C(z3)|0〉 = 0 . (4.58)
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Fusing together the fields Σ(z1) and χC(z2) in (4.58) using (4.25) then gives

the conjugate spin-spin correlator

〈0|Σ̃C(z) Σ̃C(w)|0〉 = 0 . (4.59)

The vanishing of the Σ̃CΣ̃C correlation function is consistent with the fact

that the excited spin field Σ̃C(z) obeys the logarithmic conformal algebra

(4.26,4.28) [6–8].

Next, let us consider the function

gD(z, w|z1, z2) =
〈0|Σ(z1)χC(z)χD(w)Σ(z2)|0〉

〈0|Σ(z1)Σ(z2)|0〉
. (4.60)

The action of the Virasoro algebra in (4.60) does not produce any additional

terms from the logarithmic mixing of the fermionic field χD(w), because of

the vanishing property (4.56). Therefore, this function can also be evaluated

as if the theory were an ordinary conformal field theory [82]. Using (4.25)

and (4.39) the asymptotic conditions (4.51)–(4.53) are now replaced with

gD(z, w|z1, z2) '
2∆C b

(z − w)2∆C+1
+ . . . as z → w , (4.61)

' (z1 − z2)
ĉ/8

√
z − z1

〈0|Σ̃C(z1)χD(w)Σ(z2)|0〉 + . . . as z → z1 ,

(4.62)

' (z1 − z2)
ĉ/8

√
z − z2

〈0|Σ(z1)χD(w) Σ̃C(z2)|0〉 + . . . as z → z2 ,

(4.63)

' (z1 − z2)
ĉ/8

√
w − z1

〈0|Σ̃D(z1)χC(z)Σ(z2)|0〉 + . . . as w → z1 ,

(4.64)

' (z1 − z2)
ĉ/8

√
w − z2

〈0|Σ(z1)χC(z) Σ̃D(z2)|0〉 + . . . as w → z2 .

(4.65)

Again, from (4.58) it follows that the correlators in (4.62)–(4.65) involv-

ing a single logarithmic operator can be treated as an ordinary conformal

correlator for primary fields. In particular, we can treat (4.60) as a correlator

for two identical conformal fermion fields of dimension ∆C + 1
2 and require it

to be antisymmetric under exchange of z and w, as in (4.54). This property

follows from the fact that the local NS correlator (4.61) is antisymmetric in

z and w and this feature should extend globally in the quantum field theory.
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Again, by SL(2,C)-invariance the quantity (z −w)−2∆C−1 gD(z, w|z1, z2) is

a function only of the anharmonic ratio (4.55). The precise dependence on

x is uniquely determined by the boundary conditions (4.61)–(4.65) and the

antisymmetry of gD, and we find f

gD(z, w|z1, z2)

=
∆C b

(z − w)2∆C+1

(√
(z − z1)(w − z2)

(z − z2)(w − z1)
+

√
(z − z2)(w − z1)

(z − z1)(w − z2)

)
. .(4.66)

By taking various limits of (4.66) we can generate another set of cor-

relation functions for Ramond sector operators. In the simultaneous limit

z1 → ∞ and z2 → 0, the function (4.66) yields the Ramond two-point cor-

relators

〈
χC(z)χD(w)

〉
R

= −
〈
χD(z)χC(w)

〉
R

=
∆C b

(z − w)2∆C+1

(√
z

w
+

√
w

z

)
.

(4.67)

Note that the term in parentheses has branch cuts at z = 0,∞ and w = 0,∞,

yielding the antiperiodic boundary conditions on the spinor fields as they

circle around the origin in the complex plane and across the cut connecting

the spin operators Σ(0) and Σ(∞) in (4.46). Taking the limits z → z1, z2 and

w → z1, z2 in (4.66) and comparing with (4.62)–(4.65) yields the correlation

functions

〈0|Σ̃C(z1)χD(z2)Σ(z3)|0〉 =
i∆C b

(z1 − z2)2∆C+1/2 (z1 − z3)ĉ/8−1/2
√
z2 − z3

= −〈0|Σ̃D(z1)χC(z2)Σ(z3)|0〉 . (4.68)

Fusing Σ(z3) with χD(z2) and χC(z2) in (4.68) using (4.25) then yields the

f To show explicitly that (4.66) is the unique function of z and w with the desired properties, we

write it as

gD(z, w|z1, z2) =
(z − z1)(w − z2) + (z − z2)(w − z1)
p

(z − z1)(z − z2)(w − z1)(w − z2)

∆C b

(z − w)2∆C+1
.

The first factor here gives the correct behavior for gD as z,w → z1, z2, while the second factor is

the required pole at z = w of order 2∆C + 1. The overall factor is then chosen so that the residue

of the pole is 2∆C b and such that it cancels the lower order poles arising from the first factor in

the limit z → w, and by further requiring that the overall combination be antisymmetric in z and

w.
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spin-spin correlators

〈0|Σ̃C(z) Σ̃D(w)|0〉 = −〈0|Σ̃D(z) Σ̃C(w)|0〉 =
i ∆C b

(z − w)2∆C+ĉ/8
. (4.69)

Note that the logarithmic pair Σ̃C , Σ̃D does not have the canonical two-

point functions of a logarithmic conformal field theory (see (4.49)). This

is because the excited spin fields of the theory are not bosonic fields, but

are rather given by non-local operators which interpolate between different

sectors of the quantum Hilbert space and which satisfy, in addition to the

logarithmic algebra, a supersymmetry algebra. In fact, their correlators

are almost identical in form to the correlation functions of the logarithmic

superpartners χC , χD [21].

Finally, we need to compute the DD type correlators. The above tech-

niques do not directly apply because Green’s functions with two or more log-

arithmic operator insertions will not transform covariantly under the action

of the Virasoro algebra. However, we may obtain the DD type correlators

from the mixed CD type ones above by the following trick [20, 21, 83]. We

regard ∆C as a continuous weight and note that the logarithmic superconfor-

mal algebra can be simply obtained by writing down the standard conformal

operator product expansions for the C type operators, and then differenti-

ating them with respect to ∆C to obtain the D type ones with the formal

identifications D = ∂C/∂∆C , χD = ∂χC/∂∆C and Σ̃D = ∂Σ̃C/∂∆C . Since

the basic spin fields Σ(z) do not depend on the conformal dimension ∆C ,

we can differentiate the correlation functions (4.67)–(4.69) to get the desired

Green’s functions. In doing so we regard the parameter b as an analytic

function of the weight ∆C and define d = ∂b/∂∆C . In this way we arrive at

the correlators

〈
χD(z)χD(w)

〉
R

=
b+ ∆C

(
d− 2b ln(z − w)

)

(z − w)2∆C+1

(√
z

w
+

√
w

z

)
,

〈0|Σ̃D(z1)χD(z2)Σ(z3)|0〉 = −
b+ ∆C

(
d− 2b ln(z1 − z2)

)

i (z1 − z2)2∆C+1/2 (z1 − z3)ĉ/8−1/2
√
z2 − z3

,

〈0|Σ̃D(z) Σ̃D(w)|0〉 = −
b+ ∆C

(
d− 2b ln(z − w)

)

i (z − w)2∆C+ĉ/8
. (4.70)

In a completely analogous way, we may easily determine the vanishing
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two-point correlation functions
〈
φ(z)χφ′(w)

〉
R

= 0 = 〈0|Σ̃φ′(z1)φ(z2)Σ(z3)|0〉 , (4.71)

where φ and φ′ label either of the two fields C or D. The present technique

unfortunately does not directly determine higher order correlation functions

of the fields. As they will not be required in what follows, we will not pursue

that issue in this paper.

4.4. Null Vectors, Hidden Symmetries and Spin Models

It has been suggested [21] that, in the limit ∆C = 0, the fermionic field χC(z)

in (4.8) may be a null field, since its two-point correlation functions with all

other logarithmic fields vanish for zero conformal dimension. Furthermore,

the logarithmic scaling violations in the fermionic two-point functions in-

volving the field χD(z) disappear in this limit. While this latter property is

certainly true for all Green’s functions of the conformal field theory, a quick

examination of the three-point correlators (4.41) and (4.42) shows that χC(z)

is not a null field if β1 6= 0. The situation is completely analogous to what

happens generically to its superpartner C(z). Since the primary field C(z)

creates a zero-norm state, and since ∆C ∈ Z, there is a new hidden con-

tinuous symmetry in the theory [8] generated by the conserved holomorphic

current C(z), which is a symmetric tensor of rank ∆C . For ∆C = 0, the

extra couplings of the χC field for β1 6= 0 show that it corresponds to a

non-trivial, dynamical fermionic symmetry of the logarithmic superconfor-

mal field theory. In fact, in the R sector the structure of these continuous

symmetries is even richer, given that the excited spin field Σ̃C(z) also cre-

ates a zero-norm state in the logarithmic superconformal field theory, and

that it has vanishing two-point functions for ∆C = 0. In c 6= 0 theories

where the bosonic energy-momentum tensor T (z) has a logarithmic part-

ner, the identity operator I generates a Jordan cell with ∆C = 0 [75] and

the zero-norm state is the vacuum, 〈0|0〉 = 0. In this case, of course, the

fermion field χI(z) = 0 is trivially a null field, and its partner χD(z) is an

ordinary, non-logarithmic primary field of the Virasoro algebra of conformal

dimension 1
2 . Similarly, in this case Σ̃C(z) = 0, while Σ̃D(z) is an ordinary,

non-logarithmic twist field of weight ĉ/16.

In the Ramond sector, there are natural ways to generate null states for

any ∆C . One way is to build the representation of the Ramond algebra from

the supersymmetric ground state | ĉ
16 〉R as described at the end of section 4.2.

Another way is to introduce the fermion parity operator Γ = (−1)F , where

F is the fermion number operator of the superconformal field theory. The
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operator Γ commutes with integer spin fields and anticommutes with half-

integer spin fields. It defines an inner automorphism πΓ : C → C of the

maximally extended chiral symmetry algebra C of the superconformal field

theory, such that there is an exact sequence of vector spaces

0 −→ C+ −→ C −→ C− −→ 0 , πΓ(C±) = ±C± . (4.72)

Under the operator-state correspondence, this determines a fermion parity

grading of the Hilbert space of states as

H = H+ ⊕H− , ΓH± = ±H± . (4.73)

Since G0 reverses chirality, the paired Ramond ground states have opposite

chirality,

ΓΣ±
∆(0)|0〉 = ±Σ±

∆(0)|0〉 . (4.74)

The opposite chirality spin fields Σ±
∆(z) are non-local with respect to each

other (c.f. (4.21) and (4.22)). In a unitary theory, whereby G2
0 ≥ 0, all

∆ = ĉ/16 states are chirally asymmetric highest-weight states, since the

state G0|∆〉R is then a null vector in the Hilbert space. On the other hand,

the orthogonal projection 1
2 (1 + Γ) : H → H+ onto states of even fermion

parity Γ = 1 eliminates the spin field Σ−
∆(z) and gives a local field theory

which is customarily referred to as a “spin model” [73]. The fields of the spin

model live in the local chiral algebra C+. This projection eliminates G(z)

and the other half-integer weight fields. When combined with the projection

onto G0 = 0 it gives the “GSO projection” which will be important in the

D-brane applications of the next section.

The main significance of the chiral subalgebra restriction 1
2 (1+πΓ) : C →

C+ is that the fermionic fields of the superconformal field theory can be re-

constructed from the Γ = 1 spin fields Σ(z), at least in the examples that we

consider in this paper. In an analogous way, the logarithmic superpartners

χC(z) and χD(z) can be reconstructed from the Γ = 1 excited spin fields

Σ̃C(z) and Σ̃D(z). By supersymmetry, this yields the bosonic partners C(z)

and D(z), and so in this way the spin model determines the entire logarith-

mic superconformal field theory. In fact, the spin field Σ(z) can be uniquely

constructed from the underlying chiral current algebra generated by cur-

rents which are formed by the primary fermionic fields of the theory [84].

The fermionic current algebra will thereby completely determine the entire

logarithmic superconformal field theory.
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5. The Recoil Problem in Superstring Theory

In the remainder of this paper we will consider a concrete model to illustrate

the above formalism explicitly. This example will also serve to describe some

of the basic constructions of logarithmic spin operators and will illustrate the

applicability of the superconformal logarithmic formalism. In this section we

will discuss the logarithmic superconformal field theory that describes the

recoil of a D-particle in string theory [1, 2, 21]. This is the simplest exam-

ple which serves to illustrate the formalism, but also captures the essential

features of the general theory of the previous section in a very simple set-

ting. Moreover, for our purposes here, we shall use it as a concrete case

of demonstration of the consistency within the superstring formalism of the

identification of time with a world-sheet renormalization group (Liouville)

scale [4, 5].

5.1. Supersymmetric Impulse Operators

We will now derive the N = 1 supersymmetric completion of the impulse

operator (2.5,2.6). For this, we introduce 2 × 2 Dirac matrices ρα, α = 1, 2,

and real two-component Majorana fermion fields ψµ which are the worldsheet

superpartners of the string embedding fields xµ. A convenient basis for the

worldsheet spinors is given by

ρ1 =

(
0 −i
i 0

)
, ρ2 =

(
0 i

i 0

)
, (5.1)

in which the fermion fields decompose as

ψµ =

(
ψµ
−

ψµ
+

)
. (5.2)

The fields (5.2) obey the boundary conditions ψµ
+|∂Σ = ±ψµ

−|∂Σ, where

the sign depends on whether they belong to the Ramond or Neveu-Schwarz

sector of the worldsheet theory. The global worldsheet supersymmetry is

determined by the supercharge Q which generates the infinitesimal N = 1

supersymmetry transformations
[
Q , xµ

]
= ψµ ,

{
Q , ψµ

}
= −i ρα ∂αx

µ . (5.3)

The fermionic fields ψ+(z) have conformal dimension 1
2 , and from (5.3)

it follows that the superpartner of the tachyon vertex operator e iωx0
is
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√
α′ ω ψ0

+ e iωx0
, so that in the Neveu-Schwarz sector we may write

G(z) e iωx0(w) =

√
α′ ω/2
z − w

ψ0
+(w) e iωx0(w) + . . . . (5.4)

In what follows it will be important to note the factor of
√
α′ ω that appears

in the supersymmetry transformation (5.4). Because of it, and the fact that

the tachyon vertex operator has conformal dimension α′ω2/2, the inverse

transformation is given by

G(z)ψ0
+(w) e iωx0(w) =

√
α′ ω/2

(z − w)2
e iωx0(w)+

i/2
√
α′

z −w

(
∂wx

0(w)
)

e iωx0(w)+. . . .

(5.5)

To compute the superpartners of the logarithmic pair (2.7), we use (2.8)

and (5.4) to write

G(z)Cε(w) =
ε (α′)3/2/4πi

z − w
ψ0

+(w)

∞∫

−∞

dω

ω − iε

[
(ω − iε)+iε

]
e iωx0(w)+. . . .

(5.6)

In the first term of the integrand in (5.6) there is no pole and so after contour

integration it vanishes. Formally it is a delta functional δ(x0(w)) which we

neglect since we are interested here in only the asymptotic time-dependence

of string solitons. Then, only the second term contributes, and comparing

with (4.10) we find

χCε
(x0, ψ0) = i ε Cε(x

0)ψ0
+ . (5.7)

Similarly, we have

G(z)Dε(w) = −
√
α′/4π
z − w

ψ0
+(w)

∞∫

−∞

dω

(ω − iε)2

[
(ω − iε) + iε

]
e iωx0(w) + . . . ,

(5.8)

which using (4.10) gives

χDε
(x0, ψ0) = i

(
εDε(x

0) − 1

ε α′ Cε(x
0)

)
ψ0

+ . (5.9)

The operators (5.7) and (5.9) have conformal dimension ∆ε + 1
2 .

Now it is straightforward to check that the remaining relations of the

N = 1 logarithmic superconformal algebra are satisfied. By using (2.2),
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(2.9), (5.7) and (5.9), it is easy to verify the first two operator product ex-

pansions of (4.13) in this case. For the operator products with the fermionic

supercurrent, we use in addition the Fourier integral (2.8) along with (5.5)

to get

G(z)χCε
(w) = −ε

2(α′)3/2/4πi

(z − w)2

∞∫

−∞

dω

ω − iε

[
(ω − iε) + iε

]
e iωx0(w)

+
1

z − w
∂wχCε

(w) + . . .

= −
√
α′ ε2/2

(z − w)2
Cε(w) +

1

z − w
∂wχCε

(w) + . . . , (5.10)

G(z)χDε
(w)=−

√
α′/4π

(z − w)2

∞∫

−∞

dω

ω−iε

[(
(ω−iε)+iε

)
+

iε

ω−iε
(
(ω−iε)+iε

)]

× e iωx0(w) +
1

z − w
∂wχDε

(w) + . . .

=
1/
√
α′

(z − w)2

(
Cε(w) − α′ε2

2
Dε(w)

)
+

1

z − w
∂wχDε

(w)+. . . , (5.11)

which also agree with (4.13) in this case.

For the two-point correlation functions (4.14), we use the fermionic

Green’s function in the upper half-plane,

〈
ψ0

+(z)ψ0
+(w)

〉
=

1

z − w
, (5.12)

and the fact that bosonic and fermionic field correlators factorize from each

other in the free superconformal σ-model on Σ. The first set of relations

in (4.14) are then satisfied in this case because 〈ψ0
+(z)〉 = 0. The second

relation holds to order ε4 since ∆ε ∝ ε2 and 〈Cε(z)Cε(w)〉 = 0 to order ε2. For

the remaining correlators, we use (2.4), (5.7), (5.9), (5.12) and factorization

to compute

〈
χCε

(z)χDε
(w)
〉

= − ε2ξ

(z − w)2∆ε+1
, (5.13)

〈
χDε

(z)χDε
(w)
〉

=
1

(z − w)2∆ε+1

[
2ξ

α′ − ε2
(
−2ξ ln(z −w) + dε

)]
,

which upon using (2.9) are also seen to agree with (4.14). Therefore, the

supersymmetric extensions (5.7) and (5.9) of the impulse operators (2.7) give

precisely the right combinations of operators that generate the full algebraic
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structure of a logarithmic superconformal field theory. This yields a non-

trivial realization of the supersymmetric completion of the previous section,

and illustrates the overall consistency of the impulse operators describing

the dynamics of D-branes in closed string scattering states.

To recapitulate: we considered above the superconformal field theory

defined by the classical worldsheet action

SD0 =
1

2π

∫
dz dz dθ dθ Dz xµ Dzxµ − 1

π

∮
dτ dϑ

(
yi Cε + ui Dε

)
D⊥xi ,

(5.14)

where xµ(z, z ) = xµ(z) + xµ(z ) and xµ(z) is the chiral scalar superfield

xµ(z) = xµ(z) + θ ψµ(z) , (5.15)

whose Neveu-Schwarz two-point functions are given by
〈
xµ(z1) xν(z2)

〉
NS

= −δµν ln z12 . (5.16)

Here xµ, µ = 1, . . . , 10 are maps from the upper complex half-plane C+

into ten dimensional Euclidean space R
10, and ψµ are their spin 1

2 fermionic

superpartners that transform in the vector representation of SO(10) and

each of which is a Majorana-Weyl spinor in two-dimensions. We will iden-

tify the coordinate x10 as the Euclidean time (obtained from our previously

described x0 by analytic continuation), while xi, i = 1, . . . , 9 lie along the

spatial directions in the target space of the open strings. As in the previous

section, we concentrate on the chiral sector of the worldsheet field theory

with superfields (5.15). The chiral super energy-momentum tensor is given

by

T(z) = −1

2
Dzx

µ(z) ∂zxµ(z) . (5.17)

The reasons for working with Euclidean spacetime signature are technical.

First of all, it is easier to deal with spinor representations of the Euclidean

group SO(10) than with those of the Lorentz group SO(9, 1). In the former

case all of the ψµ are treated on equal footing and one is free from the

possible complications arising from the time-like nature of x0, which would

otherwise imply a special role for its superpartner ψ0 [85]. Secondly, for the

recoil problem, Euclidean target spaces are necessary to ensure convergence

of worldsheet correlation functions among the logarithmic operators [1]. For

calculational definiteness and convenience of the worldsheet path integrals,

we shall therefore adopt a Euclidean signature convention in the following.
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The second term in the action (5.14) is a marginal deformation of the

free ĉ = 10 superconformal field theory by the vertex operator describing

the recoil, within an impulse approximation, of a non-relativistic D-brane in

target space due to its interaction with closed string scattering states [11],

[2]. It is the appropriate operator to use when regarding the branes as

string solitons. The coordinate τ parametrizes the boundary of the upper

half-plane, and ϑ is a real Grassmann coordinate. The fields in this part

of the action are understood to be restricted to the worldsheet boundary.

The coupling constants yi and ui are interpreted as the initial position and

constant velocity of the D-particle, respectively, and the subscript ⊥ denotes

differentiation in the direction normal to the boundary of C+. The recoil

operators are given by chiral superfields Cε(z) and Dε(z) whose components

are defined in terms of superpositions over tachyon vertex operators e i qx10(z)

in the time direction as [21]

Cε(z) =
ε

4π i

∞∫

−∞

dq

q − i ε
e i qx10(z) ,

χCε
(z) = i εCε(z) ⊗ ψ10(z) ,

Dε(z) = − 1

2π

∞∫

−∞

dq

(q − i ε)2
e i qx10(z) ,

χDε
(z) = i

(
εDε(z) −

2

ε
Cε(z)

)
⊗ ψ10(z) . (5.18)

Here and in the following, singular operator products taken at coincident

points are always understood to be normal ordered according to the pre-

scription

O(z)O′(z) ≡
∮

w=z

dw

2π i

O(w)O′(z)
w − z

. (5.19)

The target space regularization parameter ε→ 0+ is related to the world-

sheet ultraviolet cutoff Λ → 0+ by

1

ε2
= − lnΛ . (5.20)

In this limit, careful computations [1,21] establish that, to leading orders in

ε, the superfield recoil operators (5.18) satisfy the relations (4.9) and (4.38)–

(4.40) of the N = 1 logarithmic superconformal algebra in the NS sector of
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the worldsheet field theory, with

∆Cε = −ε
2

4
,

b =
π3/2

4
,

d =
π3/2

2ε2
. (5.21)

In the following we will describe how to incorporate the Ramond sector of

this system properly.

5.2. Superspace Formalism

We will now derive the explicit form of the supersymmetric extension of

the impulse vertex operator (2.5,2.6). For this, we consider the Wilson loop

operator

W [A] = exp i

∮

∂Σ

Aµ(x) dxµ = exp i

1∫

0

dτ ẋµ(τ)Aµ

(
x(τ)

]
, (5.22)

where Aµ is a U(1) gauge field in ten dimensions, and ẋµ(τ) = dxµ(τ)/dτ .

T-duality maps the operator (5.22) onto the vertex operator (2.5) for a mov-

ing D-brane by the rule ∂αx
i 7→ i ηβγ εαβ ∂γx

i and the resulting replacement

of Neumann boundary conditions for xi by Dirichlet ones. The spatial com-

ponents of the Chan-Paton gauge field map onto the brane trajectory as

Ai = Yi/2πα
′, while the temporal component A0 becomes a U(1) gauge field

on the D-particle worldline.

The minimal N = 1 worldsheet supersymmetric extension of the operator

(5.22) is given by

W[A,ψ] = W [A] exp
(
− 1

2

1∫

0

dτ Fµν ψ
µ
ρ1 ψν

)
, (5.23)

where Fµν is the corresponding gauge field strength tensor. For the recoil

trajectory (2.6), an elementary computation using the contour integration

techniques outlined in the previous section gives Fij = 0 and

F0i(x
0) =

δAi(x
0)

δx0
=

i

2πα′

[
yi εCε(x

0) + ui

(
εDε(x

0) − 1

ε α′ Cε(x
0)

)]
.

(5.24)
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This shows that, in the T-dual Neumann picture, the canonical supersym-

metric extension of the U(1) Wilson loop operator (5.23) yields precisely the

couplings to the operators χCε
and χDε

that were computed in the previous

section from the supersymmetric completion of the worldsheet logarithmic

conformal algebra.

T-duality acts on the worldsheet fermion fields (5.2) by reversing the sign

of their right-moving components ψµ
−. By using (5.23,5.24) we may thereby

write down the supersymmetric extension of the impulse operator for moving

D0-branes,

V susy
D = exp


− 1

2πα′

1∫

0

dτ
{[
yiCε

(
x0(τ)

)
+ uiDε

(
x0(τ)

)]
∂⊥x

i(τ)

+
[
yi χCε

(
x0(τ) , ψ0(τ)

)
+ ui χDε

(
x0(τ) , ψ0(τ)

)]
ψi(τ)

})
,

(5.25)

where we have dropped the ± subscripts on the fermion fields in (5.2), and

the logarithmic superconformal operators in (5.25) are given by (2.7), (5.7)

and (5.9). The vertex operator (5.25) can be expressed in a more compact

form which makes its supersymmetry manifest. For this, we extend the

disc Σ to an N = 1 super-Riemann surface Σ̂ with coordinates (Z, Z̄) =

(z, θ, z̄, θ̄ ), where θ is a complex Grassmann variable, and with corresponding

superspace covariant derivatives DZ = ∂θ + θ ∂z. Given a bosonic field φ(z)

with superpartner χφ(z), we introduce the chiral worldsheet superfields

Φφ(z, θ) = φ(z) + θ χφ(z) , (5.26)

and correspondingly we make the embedding space of the superstring an N =

1 superspace with chiral scalar superfields X i(z, θ) = xi(z) + θ ψi(z). Then

the impulse operator (5.25) can be written in a manifestly supersymmetric

form in terms of superspace quantities as

V susy
D = exp

[
− 1

2πα′

∮

∂Σ̂

dτ dθ
(
yi ΦCε(τ, θ) + ui ΦDε(τ, θ)

)
D⊥X

i(τ, θ)

]
,

(5.27)

where in (5.27) the Grassmann coordinate θ is real.

In fact, the algebraic relations of the logarithmic superconformal algebra

can be most elegantly expressed in superspace notation. For this, we intro-

duce the super-stress tensor T (Z) = G(z)+θ T (z), and define the quantities
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Z12 = z1−z2−θ1θ2 and θ12 = θ1−θ2 corresponding to a pair of holomorphic

superspace coordinates Z1 = (z1, θ1) and Z2 = (z2, θ2). Then the operator

product expansions (4.3), (2.2) and (4.11)–(4.13) can also be written in terms

of superspace quantities as

T (Z1) T (Z2)=
ĉ/4

(Z12)3
+

3θ12/2

(Z12)2
T (Z2)+

1/2

Z12
DZ2T (Z2)+

θ12
Z12

∂z2T (Z2)+. . . ,

T (Z1)ΦC(Z2)=
θ12 ∆/2

(Z12)2
ΦC(Z2)+

1/2

Z12
DZ2ΦC(Z2)+

θ12
Z12

∂z2ΦC(Z2)+. . . ,

T (Z1)ΦD(Z2)=
θ12 ∆/2

(Z12)2
ΦD(Z2) +

θ12/2

(Z12)2
ΦC(Z2)

+
1/2

Z12
DZ2ΦD(Z2) +

θ12
Z12

∂z2ΦD(Z2) + . . . , (5.28)

while the two-point functions (4.14) may be expressed as
〈
ΦC(Z1)ΦC(Z2)

〉
= 0 ,

〈
ΦC(Z1)ΦD(Z2)

〉
=

ξ

(Z12)2∆
,

〈
ΦD(Z1)ΦD(Z2)

〉
=

1

(Z12)2∆

(
−2ξ lnZ12 + d

)
. (5.29)

This superspace formalism also generalizes to the construction of higher-

order correlation functions which are built from appropriate coordinate in-

variants of the supergroup OSp(1|2). It emphasizes how the impulse oper-

ator (5.27), and the ensuing logarithmic algebra (5.28,5.29), is the natural

supersymmetrization of the recoil operators for D-branes.

A remark is in order here concerning the behavior of the superconformal

partners of the recoil operators under the changes of the scale ε2. By using

(5.7), (5.9), (2.15) and (2.16), we see that the superconformal partners of

the logarithmic operators are scale-invariant to order ε2,

χCε′
= χCε

, χDε′
= χDε

. (5.30)

The invariance property (5.30) can also be deduced from the scale indepen-

dence to order ε2 of the two-point correlators (4.14), in which the scale de-

pendent constant dε appears only in the invariant combination ∆εdε ∼ O(ε0).

This means that the operator (5.25) describes the evolution of the D0-brane

in target space with respect to only the ordinary, bosonic Galilean group.

In other words, if we introduce a superspace and worldsheet superfields as

in (5.26), then a worldsheet scale transformation in the present case acts
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only on the bosonic part of the superspace. This property is of course very

particular to the explicit scale dependence of the recoil superpartners (5.9)

in the logarithmic superconformal algebra.

The fact that the super-Galilean group is not represented in the non-

relativistic dynamics of D-branes is merely a reflection of the fact that the

motion of the brane explicitly breaks target space supersymmetry. Indeed,

while the deformed σ-model that we have been working with possesses N = 1

worldsheet supersymmetry, it is only after the appropriate sum over world-

sheet spin structures and the GSO projection that it has the possibility of

possessing spacetime supersymmetry. To understand better the breaking of

target space supersymmetry within the present formalism, we now appeal

to an explicit spacetime supersymmetrization of the Wilson loop operator

(5.22). This will produce a Green-Schwarz representation of the spacetime

supersymmetric impulse operator in the dual Neumann picture, and also

yield a physical interpretation of the supersymmetric vertex operator (5.25).

For this, we regard the Chan-Paton gauge field Aµ as the first component

of the ten-dimensional N = 1 Maxwell supermultiplet. Its superpartner is

therefore a Majorana-Weyl fermion field λ with 32 real components. We

introduce Dirac matrices Γµ in 1+9 dimensions, and define Γµν = 1
2 [Γµ,Γν ].

The loop parametrization xµ(τ) has superpartner ϑ(τ) which couples to the

photino field λ. Then, the spacetime supersymmetric extension of (5.22) is

given by the finite supersymmetry transformation

W[A, λ] = exp

( 1∫

0

dτ ϑ(τ)Q

)
W [A] exp

(
−

1∫

0

dτ ϑ(τ)Q

)
, (5.31)

where the supercharge Q generates the infinitesimal N = 1 supersymmetry

transformations

[
Q , Aµ

]
=
i

2
Γµ λ ,

{
Q , λ

}
= −1

4
Γµν F

µν ,

[
Q , xµ

]
=
i

4
Γµ ϑ ,

{
Q , ϑ

}
= 4 . (5.32)

By using the Baker-Campbell-Hausdorff formula, the supersymmetric Wil-
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son loop (5.31) admits an expansion

W[A, λ] = exp i

1∫

0

dτ

(
ẋµAµ +

i

4
Aµ ϑΓµ ϑ̇

+
i

2
ẋµ ϑΓµ λ+

i

16
ẋµF νλ ϑΓµ Γνλ ϑ+ . . .

)
, (5.33)

where the ellipsis in (5.33) denotes contributions from higher-order fluctua-

tion modes of the fields.

To identify the ten-dimensional supermultiplet which is T-dual to the

worldsheet recoil supermultiplet of (5.25), we use the supersymmetry algebra

(5.32) to get Γi λ = 1
2 F0i(x

0) Γ0 ϑ, with F0i(x
0) given by (5.24). We then

find that the target space supermultiplet describing the recoil of a D0-brane

is given by the dimensionally reduced supersymmetric Yang-Mills fields

Ai(x
0) =

1

2πα′

(
yiCε(x

0) + uiDε(x
0)
)
,

λ(x0, ϑ) =
1

36πα′ Γi
(
yi χCε

(x0,Γ0 ϑ) + ui χDε
(x0,Γ0 ϑ)

)
. (5.34)

Therefore, the logarithmic superconformal partners to the basic recoil oper-

ators also arise naturally in the T-dual Green-Schwarz formalism.

By using (5.33) and (5.34) we can now lend a physical interpretation to

the supersymmetric impulse operator. For simplicity, we shall neglect the

stringy fluctuations in the center of mass coordinates of the D-brane and take

yi = 0. We consider only the long-time dynamics of the string soliton, i.e.

we take x0 > 0 and effectively set the Heaviside function Θε(x
0) to unity ev-

erywhere. We will also choose the gauge A0(x) = 0. The bosonic part of the

Maxwell supermultiplet of course describes the free, non-relativistic geodesic

motion of the D0-brane in flat space. To see what sort of particle kinematics

is represented by the full supermultiplet, we substitute Ai = ui x
0/2πα′ and

λ = u/ Γ0 ϑ/36πα′ into (5.33), where u/ = ui Γ
i, and we have again ignored

stringy O(ε) uncertainties in position and velocity. Note that, generally, the

fermionic operator (5.9) also induces a velocity-dependent stringy contribu-

tion to the phase space uncertainty principle in the sense described in [1].

This is reminiscent of the energy-dependent smearings that were found in [2].

Heuristically, this identical stringy smearing of position and velocity is re-

sponsible for the violation of super-Galilean invariance in (5.30).
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With these substitutions we find W[A, λ] = e i S/2πα′
, where

S =

1∫

0

dτ

(
ẋi ui x

0 +
i

4
x0 ϑu/ ϑ̇+

i

36
ẋ0 ϑu/ ϑ− i

4
ẋi ui ϑΓ0 ϑ

+
i

32
ẋ0 ϑ

[
Γ0 , u/

]
ϑ+

i

32
ẋ/ ϑ

[
Γ0 , u/

]
ϑ+ . . .

)
(5.35)

can be interpreted as the action of a certain kind of superparticle in the

N = 1 superspace spanned by the coordinates (xi, ϑ, ϑ ) and with worldline

parametrized by the loop coordinate τ . To identify the superparticle type,

we will first simplify the last four terms in (5.35). For this, we note that in

ten spacetime dimensions the Dirac matrices are taken in a Majorana repre-

sentation, so that Γ0 is antisymmetric while Γi, i = 1, . . . , 9, are symmetric

matrices. We also treat ϑ, ϑ̇ as an anticommuting pair of variables in the

action S. Then, it is easy to check that the third term in (5.35) vanishes,

because via an integration by parts it can be written as

− i

36

1∫

0

dτ x0
(
ϑ̇> Γ0 u/ ϑ+ ϑ> Γ0 u/ ϑ̇

)
= 0 , (5.36)

where we have used the Dirac algebra to write Γ0 u/ = −u/ Γ0. In a similar

way one readily checks that the fourth and fifth terms in (5.35) are zero. By

the same techniques one finds that the last term is non-vanishing, and after

some algebra it can be expressed in the form i
4

∫ 1
0 dτ ϑ> xj ui Γij ϑ̇. The

action (5.35) can therefore be written as

S =

1∫

0

dτ
[
pi

(
ẋi + i ϑΓi ϑ̇

)
− i `> ϑ̇+ . . .

]
, (5.37)

where

pi = ui x
0 , ` = xi uj Γij ϑ , (5.38)

and we have rescaled the worldline spinor fields ϑ 7→ 2ϑ.

The action (5.37) is, modulo mass-shell constraints, that of a twisted su-

perparticle [22], which admits a manifestly covariant quantization. The first

term is the standard non-relativistic superparticle action, while the inclusion

of the fermionic field ` modifies the canonically conjugate momentum to ϑ as

πϑ = p/ ϑ− `. Note that the quantity pi in (5.38) is the expected momentum

of the uniformly moving D-particle, while ` is proportional to its angular
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momentum. In the present case pµ p
µ 6= 0, so that the supersymmetric

impulse operator describes a massive, non-relativistic twisted superparticle.

The twist in fermionic momentum πϑ vanishes if there is no angular momen-

tum, for instance if the D-particle recoils in the direction of scattering. The

equations of motion which follow from the action (5.37,5.38) can be written

as

ẋ0 = ui ẋ
i = u/ ϑ̇ = 0 , (5.39)

which imply that x0 and the components of xi and ϑ along the direction

of motion are independent of the proper time τ . In general the remaining

components of xµ and ϑ are τ -dependent. These classical configurations

agree with the interpretation of the worldsheet zero mode of the field x0 as

the target space time and also of the uniform motion of the D-particles. In

particular, the Galilean trajectory xi(τ) = yi(τ) + ui x0, appropriate for the

kinematics of a heavy D0-brane, solves (5.39) provided that the component

of the vector yi(τ) along the direction of recoil is independent of the worldline

coordinate τ .

There are some important differences in the present case from the stan-

dard superparticle kinematics. The action (5.37) generically possesses a

fermionic κ-symmetry defined by the transformations

δκϑ = p/ κ ,

δκ` = 2 pi p
i κ ,

δκx
i = i κ p/ Γi ϑ , (5.40)

where κ is an infinitesimal Grassmann spinor parameter. It is also generically

invariant under a twisted N = 2 super-Poincaré symmetry [22]. However,

the choices (5.38) break these supersymmetries, which is expected because

the D-brane motion induces a non-trivial vacuum energy. The configurations

(5.38) of course arise from the geodesic bosonic paths in the non-relativistic

limit ui � 1, or equivalently in the limit of heavy BPS mass for the D-

particles, which is the appropriate limit to describe the tree-level dynamics

here. The Galilean solutions of (5.39) described above explicitly break the

κ-symmetry (5.40).

Therefore, we see that the supersymmetric completion of the impulse

operator (for weakly-coupled strings) describes the dynamics of a twisted

supersymmetric D-particle in the non-relativistic limit, with a gauge-fixing

that breaks its target space supersymmetries. In turn, this broken supersym-

metry implies that the vertex operator (5.25) does not generate the action
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of the super-Poincaré group on the brane, and consequently the super-D-

particle does not evolve in target space according to super-Galilean trans-

formations [21]. The structure of the worldsheet logarithmic superconformal

algebra is such that these spacetime properties of D-brane dynamics are

enforced by the impulse operators.

5.3. Spin Fields

We will now construct the operators Σ which create cuts in the fields ψ10

appearing in the superpartners of the recoil operators (5.18) and are thereby

responsible for changing their boundary conditions as one circumnavigates

the cut [85]. In fact, one needs Σ(z) in the neighborhood of the fields ψ10 but

this is readily done in bosonized form [86], as we shall now discuss, by means

of a boson translation operator which relates Σ(z) to Σ(0). Bosonization of

the free fermion system defined by (5.14) allows us to express in a local-

looking form the non-local effects of the spin operators. In what follows we

shall only require the bosonization of the spinor field appearing in (5.18).

In the Euclidean version of the target space theory there are ten fermion

fields ψµ which we can treat on equal footing. Given the pair of right-moving

NSR fermion fields ψ9, ψ10 corresponding to the light-cone of the recoiling

D0-brane system, we may form complex Dirac fermion fields

ψ±(z) = ψ9(z) ± iψ10(z) . (5.41)

The worldsheet kinetic energy in (5.14) associated to this pair is of the form
∫

d2z
(
ψ9 ∂z ψ

9 + ψ10 ∂z ψ
10
)

=

∫
d2z ψ+ ∂z ψ

− . (5.42)

From the corresponding equations of motion and (5.16) it follows that the

field

j(z) = ψ+(z)ψ−(z) (5.43)

is a conserved U(1) fermion number current which is a primary field of

the Virasoro algebra of dimension 1 and which generates a U(1) current

algebra at level 1. Its presence allows the introduction of spin fields, and

hence twisted sectors in the quantum Hilbert space, through the bosonization

formulas

j(z) = 2 i ∂zφ(z) ,

ψ±(z) =
√

2 e ± iφ(z) , (5.44)
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where φ(z) is a free, real, compact chiral scalar field, i.e. its two-point

function is

〈0|φ(z)φ(w)|0〉 = − ln(z − w) . (5.45)

In this representation all fields are taken to act in the NS sector.

The holomorphic part of the Sugarawa energy-momentum tensor corre-

sponding to the worldsheet action (5.42) is given in bosonized form by

Tκ(z) = −1

2
∂zφ(z) ∂zφ(z) +

iκ

2
∂2

zφ(z) , (5.46)

where the constant κ is arbitrary because the second term in (5.46) is iden-

tically conserved for all κ. This energy-momentum tensor derives from the

Coulomb gas model defined by the Liouville action

Sκ =
1

4π

∫
dz dz

√
g

(
∂zφ∂z φ+

i κ

2
R(2) φ

)
, (5.47)

where g(z, z ) and R(2)(z, z ) are the metric and curvature of the worldsheet.

The topological curvature term in (5.47) provides a deficit term to the central

charge cκ of the free boson field φ(z),

cκ = 1 − 3κ2 , (5.48)

and it also induces a vacuum charge at infinity (the singular point of the

metric on the Riemann sphere). In particular, the primary field e i qφ(z) has

dimension

∆q,κ =
q

2

(
q − κ

)
. (5.49)

What fixes κ here, and thereby lifts the ambiguity, is the charge conjugation

symmetry ψ10(z) 7→ −ψ10(z) of the NSR model (5.42), which interchanges

the two Dirac fields ψ±(z) and hence acts on the free boson field as φ(z) 7→
−φ(z). This symmetry implies that κ = 0 in (5.46).

Let us now consider the tachyon vertex operators corresponding to the

free boson,

Σq(z) = e i qφ(z) , (5.50)

which have conformal dimension ∆q,0 = q2/2. In bosonized language the

pair of Dirac fermion fields corresponds to the operators (5.50) at q = ±1,

ψ±(z) =
√

2Σ±1(z). On the other hand, the operators (5.50) at q = ± 1
2

introduce a branch cut in the field ψ10(z). To see this, we note the standard
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free field formula for multi-point correlators of tachyon vertex operators,

〈0|Σq1(z1) · · ·Σqn(zn)|0〉 =

n∏

k=1

n∏

l=1

e −qkql〈0|φ(zk) φ(zl)|0〉/2

= Λ

(
P

l ql

)2
/2
∏

k<l

(zk − zl)
qkql , (5.51)

where we have regulated the coincidence limit of the two-point function

(5.45) by the short-distance cutoff Λ → 0+. In particular, the correlator

(5.51) vanishes unless

n∑

l=1

ql = 0 , (5.52)

which is a consequence of the continuous U(1) symmetry generated by the

current (5.43) which acts by global translations of the fields φ(zl). From the

general result (5.51) we may infer the three-point correlation functions

〈0|Σ±1/2(z1)Σ±1/2(z2)Σ∓1(z3)|0〉 =
(z1 − z2)

1/4

√
(z1 − z3)(z2 − z3)

. (5.53)

The correlator (5.53) has square root branch points at z3 = z1 and z3 = z2.

This implies that the elementary fermion fields ψ±(z3) are double-valued in

the fields of the operators Σ∓1/2(z1), respectively.

It follows that the spin operators for the recoil problem are given by

Σ+
1/8(z) =

√
2 cos

φ(z)

2
(5.54)

and they have weight ∆ = ∆±1/2 = 1
8 . They create branch cuts in the

fermionic fields

ψ10(z) =
√

2 sinφ(z) . (5.55)

Note that the spin operators need only be inserted at the origin z = 0,

because it is there that they are required to change the boundary conditions

on the fermion fields. These operators are all understood as acting on the

NS vacuum state |0〉, thereby creating highest weight states in the Ramond

sector. The spin fields Σ±
1/8(0) may be extended to operators Σ±

1/8(z) in the

neighborhood of ψ10(z) via application of the boson translation operator

e z ∂z = e z L−1 .
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Using the operator product expansions

Σq(z)Σq′(w) = (z −w)qq′ Σq+q′(w)
(
1 + i q (z − w) ∂wφ(w)

)
+ . . . ,

qq′ < −1 , (5.56)

and (5.17), it is straightforward to check that the term of order (z −w)−3/2

in the operator product G(z)Σ+
1/8(w) vanishes, and hence that

Σ−
1/8(z) = 0 . (5.57)

This means that the spin field Σ(z) = Σ+
1/8(z) corresponds to the supersym-

metric ground state | 18〉R in the Ramond sector of the system, associated

with superconformal central charge ĉ = 2. By using the selection rule (5.52)

and the factorization of bosonic and fermionic correlation functions in the

free superconformal field theory determined by (5.14), it is straightforward

to verify both the NS two-point functions (4.38)–(4.40) and the spin-spin

two-point function as normalized in (4.48). The central charge ĉ = 2 is the

one pertinent to the recoil operators because in the bosonized representation

they only refer to two of the ten superconformal fields present in the total

action (5.14).

Using (5.56) one can also easily derive the excited logarithmic spin oper-

ators of dimension ∆Cε + 1
8 , which along with (4.25) and (5.18) yields

Σ̃Cε(z) = i εCε(z) ⊗ sin
φ(z)

2
,

Σ̃Dε(z) = i

(
εDε(z) −

2

ε
Cε(z)

)
⊗ sin

φ(z)

2
. (5.58)

The corresponding logarithmic operator product expansions (4.26) and

(4.28) are straightforward consequences of the factorization of the bosonic

and fermionic sectors in the recoil problem. Because of this same factoriza-

tion property, all of the two-point correlation functions of section 4.3.2 may

be easily derived. The basic identities are given by (5.53) and the four-point

function

〈0|Σ(z1)ψ
10(z)ψ10(w)Σ(z2)|0〉 =

1

2(z1 − z2)1/4 (z − w)

×
(√

(z1 − z)(w − z2)

(z1 − w)(z − z2)
+

√
(z1 − w)(z − z2)

(z1 − z)(w − z2)

)
, (5.59)

where we have again used the selection rule (5.52). Thus, by using bosoniza-

tion techniques it is straightforward to describe the N = 1 supersymmetric
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extension of the logarithmic operators of the recoil problem in both the NS

and R sectors of the worldsheet superconformal field theory.

5.4. Fermionic Vertex Operators for the Recoil Problem

As a simple application of the above formalism, we will now construct the

appropriate spacetime vertex operators which create recoil states of the D-

branes. The crucial point is that one can now build states that are consistent

with the target space supersymmetry of Type II superstring theory, which

thereby completes the program of constructing recoil operators in string the-

ory. Spacetime supersymmetry necessitates vertex operators which describe

the excitations of fermionic states in target space. Such supersymmetric op-

erators were constructed in [21] from a target space perspective. Here we

shall construct fermionic states for the recoil problem from a worldsheet per-

spective by using appropriate combinations of the spin operators (5.50). We

have already seen how this arises above, in that the Ramond state G0|18 〉R
is a null vector and one recovers a single logarithmic superconformal alge-

bra among the physical states, as in the NS sector. This construction relies

heavily on the Euclidean signature of the spacetime, and yields states that

transform in an appropriate spinor representation of the Euclidean group.

The recoil operators (5.18) are all built as appropriate superpositions of

the off-shell tachyon vertex operators e i qx10(z). It is well-known how to con-

struct the boson and fermion emission operators which create corresponding

tachyon ground states from the NS vacuum state |0〉 [85]. In the bosonic

sector the vertex operator is [Gr, e i qx10(z)] = q e i qx10(z)⊗ψ10(z), where the

fermion field ψ10(z) has the periodic mode expansion

ψ10(z) =
1√
2

∞∑

n=−∞
ψ10

n+1/2 z
−n−1 (5.60)

appropriate to the NS sector, with (ψ10
r )† = ψ10

−r, {ψ10
r , ψ

10
s } = δr+s,0, and

ψ10
n+1/2|0〉 = 0 ∀n ≥ 0. By construction, the corresponding recoil operators

are of course just the fermionic operators χCε
(z) and χDε

(z) in (5.18). The

emission of a fermion by a spinor uα is described by the vertex operator

e i qx10(z) ⊗ uα(q)Σα(z), where α = ± 1
2 are regarded as spinor indices of

the two-dimensional Euclidean group SO(2) and u(q) is a two-component

off-shell Dirac spinor.

The recoil emission vertex operators are therefore given by the chiral
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superfields

VCε(z) = ΞCε(z) + θ χCε
(z) ,

VDε(z) = ΞDε(z) + θ χDε
(z) , (5.61)

where the boson emission operators are

χCε
(z) =

ε2

4π

∞∫

−∞

dq

q − i ε
e i qx10(z) ⊗ ψ10(z) ,

χDε
(z) = − 1

2π

∞∫

−∞

dq q

(q − i ε)2
e i qx10(z) ⊗ ψ10(z) , (5.62)

while the emission operators for the fermionic recoil states are g

ΞCε(z) =
ε

4π i

∞∫

−∞

dq

q − i ε
e i qx10(z) ⊗ µ(z) ⊗ uα(q)Σα(z) ,

ΞDε(z) = − 1

2π

∞∫

−∞

dq

(q − i ε)2
e i qx10(z) ⊗ µ(z) ⊗ uα(q)Σα(z) . (5.63)

Here µ(z) is an appropriate auxiliary ghost spin operator of conformal dimen-

sion −1
8 [84]. For example, it can be taken to be a plane wave µ(z) = e ikix

i(z)

in the directions xi transverse to the (x9, x10) light cone, with k2 = −1
4 . In

the physical conformal limit ε → 0+, the superfields (5.61) then have van-

ishing superconformal dimension.

The spinor u(q) in (5.63) is not constrained by any on-shell equations such

as the Dirac equation which would normally guarantee that the correspond-

ing states respect spacetime supersymmetry. It can be partially restricted by

implementing the GSO truncation of the superstring spectrum. The fermion

chirality operator Γ acts on the operators (5.50) as

ΓΣq+(1−λ)/2(z) Γ−1 = (−1)q−λ+1 Σq+(1−λ)/2(z) (5.64)

g Strictly speaking, the spin operators in these relations should include a non-trivial cocycle [87]

for the lattice of charges α in the exponentials of the bosonized representation, which also depend

on the fields Σα(z). The cocycle factor is defined on the weight lattice of the spinor representation

of the Euclidean group, and it ensures that the vertex has the correct spinor transformation

properties. Its inclusion becomes especially important in the generalization of these results to

higher-dimensional branes. To avoid clutter in the formulas, we do not write these extra factors

explicitly.
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for q ∈ Z. This is only consistent with the operator product expansions in

the combined superconformal field theory including ghost fields, because the

action of Γ on the fields of (5.14) alone is not an automorphism of the local

algebra of spin fields [84]. Then the action of the chirality operator can be

extended to the spin fields with the Γ = 1 projection giving a local field the-

ory. The chiral Γ = 1 projection requires that uα(q) be a right-handed Dirac

spinor, after which the operators (5.63) become local fermionic fields. Then

the vertex operators (5.61)–(5.63) describe the appropriate supersymmetric

states for the recoil problem. The relevant spacetime supersymmetry genera-

tor Qα is given by the contour integral of the fermionic vertex corresponding

to the basic tachyon operator e i qx10(z) at zero momentum,

Qα =

∮

z=0

dz

2π
∂zx

10(z) ⊗ z1/4 µ

(
1

z

)
⊗ ε β

α Σβ(z) . (5.65)

The integrand of (5.65), which involves the adjoint ghost field µ†(z), is a

BRST invariant conformal field of dimension 1. From the various operator

product expansions above it follows that the supercharge (5.65) relates the

two vertices (5.62) and (5.63) through the anticommutators

{
Qα , e i qx10(z) ⊗ µ(z) ⊗ Σβ(z)

}
= − i δαβ e i qx10(z)⊗ ψ10(z) . (5.66)

Notice, however, that the target space supersymmetry alluded to here refers

only to the fields which live on the worldline of the D-particle, or more pre-

cisely on the corresponding light-cone. The full target space supersymmetry

is of course broken by the motion of the D-brane [21].

5.5. Modular Behavior

As we have seen above, in the case of recoiling bosonic string solitons (D-

branes), the non-trivial mixing between the logarithmic Cε and Dε operators

leads to logarithmic modular divergences in bosonic annulus amplitudes, and

it is associated with the lack of unitarity of the low-energy effective theory

in which quantum D-brane excitations are neglected [23]. We now examine

how these features are modified in the presence of the logarithmic N = 1

superconformal pair. For this, we consider the open superstring propagator

between two scattering states |Eα〉 and |Eβ〉,

4αβ = 〈Eα|
1

L0 − 1/2
|Eβ〉 = −

∫

F

dq

q
〈Eα|qL0−1/2|Eβ〉 , (5.67)
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where the Virasoro operator L0 is defined through the Laurent expansion of

the energy-momentum tensor T (z) =
∑

n Ln z
−n−2, and the factor of 1

2 is the

normal ordering intercept in the Neveu-Schwarz sector. Here q = e 2πiτ , with

τ the modular parameter of the worldsheet strip separating the two states

|Eα〉 and |Eβ〉, and F is a fundamental modular domain of the complex plane.

We shall ignore the superconformal ghosts, whose contributions would not

affect the qualitative results which follow.

For the purely bosonic string, divergent contributions to the modular

integral would come from a discrete subspace of string states of vanishing

conformal dimension corresponding to the spectrum of linearized fluctuations

in the soliton background [23]. Since in the present case these are precisely

the states associated with the logarithmic recoil operators, we should ana-

lyze carefully their contributions to the propagators (5.67). We introduce

the highest weight states |φ〉 = φ(0)|0〉, φ = Cε, Dε, χCε
, χDε

, with the un-

derstanding that the ∂⊥x
i and ψi parts of the vertex operator (5.25) are

included. This has the overall effect of replacing ∆ε in the bosonic parts

of the operator product expansions everywhere by the anomalous dimension

hε = 1 + ∆ε of the impulse operator, while in the fermionic parts ∆ε + 1
2

is replaced everywhere by hε. Using (2.2) and (4.13), the 2 × 2 Jordan cell

decompositions of the bosonic and fermionic Virasoro generators are then

given by

Lb
0 |Cε〉 = hε|Cε〉 , Lb

0 |Dε〉 = hε|Dε〉 + |Cε〉 ,
Lf

0|χCε
〉 = hε|χCε

〉 , Lf
0|χDε

〉 = hε|χDε
〉 + |χCε

〉 ,
(5.68)

where L0 = Lb
0 +Lf

0. Using the factorization of bosonic and fermionic states,

in the Jordan blocks spanned by the logarithmic operators we have [21, 22]

qL0 |Cε, Dε〉 ⊗ |χCε
, χDε

〉 = qhε

(
1 0

ln q 1

)
|Cε, Dε〉 ⊗ qhε

(
1 0

ln q 1

)
|χCε

, χDε
〉 .

(5.69)

The corresponding expectation value (5.67) in such a state is then given by

4CD =−
∫

F

dq q2∆ε+1/2〈Cε, Dε|
(

1 0

ln q 1

)
|Cε, Dε〉〈χCε

, χDε
|
(

1 0

ln q 1

)
|χCε

, χDε
〉.

(5.70)

The dangerous region of moduli space is Im τ → +∞, in which q ∼ δ → 0+.

Using ∆ε = 0 as ε → 0+, we can easily check that the contributions to

the modular integration in (5.70) from this region vanish. For instance, the
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worst behavior comes from the term in the integrand involving
√
q (ln q)2,

which upon integration over a small strip Fδ of width δ produces a factor
∫

Fδ

dq
√
q (ln q)2 ' 2

3
δ3/2

(
(ln δ)2 − 4

3
ln δ +

8

9

)
, (5.71)

which vanishes in the limit δ → 0+. Therefore, in quantities involving matrix

elements of the string propagator in logarithmic states, the incorporation of

worldsheet superconformal partners cancels the modular divergences that

are present in the purely bosonic case. It is also straightforward to arrive at

this conclusion in the Ramond sector of the superstring theory. Notice that

although the explicit calculation above is carried out with respect to the

chosen basis (5.68) within the Jordan cell, the same qualitative conclusion is

arrived at under any change of basis |Cε, Dε〉 → |aCε +bDε, cCε +dDε〉. This

is because the strip integral (5.71) is the worst behaved one and any change of

basis will simply mix it with better behaved modular integrals. Furthermore,

physical string scattering amplitudes will involve the superstring propagator

with sums over complete sets in an invariant, basis-independent form. Its

effect on such physical quantities is therefore independent of the chosen base.

This cancellation of infinities has dramatic consequences for the behavior

of higher genus amplitudes. As we have seen in Section 3, in the purely

bosonic case, where the modular divergences persist, the logarithmic states

yield non-trivial contributions to the sum over string states and imply that,

to leading order, the genus expansion is dominated by contributions from

degenerate Riemann surfaces whose strip sizes become infinitely thin [11,23].

Such amplitudes can be described in terms of bi-local worldsheet operators

and the truncated topological series can be summed to produce a non-trivial

probability distribution on the moduli space of running coupling constants

of the slightly marginal σ-model [2]. The functional Gaussian distribution

has width proportional to
√

ln δ, and the string loop divergences are canceled

by a version of the Fischler-Susskind mechanism. However, we see here that

this structure disappears completely when one considers the full superstring

theory. This means that in the supersymmetric case one has to contend

with the full genus expansion of string theory which is not even a Borel

summable series. The dominance of pinched annular surfaces, as well as the

loss of unitarity due to the logarithmic mixing, can now be understood as

merely an artifact of the tachyonic instability of the bosonic string. Once

the appropriate superconformal partners to the logarithmic operators are

incorporated, the theory is free from divergences, at least at the level of

string loop amplitudes. Heuristically, this feature can be understood from
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the form of the fermionic two-point functions (4.14), which for ∆ = 0 reduce

to conventional fermionic correlators with no logarithmic scaling violations

on the worldsheet. The zero dimension fermion fields, after incorporating

the worldsheet superconformal ghost fields, thereby have the usual effect of

removing instabilities from the theory.

5.6. The Zamolodchikov Metric and Linearity in Liouville

Evolution

Another way to understand the effect of the fermionic fields in the recoil

problem is through the Zamolodchikov metric in the sector corresponding to

the logarithmic states. It is defined by the short-distance two-point functions

Gφφ′ = Λ2h lim
z→w

〈
φ(z)φ′(w)

〉
, φ, φ′ = C,D, χC , χD , (5.72)

and by using (2.4) and (4.14) it can be represented as the 4 × 4 matrix

G =




0 ξ 0 0

ξ d−2ξ lnΛ 0 0

0 0 0 2∆ξ

0 0 2∆ξ 2(ξ+∆d−2∆ξ lnΛ)


 . (5.73)

In the upper left bosonic 2×2 block we find a logarithmically divergent term,

which may be associated with the logarithmic modular divergences that are

present in the bosonic case. On the other hand, in the lower right fermionic

2× 2 block we find that the logarithmic divergence generically appears only

through the term which is proportional to ∆ lnΛ. For the recoil problem,

in which the conformal dimension of the operators is correlated with the

worldsheet ultraviolet scale through the relations (2.9) and (2.12), this term

is a finite constant. Thus, in contrast to its bosonic part, the fermionic part

of the Zamolodchikov metric is scale-invariant. This is just another reflection

of the fact that the fermionic logarithmic operators do not themselves lead

to any logarithmic divergences and act to cure the bosonic string theory

of its instabilities. In fact, this property on its own is motivation for the

identification (2.12) of worldsheet and target space regularization parameters

which was used to arrive at the logarithmic conformal algebra. In turn, this

correlation is then also consistent with the Galilean non-invariance (5.30)

which derives from the twisted superparticle interpretation of the previous

section. Nevertheless, the vanishing correlation functions in (2.4) and (4.14)

indicate the existence of a hidden supersymmetry in the dynamics of moving

D-branes. For instance, it is straightforward to check that the fermionic
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Noether supercurrents associated with spatial translations induce the same

logarithmic scaling violations that the bosonic ones do [11].

It is curious to note that the Zamolodchikov metric (5.73) becomes degen-

erate in the conformal limit ∆ → 0, which corresponds to the infrared fixed

point of the worldsheet field theory (in the sense that the size of the world-

sheet is infinite in units of the ultraviolet cutoff). In this limit all two-point

correlation functions involving the fermionic field χC vanish. Whether or not

this implies that χC completely decouples from the theory requires knowl-

edge of higher order correlators of the theory. Furthermore, in that case there

are no logarithmic scaling violations, since 〈χD(z)χD(w)〉 = 2ξ/(z − w) in

the limit ∆ → 0. Generally, the vanishing of two-point functions in a loga-

rithmic conformal field theory implies some special properties of the model.

In the purely bosonic cases, it is known that such a vanishing property is

associated with the existence of hidden symmetries corresponding to some

conserved current [7]. A similar situation may occur in the supersymmetric

case, indicating the presence of some new fermionic symmetries. For this to

be case, there must be some other field to which the field χC couples. While

the extra hidden symmetry may be related to the fact that χC is a null field

in the subspace of primary fields, it should not be a true null field. This

interesting issue deserves further investigation. Notice however that in the

recoil problem, the pertinent correlation functions are non-vanishing in the

slightly-marginal case where ε 6= 0.

Notice also that the degeneracy of the metric (5.73) in the limit ∆ → 0

may not be a true singularity of the moduli space of coupling constants. To

elaborate further on this point requires computation of the corresponding

curvature tensor, and its associated invariants which, being invariant under

changes of renormalization group scheme, contain the true physical informa-

tion of the theory. However, this again requires knowledge of the three-point

and four-point correlation functions among the pertinent vertex operators,

which at present are not available.

The Zamolodchikov metric is also a very important ingredient in the con-

struction of the effective target space action of the theory. In the bosonic case

such a moduli space action reproduces the Born-Infeld action for the D-brane

dynamics in the Neumann representation [2]. The supersymmetrization of

the worldsheet theory along the lines discussed previously will produce the

same Born-Infeld action, with the only effect that the tachyonic instabil-

ities are again removed and no renormalization of the coupling constants

are required. This is immediate due to the form of (5.73). On the other

hand, the target space supersymmetrization of the Born-Infeld action in ten
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dimensions is known. The photino field λ corresponds to the Goldstino par-

ticle of the super-Poincaré symmetry which is spontaneously broken by the

presence of the D-brane. The resulting action does however possess local

spacetime κ-symmetry. We may then expect an appropriate version of this

action to emerge within the target space formalism of the previous section,

with corresponding breaking of the fermionic κ-symmetry.

The most important consequence, however, of the form of the Zamolod-

chikov metric (5.73) for our purposes in this work, is that it eliminates in

the world-sheet supersymmetric case the leading ultraviolet world-sheet di-

vergences (3.70) leading to the diffusion term (3.71) upon the identification

of time with the world-sheet scale ε−2 (c.f. (5.20)), and hence the Liouville

zero mode.

Thus, upon including world-sheet supersymmetry, which appears essen-

tial for a proper definition of D-particles, guaranteeing their target-space

stability, one obtains a diffusionless probability equation from the RG equa-

tion of the Liouville-dressed partition function in the supersymmetric case

of the twisted super D-particle, and hence an ordinary Schrödinger equation

according to our discussion above. This may imply a potentially interest-

ing link between supersymmetry (of some sort) and linearity of quantum

mechanics.

6. Conclusions

In this review/tribute to the memory of I. Kogan, I discussed the rôle of

superconformal logarithmic algebras on the physics of recoiling membranes

in string theory. Although the formalism has been developed for D-particles,

extension to higher-dimensionality branes is straightforward, albeit techni-

cally more involved.

We have also seen how LCFT and their extensions enter the discussion of

the recoil problem in curved (almost conformal) backgrounds corresponding

to late times Robertson-Walker Cosmology.

In all cases, the relevant pairs of LCFT describing recoil were not

marginal operators, but rather slightly relevant world-sheet deformations,

with anomalous dimension proportional to ε−2 ∼ lnΛ, thereby varying lin-

early with the RG scale. This implied the necessity for Liouville dressing.

In this latter context, we have discussed some “pathologies” of the bosonic

string formalism, associated with non-linearities in the quantum mechanical

evolution of the D-branes under the identification of the Liouville mode with

target time. Such non-linearities were associated with leading ultraviolet

divergences in the world sheet, arising from pinched world-sheet genera.
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Upon supersymmetrization, however, such divergences disappear in a non-

trivial way, dictated by the logarithmic superconformal algebras, thereby

rendering the above identification of Liouville mode with time consistent

with a linear quantum mechanical evolution of super D-branes. It remains

to be seen whether this curious link between supersymmetry and linearity

of quantum mechanics bears any more general consequences.

It is my firm belief that the precise nature of time holds the key for

a complete understanding of quantum gravity. In this sense, therefore,

the above role of super-LCFT in rendering the Liouville evolution linear,

and completely quantum mechanical, may be of importance. For instance,

recently [100] some models of supersymmetric space-time foam involving

such supersymmetric D-particles have been constructed as consistent ground

states of brane world models. Time, and further work will show whether

these speculations are right...

Acknowledgments

The author wishes to thank M. Shifman and J. Wheater for inviting him

to contribute to the Memorial Volume for I. Kogan. He also acknowledges

discussions with H.-D. Doebner and G.A. Goldin. Finally he thanks the

Department of Theoretical Physics of Valencia University (Spain) for the

hospitality during the final stages of this work. The work of N.E.M. is par-

tially supported by the European Union (contract HPRN-CT-2000-00152).

References

1. I.I. Kogan, N.E. Mavromatos and J.F. Wheater, Phys. Lett. B 387, 483 (1996)
[hep-th/9606102].

2. N.E. Mavromatos and R.J. Szabo, Phys. Rev. D 59, 104018 (1999) [hep-th/9808124].
3. E. Gravanis and N.E. Mavromatos, JHEP 0206, 019 (2002) [hep-th/0106146].
4. J.R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, J. Chaos, in: Solitons and

Fractals, eds. C. Castro and M.S. El Naschie (Elsevier Science, Pergamon, 1999)
Vol. 10, p. 345 and references therein.

5. I. I. Kogan, Time As Liouville Field And World Sheet Rg Equations As Evolution

Equations, prepared for Particles & Fields 91: Meeting of the Division of Particles
& Fields of the APS, Vancouver, Canada, 18-22 Aug 1991; Phys. Lett. B 265, 269
(1991).

6. V. Gurarie, Nucl. Phys. B 410, 535 (1993) [hep-th/9303160].
7. M.A.I. Flohr, Int. J. Mod. Phys. A11, 4147 (1996) [hep-th/9509166]; Int. J. Mod.

Phys. A 12, 1943 (1997) [hep-th/9605151]; Nucl. Phys. B 634, 511 (2002) [hep-
th/0107242];
M.R. Rahimi-Tabar, A. Aghamohammadi and M. Khorrami, Nucl. Phys. B 497, 555
(1997) [hep-th/9610168];
S. Moghimi-Araghi, S. Rouhani and M. Saadat, Nucl. Phys. B 599, 531 (2001)
[hep-th/0008165].



September 2, 2004 9:45 WSPC/Trim Size: 9.75in x 6.5in for Proceedings mavromatos

LCFT and Strings 1361

8. J.-S. Caux, I.I. Kogan and A.M. Tsvelik, Nucl. Phys. B 466, 444 (1996)
[hep-th/9511134].

9. V. Gurarie, M.A.I. Flohr and C. Nayak, Nucl. Phys. B 498, 513 (1997)
[cond-mat/9701212];
M.J. Bhaseen, J.-S. Caux, I.I. Kogan and A.M. Tsvelik, Nucl. Phys. B 618, 465
(2001) [cond-mat/0012240].

10. A. Bilal and I.I. Kogan, Nucl. Phys. B 449, 569 (1995) [hep-th/9503209].
11. I.I. Kogan and N.E. Mavromatos, Phys. Lett. B 375, 111 (1996) [hep-th/9512210].
12. I. I. Kogan and J. F. Wheater, Phys. Lett. B 486, 353 (2000) [hep-th/0003184].
13. I.I. Kogan, Phys. Lett. B 458, 66 (1999) [hep-th/9903162];

Y.S. Myung and H.W. Lee, JHEP 9910, 009 (1999) [hep-th/9904056];
I.I. Kogan and D. Polyakov, Int. J. Mod. Phys. A 16, 2559 (2001) [hep-th/0012128];
S. Moghimi-Araghi, S. Rouhani and M. Saadat, Phys. Lett. B 518, 157 (2001)
[hep-th/0105123].

14. I. Bakas and K. Sfetsos, Nucl. Phys. B 639, 223 (2002) [ hep-th/0205006];
K. Sfetsos, Phys. Lett. B 543, 73 (2002) 73 [hep-th/0206091].

15. M.A.I. Flohr, Int. J. Mod. Phys. A 18, 4497 (2003) [hep-th/0111228];
M.R. Gaberdiel, Int. J. Mod. Phys. A 18, 4593 (2003) [hep-th/0111260];
M.R. Rahami-Tabar, Int. J. Mod. Phys. A 18, 4703 (2003) [cond-mat/0111327].

16. M.R. Gaberdiel and H.G. Kausch, Nucl. Phys. B 477, 293 (1996) [hep-th/9604026];
ibid. 538, 631 (1999) [hep-th/9807091]; Phys. Lett. B 386, 131 (1996) [hep-
th/9606050].

17. M.R. Gaberdiel, Nucl. Phys. B 618, 407 (2001) [hep-th/0105046].
18. J. Fjelstad, J. Fuchs, S. Hwang, A.M. Semikhatov and I.Yu. Tipunin, Nucl. Phys. B

633, 379 (2002) [hep-th/0201091].
19. J.-S. Caux, I.I. Kogan, A. Lewis and A.M. Tsvelik, Nucl. Phys. B 489, 469 (1997)

[hep-th/9606138].
20. M. Khorrami, A. Aghamohammadi and A.M. Ghezelbash, Phys. Lett. B 439, 283

(1998) [hep-th/9803071].
21. N.E. Mavromatos and R.J. Szabo, JHEP 0110, 027 (2001) [hep-th/0106259].
22. N. E. Mavromatos and R. J. Szabo, JHEP 0301, 041 (2003) [hep-th/0207273].
23. N. E. Mavromatos and R. J. Szabo, Int. J. Mod. Phys. A 16 (2001) 209 [hep-

th/9909129].
24. For some recent references see: J.E. Lidsey, Phys. Rev. D 64, 063507 (2001);

M. Abou-Zeid, Actions for curved branes, hep-th/0001127; G. Papadopoulos,
J.G. Russo and A.A. Tseytlin, Class. Quant. Grav. 17, 1713 (2000); B. Janssen,
JHEP 01, 044 (2000).

25. J.R. Ellis, N.E. Mavromatos and D.V. Nanopoulos, Phys. Rev. D D62, 084019
(2000).

26. D. Berenstein, R. Corrado, W. Fischler, S. Paban and M. Rozali, Phys. Lett. B 384,
93 (1996); W. Fischler, S. Paban and M. Rozali, ibid. 381, 62 (1996).

27. F. David, Mod. Phys. Lett. A 3, 1651 (1988); J. Distler and H. Kawai, Nucl. Phys.
B 321, 509 (1989).

28. J.R. Ellis, N.E. Mavromatos and D.V. Nanopoulos, Gen. Rel. Grav. 32, 943 (2000);
see also: J.R. Ellis, N.E. Mavromatos and D.V. Nanopoulos, Mod. Phys. Lett. A 10,
1685 (1995).

29. T. Banks and W. Fischler, M-theory observables for cosmological space-times, hep-
th/0102077; S. Hellerman, N. Kaloper and L. Susskind, JHEP 0106, 003 (2001)
[hep-th/0104180]; W. Fischler, A. Kashani-Poor, R. McNees and S. Paban, JHEP
0107, 003 (2001) [hep-th/0104181].



September 2, 2004 9:45 WSPC/Trim Size: 9.75in x 6.5in for Proceedings mavromatos

1362 N.E. Mavromatos

30. J.R. Ellis, N.E. Mavromatos and D.V. Nanopoulos, String theory and an accelerating

universe, hep-th/0105206.
31. C.G. Callan and I.R. Klebanov, Nucl. Phys. B 465, 473 (1996);

C. Bachas, Phys. Lett. B 374, 37 (1996).
32. H. Dorn and H.J. Otto, Phys. Lett. B 381, 81 (1996).
33. J. Polchinski, Phys. Rev. Lett. 75, 4724 (1995); in: Fields, Strings and Duality,

Proc. TASI 96, eds. C. Efthimiou and B.R. Greene (World Scientific, Singapore,
1997), p. 293.

34. T. Banks, W. Fischler, S.H. Shenker and L. Susskind, Phys. Rev. D 55, 5112 (1997).
35. U.H. Danielsson, G. Ferretti and B. Sundborg, Int. J. Mod. Phys. A 11, 5463 (1996);

D. Kabat and P. Pouliot, Phys. Rev. Lett. 77, 1004 (1996).
36. P. Yi, Nucl. Phys. B 505, 307 (1997);

S. Sethi and M. Stern, Commun. Math. Phys. 194, 675 (1998);
M.B. Green and M. Gutperle, JHEP 9801, 005 (1998);
M. Poratti and A. Rozenberg, Nucl. Phys. B 515, 184 (1998);
G. Moore, N.A. Nekrasov and S.L. Shatashvili, Commun. Math. Phys. 209, 77 (2000)
[hep-th/9803265].

37. M. Cederwall, A. von Gussich, B.E.W. Nilsson, P. Sundell and A. Westerberg, Nucl.
Phys. B 490, 179 (1997);
M. Aganagic, C. Popescu and J.H. Schwarz, Phys. Lett. B B393, 311 (1997); Nucl.
Phys. B 495, 99 (1997);
E. Bergshoeff and P.K. Townsend, Nucl. Phys. B 490, 145 (1997);
M. Abou Zeid and C.M. Hull, Phys. Lett. B 404, 264 (1997);
S.V. Ketov, Mod. Phys. Lett. A 14, 501 (1999);
B. Brinne, S.E. Hjelmeland and U. Lindström, Phys. Lett. B 459, 507 (1999);
G. Zwart, JHEP 9906, 010 (1999);
A. De Giovanni, A. Santambrogio and D.Zanon, Phys. Lett. B 472, 94 (2000)
[Erratum-ibid. B 478, 457 (2000)] [hep-th/9907214].

38. A.A. Tseytlin, Born-Infeld Action, Supersymmetry and String Theory, hep-
th/9908105 [published in the Yuri Golfand memorial volume, ed. M. Shifman (World
Scientific, 2000)].

39. A.A. Tseytlin, Nucl. Phys. B 501, 41 (1997);
D. Brecher and M.J. Perry, Nucl. Phys. B 527, 121 (1998) 121;
D. Brecher, Phys. Lett. B 442, 117 (1998).

40. W. Taylor and M. Van Raamsdonk, JHEP 9904, 013 (1999).
41. H. Dorn, JHEP 9804, 013 (1998).
42. R. Kallosh, Phys. Rev. D 55, 3241 (1997).
43. E. Witten, Int. J. Mod. Phys. A 10, 1247 (1995).
44. C. Lovelace, Nucl. Phys. B 273, 413 (1986); T. Banks and E. Martinec, Nucl. Phys.

B 294, 733 (1987); S.R. Das, Phys. Rev. D38 (1988) 3105; J. Hughes, J.T. Liu and J.
Polchinski, Nucl. Phys. B 316, 15 (1989); S.-J. Rey, in: Frontiers in Quantum Field

Theory, eds. H. Itoyonaka, M. Kaku, H. Kunitomo, M. Ninomiya and H. Shirokura
(World Scientific, Singapore, 1996), p. 74.

45. J. Ellis, N.E. Mavromatos and D.V. Nanopoulos, Mod. Phys. Lett. A 10, 1685 (1995).
46. A. Cooper, L. Susskind and L. Thorlacius, Nucl. Phys. B 363, 132 (1991); A. Jevicki

and J. Rodrigues, Nucl. Phys. B 421, 278 (1994); V. Periwal, String Field Theory

Hamiltonians from Yang-Mills Theories, hep-th/9906052.
47. J. Ellis, N.E. Mavromatos and D.V. Nanopoulos, Int. J. Mod. Phys. A 12, 2639

(1997).
48. A.D. Linde, Sov. Phys. JETP 60, 211 (1984); Lett. Nuovo Cimento 39, 401 (1984).



September 2, 2004 9:45 WSPC/Trim Size: 9.75in x 6.5in for Proceedings mavromatos

LCFT and Strings 1363

49. A.D. Linde and A. Mezhlumian, Phys. Rev. D 49, 1783 (1994).
50. N.E. Mavromatos and J.L. Miramontes, Phys. Lett. B 226, 291 (1989).
51. J. Hartle and S.W. Hawking, Phys. Rev. D 28, 2960 (1983).
52. I.I. Kogan, N.E. Mavromatos and J.F. Wheater, Phys. Lett. B 387, 483 (1996).
53. F. Lizzi and N.E. Mavromatos, Phys. Rev. D 53, 7859 (1997).
54. J. Ellis, N.E. Mavromatos and D.V. Nanopoulos, Int. J. Mod. Phys. A 13, 1059

(1998).
55. H.-D. Doebner and G.A. Goldin, Phys. Lett. A 162, 37 (1992); J. Phys. A27 (1994)

1771.
56. H.-D. Doebner and G.A. Goldin, Phys. Rev. A 54, 3764 (1996); H.-D. Doebner,

G.A. Goldin and P. Nattermann, J. Math. Phys. 40, 49 (1999).
57. R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-

Hill, New York, 1965), p. 96.
58. J. Ellis, N.E. Mavromatos and D.V. Nanopoulos, in: Erice Subnuclear Series Vol.

31 (World Scientific, Singapore, 1993), p. 1.
59. P. Nattermann and W. Scherer, in: Nonlinear, Deformed and Irreversible Quan-

tum Systems, eds. H.-D. Doebner, V.K. Dobrev and P. Natterman (World Scientific,
Singapore, 1995), p. 188, and references therein.

60. S.R. Corley and O.W. Greenberg, J. Math. Phys. 38, 571 (1997).
61. V. Bargmann, Ann. Math. 59, 1 (1954).
62. F. Lizzi, N.E. Mavromatos and R.J. Szabo, Mod. Phys. Lett. A 13, 829 (1998).
63. E. Witten, Nucl. Phys. B 460, 335 (1996).
64. C.P. Bachas, Phys. Lett. B 374, 37 (1996).
65. P. Nattermann, W. Scherer and A.G. Ushveridze, Phys. Lett. A 184, 234 (1994).
66. N. Gisin, Helv. Phys. Acta 62, 363 (1989); Phys. Lett. A 143, 1 (1990);

J. Polchinski, Phys. Rev. Lett. 66, 397 (1991).
67. M. Czachor and M. Kuna, Phys. Rev. A 58, 128 (1998).
68. N. Arkani–Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B 429, 263 (1998); Phys.

Rev. D 59, 086004 (1999);
I. Antoniadis, N. Arkani–Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B 436,
257 (1998);
I. Antoniadis and B. Pioline, Nucl. Phys. B 550, 41 (1999).

69. M. Goulian and M. Li, Phys. Rev. Lett. 66 (1991), 2051.
70. I. Antoniadis, C. Bachas, J. Ellis and D.V. Nanopoulos, Phys. Lett. B 211, 393

(1988); Nucl. Phys. B 328, 117 (1989); Phys. Lett. B 257, 278 (1991).
71. A.B. Zamolodchikov, JETP Lett. 43, 730 (1986); Sov. J. Nucl. Phys. 46, 1090 (1987).
72. The CTP formalism may be attributed to:

J. Schwinger, J. Math. Phys. 2, 407 (1961).
For recent reviews see:
E. Calzetta and B.L. Hu, Phys. Rev. D 37, 2878 (1988);
E. Calzetta, S. Habib and B.L. Hu, Phys. Rev. D 37, 2901 (1988).
See also H. Umezawa, Advanced Field Theory : micro, macro and thermal concepts

(American Inst. of Physics, N.Y. 1993).
73. D.H. Friedan, Z. Qiu and S.H. Shenker, Phys. Lett. B B151, 37 (1985).
74. H.G. Kausch, Curiosities at c = −2, hep-th/9510149; Nucl. Phys. B 583, 513 (2000)

[hep-th/0003029].
75. I.I. Kogan and A. Nichols, JHEP 0201, 029 (2002) [hep-th/0112008].
76. F. Rohsiepe, On Reducible but Indecomposable Representations of the Virasoro Al-

gebra, hep-th/9611160.



September 2, 2004 9:45 WSPC/Trim Size: 9.75in x 6.5in for Proceedings mavromatos

1364 N.E. Mavromatos

77. A. Gerasimov, A.Yu. Morozov, M.A. Olshanetsky, A. Marshakov and S.L. Shata-
shvili, Int. J. Mod. Phys. A 5, 2495 (1990).

78. M. Wakimoto, Commun. Math. Phys. 104, 605 (1986).
79. I.I. Kogan and A. Nichols, Int. J. Mod. Phys. A17, 2615 (2002) [hep-th/0107160].
80. I.I. Kogan and A. Lewis, Nucl. Phys. B 509, 687 (1998) [hep-th/9705240].
81. A. Nichols and S. Sanjay, Nucl. Phys. B 597, 633 (2001) [hep-th/0007007];

G. Giribet, Mod. Phys. Lett. A 16 (2001) 821 [hep-th/0105248].
82. L. Dixon, D.H. Friedan, E.J. Martinec and S.H. Shenker, Nucl. Phys. B 282, 13

(1987).
83. A.M. Ghezelbash and V. Karimipour, Phys. Lett. B 402, 282 (1997) [hep-

th/9704082]; M. Khorrami, A. Aghamohammadi and M.R. Rahimi-Tabar, Phys.
Lett. B 419, 179 (1998) [hep-th/9711155]; A.M. Ghezelbash, M. Khorrami and
A. Aghamohammadi, Int. J. Mod. Phys. A A14, 2581 (1999) 2581 [hep-th/9807034].

84. D.H. Friedan, E.J. Martinec and S.H. Shenker, Nucl. Phys. B 271, 93 (1986).
85. M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory (Cambridge University

Press, 1987).
86. D.H. Friedan, E.J. Martinec and S.H. Shenker, Phys. Lett. B 160, 55 (1985) 55;

V.G. Knizhnik, Phys. Lett. B 160, 403 (1985).
87. V.A. Kostelecky, O. Lechtenfeld, W. Lerche, S. Samuel and S. Watamura,

Nucl. Phys. B 288, 173 (1987).
88. H. Saleur, Nucl. Phys. B 382, 486 (1992) [hep-th/9111007].
89. F. Lesage, P. Mathieu, J. Rasmussen and H. Saleur, Nucl. Phys. B 647, 363 (2002)

[hep-th/0207201].
90. F. Yu, Nucl. Phys. B 375, 173 (1992).
91. T. Eguchi and S.K. Yang, Mod. Phys. Lett. A 5, 1693 (1990);

S. Nojiri, Phys. Lett. B 274, 41 (1992) 41 [hep-th/9108026].
92. V.G. Kac and I.T. Todorov, Commun. Math. Phys. 102,337 (1985).
93. P. Di Vecchia, V.G. Knizhnik, J.L. Petersen and P. Rossi, Nucl. Phys. B 253, 701

(1985);
J. Fuchs, Nucl. Phys. B 286, 455 (1987); ibid. 318, 631 (1989);
E. Kiritsis and G. Siopsis, Phys. Lett. B 184, 353 (1987) [Erratum: ibid. 189, 499
(1987)];
S. Nam, Phys. Lett. B 187, 340 (1987).

94. H. Terao, Mod. Phys. Lett. A 5, 1731 (1990).
95. D. Nemeschansky, Phys. Lett. B 224, 121 (1989).
96. B.L. Feigin and D.B. Fuks, Funct. Anal. Appl. 17, 241 (1983).
97. M.A. Bershadsky, V.G. Knizhnik and M.G. Teitelman, Phys. Lett. B 151, 31 (1985).
98. J.L. Cardy, Logarithmic Correlations in Quenched Random Magnets and Polymers,

[cond-mat/9911024];
V. Gurarie and A.W.W. Ludwig, J. Phys. A 35, L377 (2002) [cond-mat/9911392].

99. A. Nichols, JHEP 0301, 022 (2003) [hep-th/0205170].
100. J. Ellis, N. E. Mavromatos and M. Westmuckett, A supersymmetric D-brane model

of space-time foam, gr-qc/0405066.


