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We study the model of (2 + 1)-dimensional relativistic fermions in a random non-Abelian

gauge potential at criticality. The exact solution shows that the operator expansion con-

tains a conserved current - a generator of a continuous symmetry. The presence of this

operator changes the operator product expansion and gives rise to logarithmic contri-

butions to the correlation functions at the critical point. We calculate the distribution

function of the local density of states in this model and find that it follows the famous

log-normal law.
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1. Introduction

In this paper we continue to study the model of (2 + 1)-dimensional massless
Dirac fermions interacting with a random static non-Abelian gauge potential.
The Hamiltonian (or rather a generating functional for the Green’s functions)
of this model is given by

iĤ − εnÎ =
∫

d2x
(
R+

α , L
+
α

)
(1.1)

×

(
(∂x − i∂y)δαβ − iA+

αβ(x, y) −εn
−εn (∂x + i∂y)− iA−αβ(x, y)

)
(Rβ, Lβ)

where the random fields Aa
αβ(x, y) (a = ±) have a Gaussian distribution:

〈Aa
αβ(~r1)Ab

γη(~r2)〉 = Aδ(~r1 − ~r2)δa,−bδαηδβγ . (1.2)

The fermionic fields Rα, Lα represent respectively the right and the left
moving components of the spinor field, and α takes the values 1, ..., N . This
model was introduced in Ref. [1] to describe normal excitations in two dimen-
sional non-s-wave superconductors with disorder. In this context N denotes
the number of nodes of the order parameter on the Fermi surface.

Since the disorder is time-independent we consider the Fourier compo-
nents of the fermionic fields with different frequencies separately. This re-
duces the dimensionality of the problem, making it two dimensional. The
model (1) is exactly solvable in the subspace ε = 0, where it is critical. The
presence of the superconducting order parameter fixes the chemical potential
and thus insures that the disorder is diagonal in chirality. This is essential
for the criticality at ε = 0. At the critical point, one can apply the methods
of conformal field theory and calculate scaling dimensions of the fields and
of their multi-point correlation functions. This gives us a rare opportunity
to obtain nonperturbative results for a non-trivial random theory. We hope
that a study of this exact solution will give an insight into general properties
of random systems.

The averaging over the disorder can be done either through the replica
trick [2] or using the supersymmetric approach [3,4]. In this paper we shall
mostly use the replica approach with which we are more familiar. To demon-
strate that the two approaches are equivalent we shall (i) compare the con-
formal dimensions of the primary fields and (ii) demonstrate that both rep-
resentations give the same conformal blocks for the four-point correlation
function.

As in the standard localization theory (see for example [5]), one can
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integrate out the fast degrees of freedom and derive an effective action for
the slow ones in the form of a sigma model. This program was carried out
in Ref. [1]. The resulting sigma model has the following action:

S = S0 +Mεn

∫
d2xTr (Q+Q+) (1.3)

where the S0 action contains the Wess-Zumino term:

S0 =
Nr

2

∫
d2x (∂µΦ)2 +NW [SU(r); g] ,

W [SU(2r); g] =
1

16π

∫
d2x

[
Tr (∂µg

+∂µg)

+
2
3

∫ ∞
0

dξ εabc Tr (g+∂agg
+∂bgg

+∂cg)
]

(1.4)

where Q is the r × r matrix Q = g exp[i
√

4πΦ], and where g belongs to the
SU(r) group. Φ is a real scalar field defined on the cirle with circumference√
π. The quantity M is the energy scale introduced by the disorder: M ∼

exp[−2π/NA]; it marks the crossover from the bare density of states (DOS)
ρ(ε) ∼ |ε| to the renormalized DOS ρ(ε) ∼ |ε|ν (ν = (2N2− 1)−1). M serves
as the ultraviolet cut-off for the sigma model (1.4).

The action (4) looks very similar to the sigma model derived in the con-
ventional localization theory (see, for example, Ref. [5]). However, there are
important differences. First of all, in the conventional theory the matrix Q
belongs to a symmetric space, here it belongs to the group. The second dif-
ference is that in the conventional theory it is essential to distinguish matrix
elements associated with retarded and advanced Green functions even dis-
cussing properties of DOS. All these differences originate from the following
principal fact: in the absence of disorder the model (1) has ρ(0) = 0 , but
non-zero conductivity at ω = 0 [6].

It is well known that in conventional localization theories the average
DOS is not affected by the disorder (its higher moments are, however). It
is not the case for the model (1), where the DOS is directly proportional to
the order parameter. As it was shown in [1], the local DOS is given by

ρ(ε, x) =
M

r
Tr [Q(x) +Q+(x)] . (1.5)

This means that even the average DOS is strongly renormalized. At ε = 0 the
sigma model (1.4) is critical and 〈ρ(0, x)〉 = 0, as it might be expected in a
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critical theory in two dimensions.a In three dimensions a finite DOS emerges
at ε = 0 [7]. In our previous publications we interpreted this effect as a
manifestation of violation of some continuous symmetry present in the theory
( [1], [2]). However, the meaning of this symmetry has remained obscure.
In this paper we identify the operators which generate this symmetry and
derive their algebra.

The paper is organized as follows. In Section 2 we discuss general prop-
erties of the model at criticality and derive the expression for the conformal
dimensions of its primary fields. In Section 3 we derive the expression for
the four-point correlation function of local DOS. It turns out that this cor-
relation function contains logarithmic singularities and therefore a fusion of
local DOS generates operators with unusual properties - the so-called loga-
rithmic operators. In Section 4 we develop a general theory of such operators
and demonstrate that the appearance of such operators always implies the
presence of some continuous symmetry. It may well be that this symmetry is
present in all critical models with disorder. In Section 5 we show how these
general results hold for the model (4). In Section 6 we study correlation
functions in the model deformed by the logarithmic operators away from
criticality. It turns out that even in the case of a marginal deformation the
correlation functions have logarithmic corrections. In Section 7 we derive
the log-normal distribution function of the local DOS. The paper contains
a conclusion and an appendix where the conformal blocks of replica and
supersymmetric theories are compared.

2. Conformal dimensions

The WZNW model has been well studied at finite r. There is an extensive
literature on the subject, but we particularly recommend the original pub-
lication by Knizhnik and Zamolodchikov [8]. These authors derived explicit
expressions for the four-point correlation functions of primary fields which
we are going to exploit. In our calculational procedure we follow the general
principle: when calculating any n-point correlation function Fr(1, 2, ...n) r is
treated as an arbitrary number on all intermediate steps of the calculations
until the final expression is obtained. We define the replica limit as follows:

F (1, 2, ...n) = lim
r→0

2N
r
Fr(1, 2, ...n) . (2.6)

a This statement is usually called the Mermin–Wagner theorem. In non-unitary theories which ad-

mit operators with non-positive scaling dimensions such operators may acquire non-zero averages.

However, this does not concern the operator Q whose scaling dimension is positive.
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The reason for the introduction of the extra factor 2N will be discussed later.
Let us study the correlation functions of the Q,Q+-fields. The problem

of indices is simplified by the fact that the Qpq matrices are slow parts of
the operators

Qpq ∼
N∑

α=1

R+
α,pLα,q . (2.7)

From this fact one can derive a simple recipe for the index structure of
n−point correlation functions: it is the same as for the n-point function of
the

∑
αR

+
α,pLα,q-fields in the theory of massless free fermions. The simplest

example is the 2-point function [2], [3]:

〈Qp1q1(z, z̄)Q
+
q2p2

(0, 0)〉 = δq1q2δp1p2

1
(M |z|)2/N2 (2.8)

where 1/2N2 is the conformal dimension of the composite operator Q given
by the sum of the dimensions of the bosonic exponent exp[i

√
4πΦ] and of the

operator field gpr from the fundamental representation of the SU(r) group:

∆ = lim
r→0

[
1

2rN
+

(r − 1/r)
2(N + r)

]
=

1
2N2

. (2.9)

In the replica limit we get from Eq.(2.8)

G(z, z̄) ≡ lim
r→0

(2N/r)〈Tr[Q(z, z̄)]Tr[Q+(0, 0)]〉 = (M |z|)−2/N2
. (2.10)

All other operators are generated by fusion of the fundamental fields TrQ
and TrQ+. The corresponding primary fields are composite fields of bosonic
exponents and Wess-Zumino tensors belonging to irreducible representations
of the SU(r) group. These representations are classified by Young tableaus
which can be represented by a string of numbers f1 > f2 > ... > fr ≥ 0.
Only representations with fl ≤ N − 1 are generated [8]. The corresponding
conformal dimensions are given by the expressions

∆f =
Cf

N + r
+

f2

2rN
,

Cf =
1
2

∑
l

[f2
l + (r + 1− 2l)fl]−

f2

2r
(2.11)

where f =
∑

l fl. In the replica limit we get

∆f =
f2

2N2
+

1
2N

∑
l

[f2
l − (2l − 1)fl] . (2.12)



October 18, 2004 22:48 WSPC/Trim Size: 9.75in x 6.5in for Proceedings logoper

Logarithmic operators and hidden continuous symmetry 2229

This expression coincides with the conformal dimensions obtained by the
supersymmetric approach after rows and columns in the Young tableau are

interchanged. For instance, for the representation (
m︷ ︸︸ ︷

1, 1, ...1, 0, ..) we repro-
duce the expression obtained in [3] (see Eq. (4.48b) there) for the (m, 0, ...0)
representation:

∆m =
m

2N

[
1− (N − 1)m

N

]
. (2.13)

3. Four-point correlation function of the order parameter
fields

Let us now study the four point correlation function of the Q, Q+ fields.
The index structure is the same for all r [8],

〈Qp1q1(z1, z̄1)Q
+
q2p2

(z2, z̄2)Qp3q3(z3, z̄3)Q
+
q4p4

(z4, z̄4)〉

= M−4/N2

[
|z13z24|

|z12z14z23z34|

]2/N2

(W + W̃ ) , (3.14)

W̃ =[δp1p2δp3p4δq1q2δq3q4W11(x, x̄) + δp1p3δp2p4δq1q3δq2q4W22(x, x̄)], (3.15)

W =[δp1p2δp3p4δq1q3δq2q4W12(x, x̄) + δp1p3δp2p4δq1q2δq3q4W21(x, x̄)] (3.16)

where

x =
z12z34
z13z24

, x̄ =
z̄12z̄34
z̄13z̄24

. (3.17)

Here the functions WAB(x, x̄), (A,B = 1, 2) satisfy linear differential equa-
tions (the Knizhnik-Zamolodchikov equations) which we shall discuss later in
detail. Now note that in our theory we shall deal only with correlation func-
tions of TrQ, TrQ+ (for simplicity we do not consider transport phenomena
which would need introduction of advanced and retarded correlation func-
tions). Since all correlation functions must be proportional to r, only the W
term (that is the term with all indices equal) survives in the replica limit,
the W̃ term being proportional to r2. Therefore we have

(2N/r)〈TrQ(1)TrQ+(2)TrQ(3)TrQ+(4) 〉

= 2NM−4/N2

[
|z13z24|

|z12z34z23z34|

]2/N2[
W12(x, x̄) +W21(x, x̄)

]
. (3.18)
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The functions WAB(x, x̄) = UpqW
(p)
A (x)W (q)

B (x̄) are composed of lin-
early independent solutions of the Knizhnik-Zamolodchikov equation, writ-
ten W

(p)
A (x) and W

(q)
B (x̄) (conformal blocks). In the replica limit these

equations have the following form:

Nx
dW1

dx
= −W2 , N(1− x)

dW2

dx
= W1 . (3.19)

Thus, for the function W1 we get the following hypergeometric equation:

N2 d

dx

(
x
dW1

dx

)
+

W1

1− x
= 0 . (3.20)

Here we encounter a problem. A hypergeometric equation has always two
linearly independent solutions, normally expressed in terms of powers and
hypergeometric functions. Usually there are three sets of solutions defined
in the vicinity of x = 0, 1 and ∞ respectively. These pairs of solutions are
related to each other via simple transformation rules (see, for example [9]).
Eq.(3.20) is an exlusion: in the vicinity of x = 0 one of the solutions contains
a logarithmic singularity and cannot be expressed in terms of hypergeometric
functions (this second solution was overlooked in the previous publication of
one of the authors [2]),

W
(0)
1 (x) = F (1/N,−1/N, 1, x),

W
(1)
1 (x) = lnxW (0)

1 (x) +H1(x) ,

NW
(0)
2 (x) = xF (1 + 1/N, 1− 1/N, 2, x),

NW
(1)
2 (x) = lnxW (0)

2 (x)−N2 +H2(x) (3.21)

where H1,2(x) are functions that are regular at x = 0,

H1(x) =
∞∑

n=1

xn(1/N)n(−1/N)n

(n!)2
[ψ(1/N + n)− ψ(1/N) +

+ ψ(−1/N + n)− ψ(−1/N)− 2ψ(n+ 1) + 2ψ(1)] ,

H2(x) = x
∞∑

n=0

xn(1 + 1/N)n(1− 1/N)n

n!(n+ 1)!
[ψ(1 + 1/N + n)− ψ(1 + 1/N) +

+ ψ(1− 1/N + n)− ψ(1− 1/N)

− ψ(n+ 1) + ψ(1)− ψ(n+ 2) + ψ(2)] (3.22)
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where (a)n = Γ(a+n)/Γ(a). Only in the vicinity of x = ∞ are the solutions
still hypergeometric functions (for N 6= 2).

At |x| << 1 we have

W
(0)
1 (x) = 1 +O(x) , W

(1)
1 (x) = lnx[1 +O(x)] ,

NW
(0)
2 (x) = x+O(x2) , NW

(1)
2 (x) = −N2 + x lnx[1 +O(x)] . (3.23)

Now we have to choose the matrix Upq in such a way that the result-
ing expression for the four point correlation function be a uniquely defined
function in the complex plane of x. It also must be invariant under the
permutation of points 1 and 3 (2 and 4) which means the invariance under
x → 1 − x, x̄ → 1 − x̄ (crossing symmetry). These properties are achieved
when

U (01) = U (10), U (11) = 0, U (00) = hU (01) . (3.24)

To find h, we first note that the solutions to the Knizhnik–Zamolodchikov
equations obey the monodromy properties

W
(0)
1 (1− x) = aiW

(i)
2 (x) ,

W
(0)
2 (1− x) = biW

(i)
1 (x) , (3.25)

where

a0 = a1[ψ(1/N) + ψ(−1/N)− ψ(2)− ψ(1)],

a1 = b1 =
N

Γ(1/N)Γ(−1/N)
,

b0 = a1[ψ(1/N) + ψ(−1/N)− 2ψ(1)] . (3.26)

Using the crossing symmetry, we then find that

h =
a0b1 + a1b0

a1b1
= 1/2. (3.27)

Thus, we get

G(1, 2, 3, 4) = − 1
2N

[
|z13z24|M−2

|z12z14z23z34|

]2/N2

×
[
W

(0)
1 (x)W (1)

2 (x̄) +W
(1)
1 (x)W (0)

2 (x̄)

+
1
2
W

(0)
1 (x)W (0)

2 (x̄) + (x→ x̄)
]
. (3.28)
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Here we choose U (01) = −1/4N2 for normalization.
In order to derive the operator algebra of the model we consider various

limits of this formula. In the limit z43 = ε→ 0 we get

〈[QQ+(3)]Q(1)Q+(2)〉 (3.29)

=
1

|εz12|2/N2

[
1− 1

N2

(
εz12
z13z23

+ c.c

)
ln
(
|ε|
∣∣∣∣ z12
z13z23

∣∣∣∣)+ ...

]
.

From now on we shall use Q without subscripts instead of TrQ assuming
that the replica limit has been taken. We shall also put M = 1.

The three-point correlation function (3.30) is very unusual from the con-
formal field theory point of view because it contains logarithms. Therefore
we pause to consider general properties of logarithmic operators.

4. General properties of logarithmic operators

So far correlation functions with logarithms at criticality have been obtained
in the WZNW model on the supergroup GL(1, 1) [10], in the C = - 2
model [11] and in gravitationally dressed CFT [12]. It was first pointed
out by Gurarie in Ref. [11] that the appearence of logarithms in correlation
functions is due to the presence of special operators, whose operator product
expansions (OPE’s) display logarithmic short-distance singularities. These
logarithmic operators have conformal dimensions degenerate with those of
the usual primary operators, and it is this degeneracy that is at the origin of
the logarithms (cf. our discussion of the degenerate hypergeometric equation
in the previous Section). As a result of this degeneracy one can no longer
completely diagonalize the Virasoro operator L0, and the new operators to-
gether with the standard ones form the basis of the Jordan-cell for L0. In
order to get a better insight in the situation, we shall consider the simplest
example, which was mentioned in [12], namely, the Liouville model with the
action

S =
1
8π

∫
d2ξ
√
g(ξ)

[
∂µφ(ξ)∂µφ(ξ) +QR(2)(ξ)φ(ξ)

]
(4.30)

(R(2) is the Riemann curvature on a two-dimensional surface – the world
sheet) with the stress-energy tensor

T = −1
2
∂zφ∂zφ+

Q

2
∂2

zφ

and the central charge

C = 1 + 3Q2 (4.31)
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The primary field eαφ has the dimension

∆α = α(Q− α)/2 . (4.32)

This means that there are two operators with the same dimension ∆α,
namely V± = exp(α±φ), where

α± =
Q

2
± 1

2

√
Q2 − 8∆α .

If Q2 = 8∆α, i.e. when α = Q/2, there is a degeneracy α+ = α− and instead
of two exponential primary fields we have only one exponent C = exp(1

2Qφ)
and the new operator D = φ exp(1

2Qφ) with the same dimension ∆ = Q2/8.
The latter field is sometimes called the puncture operator. It was discussed
in [13] in the context of the Liouville gravity, when the action (4.30) describes
the gravitational (Liouville) sector of a (non)critical string in the conformal
gauge.

It is easy to get the OPE of the stress-energy tensor T with these fields.
After simple calculations we find

T (z)C(0) =
∆
z2
C(0) +

1
z
∂zC(0) + ... ,

T (z)D(0) =
∆
z2
D(0) +

1
z2
C(0) +

1
z
∂zD(0) + ... (4.33)

where the dimension of the fields C andD is ∆ = Q2/8 and the normalization
of the field D was defined as D = (2/Q)φ exp(1

2Qφ).
It is easy to see indeed that there is a mixing between C and D and that

the Virasoro operator L0 which is defined through the Laurent expansion
T (z) =

∑
n Lnz

−n−2 is not diagonal

L0|C 〉 = ∆|C 〉 , L0|D 〉 = ∆|D 〉+ |C 〉 . (4.34)

Let us also note that usually one can think about factorization of the primary
field into the product of chiral left and right operators using the decomposi-
tion φ(z, z̄) = φL(z)+φR(z̄), leading to exp[αφ] = exp[αφL(z)]×exp[αφR(z̄)].
For a logarithmic operator we have

φ exp[αφ] = φL(z) exp[αφL(z)] exp[αφR(z̄)]

+φR(z̄) exp[αφL(z)]× exp[αφR(z̄)] ,

and, thus, the logarithmic operator is the sum of left and right operators
each of which can be factorized.
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This simple example illustrates a quite general property of all theories
with logarithmic operators and OPE (4.33) is valid in all these theories.
One can also obtain some general information about two- and three-point
correlation functions with operators C and D starting from the four-point
correlation function [11]

〈A(z1)B(z2)A(z3)B(z4)〉

=
1

(z1 − z3)2∆A(z2 − z4)2∆B
[x(1− x)]∆C−∆A−∆BF (x) (4.35)

where x is defined by Eq.(3.17), and where we have extracted the factor
[x(1− x)]∆C−∆A−∆B to make F (x) finite at x→ 0 or x→ 1 in the ordinary
case. In the case of logarithmic operators one will get F (x) = (d + c lnx +
o(x)) at small x. To reproduce the logarithmic singularity at x = 0 after
the fusion of A(z1) and B(z2) one has to postulate the following OPE (we
restrict ourselves to the chiral sector):

A(z1) B(z2) = (z1 − z2)∆C−∆A−∆B [D + C ln(z1 − z2) + ...] . (4.36)

Taking the limit z1 → z2 one immediately gets from the four-point correla-
tion function the following three-point correlation functions:

〈C(z1)A(z3)B(z4)〉 =
c

z∆A+∆C−∆B
13 z∆B+∆C−∆A

14 z∆A+∆B−∆C
34

,

〈D(z1)A(z3)B(z4)〉 =
1

z∆A+∆C−∆B
13 z∆B+∆C−∆A

14 z∆A+∆B−∆C
34

×
(
c ln

z3 − z4
(z1 − z3)(z1 − z4)

+ d

)
. (4.37)

Now let us consider the A(z3) and B(z4) fusion which after insertion of
(4.36) into (4.37) will lead to the following two-point correlation functions:

〈C(x)D(y)〉 = 〈C(y)D(x)〉 =
c

(x− y)2∆C
,

〈D(x)D(y)〉 =
1

(x− y)2∆C
(−2c ln(x− y) + d) ,

〈C(x)C(y)〉 = 0 . (4.38)

The first equation imposes a strong constraint on the dimensions ∆C of
logarithmic operators, namely that the dimension ∆C must be an integer.
To prove it let us note that we have 〈C(x)D(y)〉 = 〈C(y)D(x)〉, which means
that the correlation function is invariant under the permutation of x and y,
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which means that (−1)2∆C = 1 so ∆C = n. In case of noninteger ∆C one
must have the structure constant c = 0 and only the operator D will survive
in OPE (4.36), however in this case it will be an ordinary, nonlogarithmic
operator.

This new result about dimensions of logarithmic operators means that
for any logarithmic operator we have a hidden continous symmetry. This
symmetry is generated by the conserved holomorphic (or antiholomorphic)
current C(z). This current is a symmetric tensor of rank ∆C , which is a
usual vector current if ∆C = 1. In the next Section we shall demonstrate
the existence of such a conserved vector current in the model with disorder
that we are considering. Let us note that we have also proved that there is
no central extension in the corresponding current algebra, or in other words
there is no anomalous Schwinger term in the current-current commutator.
This is the direct consequence of the triviality of the correlation function
〈C(z)C(0)〉 = 0.

5. Operator product expansions in the model (4)

In this Section we demonstrate how the general theory just discussed applies
to the model (4). For this end we study OPE’s in this theory after the replica
limit has been taken. In doing so we assume that the replica limit can be
described by some quantum field theory. Here we encounter a certain ambi-
guity, namely, that we can define the correlation functions with an arbitrary
prefactor. It turns out that this prefactor is fixed by the requirement of self-
consistency of OPE’s. The latter is achieved when one uses the definition
(2.6). This explains the necessity of the factor 2N in Eq. (2.6).

We suggest the following OPE:

Q(z)Q+(0) = |z|−2/N2

{
I − z

[
D(0) + C(0) ln |z|2

]
− z̄

[
D̄(0) + C̄(0) ln |z|2

]
...
}

(5.39)

where D,C and D̄, C̄ are some new operators whose correlation functions are
to be found. Notice that in the conventional WZNW theory this operator
expansion would contain the unit operator and the operator in the adjoint
representation. However, the latter one has the conformal dimensions which
vanish in the replica limit,

∆ad = ∆̄ad =
cv

cv +N
=

r

r +N
→ 0 . (5.40)

Therefore, we have here a situation described in the previous Section: the
conformal dimensions of descendants of the unity operator become degen-
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erate with the dimensions of descendants of some other primary field (the
adjoint operator) which gives rise to logarithms.

Substituting (5.39) into Eq. (3.30) we get

〈Q(1)Q+(2)C(3)〉 =
1

2N2
|z12|−2/N2 z12

z13z23
,

〈Q(1)Q+(2)D(3)〉 = N−2 |z12|−2/N2 z12
z13z23

ln
∣∣∣∣ z12
z13z23

∣∣∣∣ . (5.41)

Setting z12 = ε in these equations and using the OPE (5.39) we get the
following set of two-point correlation functions:

〈D(1)C(2)〉 = − 1
2N2z122

,

〈C(1)C(2)〉 = 0,

〈D(1)D(2)〉 =
2 ln |z12|
N2z122

. (5.42)

There are similar expressions for C̄, D̄-operators with z being substituted
for z̄. Correlators of C, D and C̄, D̄ are equal to zero.

Setting z31 = ε in Eqs. (5.41) we deduce the following OPE:

C(z)Q(0) =
1

2N2z
Q(0) + ... ,

D(z, z̄)Q(0) = − 1
N2z

ln |z|Q(0) + ... (5.43)

with the same equations for Q+, except for a change of sign. These OPE’s
and the fact that C(z) does not depend on z̄ (∂̄〈C(z)D(0)〉 = 0), enable us
to identify C, C̄ as generators of a continuous symmetry. It is this symmetry
which is associated with the order parameter ρ.

Conformal field theories are characterized by their symmetry group and
a number C called ‘conformal charge’. Formally C is a coefficient in the pair
correlation function of stress-energy tensor operators. A physical meaning
of C becomes clear when we recall that a theory with an integer conformal
charge C = k is equivalent to the theory with k species of free bosonic fields.
Thus C in unitary theories counts an effective number of degrees of freedom.
The central charge of our theory is the sum of central charges of the free
bosonic field (C = 1) and the WZNW model on the SU(r) group,

C = 1 +
N(r2 − 1)
N + r

=
r

N
+O(r2) . (5.44)
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Thus, the resulting central charge vanishes, as it must be; however, according
to the definition of the replica limit (2.6) the physical correlation function
of the stress-energy tensors remains finite,

〈T (z)T (0)〉 = lim
r→0

2NCr

r

1
2z4

=
1
z4

. (5.45)

Superficially this looks like the effective central charge Ceff = 2. However,
Ceff does not appear in the fusion rules of the stress-energy tensor compo-
nents inside of correlation functions with matter fields, where we have

T (z)T (ξ) =
2

(z − ξ)2
T (ξ) +

1
z − ξ

∂ξT (ξ) + ... . (5.46)

As we have mentioned above, the numerical coefficient in (5.45) is fixed by
the self-consistency requirements of OPE.

Applying twice the OPE (5.39) to the four-point correlation function and
using the Ward identities for Q fields, we get the following set of identities:

〈T (z)C(1)D(2)〉 =
∑

j=1,2

{
1

(z − zj)2
+

1
z − zj

∂j

}
〈C(1)D(2)〉,

〈T̄ (z)C(1)D(2)〉 =
∑

j=1,2

1
z̄ − z̄j

∂̄j〈C(1)D(2)〉 = 0 , (5.47)

〈T (z)D(1)D(2)〉 =
∑

j=1,2

{
1

(z − zj)2
+

1
z − zj

∂j

}
〈D(1)D(2)〉

+
∑

j=1,2

1
z − zj

〈C(1)D(2)〉 ,

〈T̄ (z)D(1)D(2)〉 =
∑

j=1,2

{
1

z̄ − z̄j
∂̄j

}
〈D(1)D(2)〉+

∑
j=1,2

1
(z̄ − z̄j)2

〈C(1)D(2)〉.

We can then substitute the two-point correlation functions to get

〈T (z)C(1)D(2)〉 = − 1
2N2

1
(z − z1)2(z − z2)2

,

〈T (z)D(1)D(2)〉 =
2
N2

1
(z − z1)2(z − z2)2

(ln |z12| − 1/4) ,

〈T (z)D̄(1)D̄(2)〉 = − 1
2N2

z2
12

(z − z1)2(z − z2)2z̄2
12

. (5.48)
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Taking into account Eq. (5.45) and Eqs. (5.42) we conclude that these ex-
pressions are compatible with the following OPE:

C(z)D(ξ, ξ̄) = − 1
2N2

[
1

(z − ξ)2
+ T (ξ) + ...

]
, (5.49)

D(z, z̄)D(ξ, ξ̄) =
2
N2

[
ln |z − ξ|
(z − ξ)2

+ (ln |z − ξ| − 1/4)T (ξ)

− (z̄ − ξ̄)2

4(z − ξ)2
T̄ (ξ̄) + ...

]
(5.50)

and

T (z)C(ξ) =
C(ξ)

(z − ξ)2
+
∂ξC(ξ)
(z − ξ)

+ ... , (5.51)

T (z)D(ξ, ξ̄) =
D(ξ, ξ̄)
(z − ξ)2

+
C(ξ)

(z − ξ)2
+
∂ξD(ξ, ξ̄)
(z − ξ)

+ ... , (5.52)

T̄ (z̄)D(ξ, ξ̄) =
C(ξ)

(z̄ − ξ̄)2
+
∂ξ̄D(ξ, ξ̄)
(z̄ − ξ̄)

+ ... . (5.53)

From the OPE’s (5.43, 5.49), the Ward identity for the stress-energy
tensor and primary fields and the Knizhnik–Zamolodchikov equation (see [8])
we derive the following Ward identity:

〈C(z1)D(z2, z̄2)Q(ξ1, ξ̄1)...Q+(ξ2N , ξ̄2N )〉

=
1

2N2

∑
j

σj

z1 − ξj
〈C(z2)Q(ξ1, ξ̄1)...Q+(ξ2N , ξ̄2N )〉

− 1
2N2z2

12

〈Q(ξ1, ξ̄1)...Q+(ξ2N , ξ̄2N )〉 (5.54)

where σ = 1 for Q and −1 for Q+. Notice that the operator D does not
appear in the right hand side of this identity. This Ward identity is an
important one since it, together with Eq. (5.49) establishes an isomorphism
between the representations of the Virasoro algebra and the algebra of the
conserved current C.

Now let us study the fusion of Q with itself. For this end it is more
convenient to rewrite the four-point correlation function (3.28) in terms of
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the solutions regular at x→∞. For Eq.(3.20) these solutions are (N 6= 2)

W̃
(0)
1 (x) = (−x)−1/NF (1/N, 1/N, 1 + 2/N ; 1/x) ,

W̃
(0)
2 (x) = (−x)−1/NF (1 + 1/N, 1/N, 1 + 2/N ; 1/x) ,

W̃
(1)
1 (x) = (−x)1/NF (−1/N,−1/N, 1− 2/N ; 1/x) ,

W̃
(1)
2 (x) = −(−x)1/NF (1− 1/N,−1/N, 1− 2/N ; 1/x) . (5.55)

These solutions have extremely simple monodromy properties,

W̃
(0)
1 (1− x) = W̃

(0)
2 (x) , W̃

(0)
2 (1− x) = W̃

(0)
1 (x) ,

W̃
(1)
1 (1− x) = −W̃ (1)

2 (x) , W̃
(1)
2 (1− x) = −W̃ (1)

1 (x) . (5.56)

The crossing invariant form of the correlation function is

W (x, x̄) = α[W̃ (0)
1 (x)W̃ (0)

2 (x̄)− k2W̃
(1)
1 (x)W̃ (1)

2 (x̄) + (x→ x̄)] (5.57)

where

k =
Γ(1 + 2/N)Γ2(−1/N)
Γ(1− 2/N)Γ2(1/N)

.

The coefficient α whose numerical value we do not provide should be choosen
to match Eq. (5.57) to the correlation function (3.21) regular at x = 0. Let
us consider the limit z31 = ε→ 0 we have

G(1, 2; 1 + 0, 2 + 0) = 2α|ε|−4/N2
[
|z/ε|4(N−2)/N2 − k2|z/ε|−4(N+2)/N2

]
+ ... .

(5.58)
This expansion is valid only for N 6= 2. In this case it corresponds to the
standard operator product expansion:

Q(1)Q(2) = C
1/2
1 |z12|−4∆+2∆AOA(2) + C

1/2
2 |z12|−4∆+2∆SOS(2) + ... (5.59)

where C1, C2 are numerical coefficients and OA and OS are operators from
the asymmetric and the symmetric representations whose Young tableaus
are (1, 1, 0, ...) and (2, 0, ...) respectively. Their conformal dimensions are
given by Eq. (2.12):

∆A =
2−N

N2
, ∆S =

2 +N

N2
(5.60)

which reproduces the result obtained in the previous publications [2] and [3].
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At N = 2 the dimension of the antisymmetric operator vanishes. Now we
have a situation where there are three operators with zero conformal dimen-
sion - the unity, the adjoint operator and the operator in the antisymmetric
representation. This situation will be discussed elsewhere.

6. Deformation by the logarithmic operators

The conventional WZNW model remains an integrable theory even if one
changes the coefficient in front of the Tr(∂µg

+∂µg)-term in the action (4).
According to [8], such perturbation is equivalent to the J−1J̄−1Φab-operator
(recall that Φab is the primary field in the adjoint representation). The
corresponding beta function is

β(γ) =
2cv

cv +N
γ (6.61)

where γ is the deviation of the coupling constant from its critical value. In
our case cv = r → 0 and the beta function apparently vanishes. This means
that the perturbation becomes marginal and we have to reconsider the terms
of higher order in γ. Despite the fact that Φab does not appear now in
OPE, its decendants, that is the logarithmic operators D, D̄ do appear. We
suggest that the change in the coupling constant of the WZNW model (4) is
associated with the perturbation by the marginal operator γD̄D. We warn
the reader not to confuse this perturbation with a change of the disorder
strength A which is truely irrelevant, leading to a change of the cut-off M .
One physical mechanism of a marginal deformation away from criticality in
the model (4) was described in [1] (see Chapter 7). We conjecture that this
deformation is generated by the γD̄D-perturbation.

In the case of a deformation γ
∫

d2zO(z, z̄) caused by a usual marginal
operator O one has two possibilities depending on the operator product
expansion

O(z, z̄)O(0) = f
O(0)
|z|2

+ ... .

The first one is when f = 0, i.e. the OPE of O(z, z̄)O(0) does not contain
the operator O itself. In this case this operator is truly marginal and one
has the continuous family of conformal field theories parametrized by the
deformation parameter (coupling constant). The anomalous dimensions ∆
depend on this parameter. In the model (1) this situation is realized when
one introduces an Abelian disorder (see [3]). In the opposite case, when
f 6= 0, i.e. the OPE of O(z)O(0) contains O itself, there is a renormalization
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group (RG) flow of the coupling constant

dγ
d lnΛ

= fγ2 + ...

which means that the theory actually depends on the scale Λ.
Let us now study the same problem in a case where the theory is deformed

by the operator D̄D, which is truly marginal, because the OPE of D(z)D(0)
does not contain the operator D itself (see Eq.(5.50). In this case we shall
calculate the correlation function

G(z; γ) =
〈
A(z)B(0) exp(γ

∫
d2xD̄D(x)

〉
=
∑

n

γn

n!

∫
〈A(z)B(0) D̄D(x1)....D̄D(xn)〉d2x1 . . .d2xn (6.62)

where A and B are some operators (Q and Q+, for example) with the cor-
relation function

G(z; 0) = 〈A(z)B(0)〉 .

Using the OPE

D̄D(x)A(y) = a
ln2 |x− y|2

|x− y|2
A(y) , D̄D(x)B(y) = b

ln2 |x− y|2

|x− y|2
B(y)

(6.63)
one can find the first order in γ correction to the correlation function which
will be

γ

∫
〈A(z)B(0) D̄D(x)〉d2x (6.64)

= aγ〈A(z)B(0)〉
∫

d2x
ln2 |x− z|2

|x− z|2
+ bγ〈A(z)B(0)〉

∫
d2x

ln2 |x|2

|x|2

where in both integrals we integrate over x between 0 and z. Then it is easy
to find the following logarithmic correction:

γ
(a+ b)

3
ln3 |z|2G(z; 0) .

Now one can consider the next order corrections and sum all of them using
the same methods as in the case of conventional marginal operators (see [14]).
The result is

G(z; γ) = G(z; 0) exp
(
γ
a+ b

3
ln3 |z|2

)
(6.65)
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which is different from the case of a conventional marginal operator when
one has the first power of log in the exponent and not the third. The first
power in the exponent introduces the power factor

exp
(
(a+ b)γ ln |z|2

)
= |z|2(a+b)γ (6.66)

corresponding to the change in the anomalous dimension ∆A(λ) = ∆A(0)−
(a + b)γ, and the behaviour of the deformed correlation function is still
power-like. The are no logarithmic corrections after all. This is not true
anymore with the logarithmic operator, when the correlation function cannot
be written as a power at all. Thus we see that the correlation functions for
operators which have non-trivial OPE with the logarithmic operator D (like
our primary fields Q, for example) will have logarithmic corrections in the
deformed theory - even in the absence of the RG flow.

Let A = Q and B = Q+, then, according to Eq.(5.43), a = b = N−4. At
γ < 0 the correlation function (6.65) decays faster then any power. At γ > 0
it increases faster than any power. In this case the approximation leading
to Eq.(6.65) breaks down when the correlation function begins to increase,
that is at

|z| ∼M−1 exp
[
N

4
√
γ

]
. (6.67)

We speculate that for γ > 0 the symmetry is broken and the finite density
of states at ε = 0 is formed. This probably explains the finite DOS obtained
numerically in disordered d-wave superconductors by Wheatley [15].

7. Probability distribution of local DOS

Now we shall calculate the distribution function of local densities of states.
We can do it for a system of a finite size L. From Eq. (1.5) we know that in
the case of zero frequency we have

〈ρn(x)〉 = Mn〈[Tr(Q+Q+)]n〉 ∼ L−2∆n . (7.68)

The latter equality is valid in the leading order in 1/L; ∆n is given by
Eq.(2.13) being the smallest conformal dimension in the operator product of
n operators Tr〈(Q+Q+)〉. For N > 2 ∆n’s are negative for n > 1.

Let us imagine now that the result (7.68) comes from a local distribution
function of ρ :

〈ρn(x)〉 =
∫ ∞

0
P (ρ)ρndρ = An exp

{
2 lnL

[
(N − 1)n2

2N2
− n

2N

]}
, (7.69)
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where An may contain powers of lnL. The distribution function which repro-
duces this result is the famous log-normal distribution which is considered
as a characteristic feature of disordered systems [16–18]:

P (ρ) = D(ρ) exp
[
− 1

lnLη
ln2(ρLζ)

]
, (7.70)

ζ =
1
N

(3− 2/N) , η =
4(N − 1)
N2

(7.71)

where D(ρ) is a smooth function of ln ρ which we cannot determine.
From the fact that the frequency scales as L−2+2∆1 we can conjecture

that the distribution function of ρ(ω) is given by

P (ρω) = D(ρω) exp
[
− 1

ln(1/ωγ)
ln2(ρωω

−β)
]
,

β =
3N − 2
2N2 − 1

, γ =
4(N − 1)
2N2 − 1

. (7.72)

The authors of Ref. [3] have discussed this distribution without writing it
down explicitly.

It is worth remarking that the log-normal distribution also appears in
the Liouville theory (27). Indeed, according to Eq.(4.32), the conformal
dimension of the operator exp(nαφ) is given by 1

2nα(Q − nα), i.e. it has
the same quadratic n-dependence as ∆n (2.13). Repeating the previous
arguments we obtain for the vertex operator V = exp(αφ) the log-normal
distribution (7.70) with η = 4α2, ζ = αQ(3 − 2αQ). Since the logarithmic
operators appear in this theory only when Q = 2α, we conclude that their
presence is not directly related to multifractality of the target space.

8. Conclusions

In this paper we have demonstrated that in the general class of nonunitary
critical models a new phenomenon takes place – the emergence of logarith-
mic operators associated with a special hidden continuous symmetry. The
presence of this symmetry is intimately related to the fact that the order
parameter of our model – the local density of states at ε = 0 – does not
acquire a non-zero average. Since above mentioned features appear also in
quantum gravity [12], we anticipate a connection between quantum grav-
ity and critical models with disorder [19]. Our expectations are supported
by the recently discovered similarities between the conventional localization
theory and the Liouville theory [18,20].
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The physical meaning of the hidden symmetry in models with disorder
as well as in 2d gravity, remains obscure. It is clear, however, that this
symmetry should routinely appear in critical non-unitary theories where the
Hamiltonian cannot be diagonalized (in our paper this fact is expressed in
Eq. (4.34).

It follows also from our work that, at least for the model in question, the
replica approach is equivalent to the supersymmetric one. This is a pleasant
fact.

As we have said above, Eqs. (5.49) and (5.54) enable one in principle to
reformulate the theory in terms of representations of the current algebra
of the conserved current C(z). With this task being accomplished one can
abanbon replicas and treat the theory axiomatically as it is customary, for
instance, in the theory of the standard WZNW model. At present this
remains the biggest challenge.
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Appendix A.

In this Appendix we write down the relationship between conformal blocks
in the replica and the supersymmetric (SUSY) representations. According
to Ref. [3], the correlation functions in SUSY representation are products of
correlation functions of the Gaussian model and the SUk(N) WZNW theory
with k = −2N . According to Ref. [8], the conformal blocks of the latter
model are

W
(0)
1 (x) = (1− x)−1F (1/N,−1/N, 2;x) ,

W
(0)
2 (x) = − 1

2N
x(1− x)−1F (1 + 1/N, 1− 1/N, 3;x) . (A.1)

The second solutions contain logarithms. The relationship between two rep-
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resentations is established by the identity

x(1− 1/N2)F (1 + 1/N, 1− 1/N, 3;x) + 2(1− x)F (1/N,−1/N, 2;x)

= (1− xN2)F (1/N,−1/N, 1;x) (A.2)

using which one can write the expression for four-point function (3.18) in
terms of conformal blocks either of replica or supersymmetric models.
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