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We review attempts to apply the variational principle to understand the vacuum of

non-abelian gauge theories. In particular, we focus on the method explored by Ian

Kogan and collaborators, which imposes exact gauge invariance on the trial Gaussian

wave functional prior to the minimization of energy. We describe the application of

the method to a toy model, confining compact QED in 2+1 dimensions, where it works

wonderfully and reproduces all known non-trivial results. We then follow its applications

to pure Yang-Mills theory in 3+1 dimensions at zero and finite temperature. Among

the results of the variational calculation are dynamical mass generation and the analytic

description of the deconfinement phase transition.
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This review is dedicated to the memory of Ian Kogan. Ian was an ex-

traordinary physicist with an almost unimaginable breadth of interests. The

non-perturbative domain of QCD was but one of the many problems that

interested him. As in all areas that he worked in, Ian left a lasting mark in

this subject. During the last 10 years of his life, Ian periodically returned to

the variational approach described in this review, always with new ideas of

what to do next and how to do it better. Ian’s enthusiasm and bubbling en-

ergy was the driving force that caused the initial embryonic idea to develop

into a solid calculational approach which has already produced many inter-

esting results, and will hopefully keep on developing and improving. Ian’s

untimely death is a severe blow to all of his many friends. We miss him...

1. Introduction

Quantum Chromodynamics (QCD) was formulated more than 30 years ago.

There is very little doubt that it is, indeed, the correct theory of strong

interactions. An impressive amount of experimental data is successfully de-

scribed by QCD calculations in the high momentum transfer domain. For

these processes it is the short time - short distance dynamics that is rele-

vant. Fortunately, in this domain QCD is weakly coupled and thus precise

quantitative information can be obtained by analytic calculations.

Of course, high momentum transfer processes are not the only, and per-

haps not the most interesting, domain governed by QCD dynamics. The

vacuum (low energy, large distance) sector of the strong interactions ex-

hibits a wealth of phenomena which are both qualitatively striking at the

experimental level and notoriously difficult to establish within the funda-

mental framework of QCD. Understanding low energy phenomena in QCD,

such as confinement and chiral symmetry breaking or, in more general terms,

the strong coupling problem and the ground state structure of an asymp-

totically free non-abelian gauge theory is, without doubt, one of the main

problems in modern quantum field theory. In spite of years of attempts to

answer these questions we are still far from achieving this goal.

Many routes have been tried in approaching this problem. They range

from the highly computer intensive numerical programme of the lattice gauge

theory [1], through the universality based concepts of effective field theo-

ries [2] to the monopole and vortex inspired searches for the confinement

mechanism [3,4]. In recent years, there have also been attempts to approach

the non-perturbative physics of QCD utilizing information about supersym-

metric gauge theories [5].

While all these ideas are interesting and productive, each has its own
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drawbacks. The lattice gauge theory aims, in principle, at producing the

complete set of numbers that characterize the QCD spectrum, condensates,

various matrix elements, etc. This goal is, however, still not within reach.

Also often one would like to understand the underlying physics rather than

just calculate a given number albeit with an accuracy of a fraction of a

percent, and this is difficult within a numerical approach. The effective field

theory and dual superconductor approaches are based on simple physical

pictures, but have their starting points rather far from actual QCD, so that

making quantitative contact with QCD dynamics is very difficult. The SUSY

motivated route suffers from the same basic problem, as it is not in principle

clear how much the QCD dynamics is distorted by supersymmetry.

One should therefore welcome any method which attempts to analytically

obtain dynamical information directly from QCD, even if this information

may be partial and incomplete. Such a method should be, of course, in-

trinsically non-perturbative. Unfortunately, the arsenal of non-perturbative

methods to tackle strongly interacting quantum field theories (QFT) is, to

say the least, very limited. Methods that perform very well in simple quan-

tum mechanical problems are much more difficult to use in QFT. This is

true, for example, of the variational approach. In quantum mechanics it is

usually enough to know a few simple qualitative features in order to set up

a variational Ansatz which gives pretty accurate results, not only for the

energy of a ground state, but also for various other vacuum expectation val-

ues (VEV). In QFT one is immediately faced with several difficult problems

when trying to apply this method, as discussed insightfully by Feynman [6].

Nevertheless over the years there have been several attempts to apply dif-

ferent versions of the variational Rayleigh-Ritz method to QCD. The purpose

of this article is to review the results of this approach. We will concentrate

most of our attention on the recent incarnation of the variational method pi-

oneered by Ian Kogan with collaborators [14], which in terms of applications

and results made much more headway than any of the previous attempts.

This is not to say that it is free from problems and immune to criticism.

Still, we believe that this is a good time to summarize its status for two

reasons. First because some interesting quantitative results have already

been achieved; and, second, because there is plenty of room for improving

the method, and some aspects can be improved with relative ease, so that

clearly the method has not yet outlived its usefulness.

As mentioned earlier, when applying a variational method to QFT one is

faced with many difficulties. First of all there is a problem of generality of

a trial state. The trial state ought to be general enough to allow, through
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variation of its parameters, the relevant physics to be spanned. In quantum

mechanics the task can be put down simply to identifying a few critical

physical properties and consequently writing a compliant trial state. On the

other hand, the Hilbert space of QFT is enormous, and it is much more

difficult to identify “by pure thought” the relevant characteristics that have

to be probed.

Then there is the problem of calculability. That is, even if one had a very

good guess at the form of the vacuum wave functional (or, for that matter,

even knew its exact form) one would still have to evaluate expectation values

of various operators in this state,

〈O〉 =

∫

DφΨ∗[φ]OΨ[φ] . (1.1)

A calculation of this kind is, obviously, tantamount to the evaluation of a

Euclidean functional integral with the square of the wave functional (WF)

playing the role of the partition function. One should therefore be able to

solve exactly a d-dimensional field theory with the action

S[φ] = −logΨ∗[φ]Ψ[φ] . (1.2)

In quantum mechanics such a concern plays only a background role. What-

ever the chosen trial state might be, the calculation to be performed involves

integrals of functions. The evaluation of any such integral can be tackled, if

not always analytically then numerically, without major complications. In

QFT, where our ability to evaluate path integrals is, to say the least, lim-

ited, the calculability restriction on the trial wave functional is very severe.

Since in dimension d > 1 the only theories one can solve exactly are free

field theories, the requirement of calculability almost unavoidably restricts

the possible form of the trial WF to a Gaussian state

Ψ[φ] = exp

{

−1

2

∫

d3xd3y [φ(x) − ζ(x)]G−1(x, y) [φ(y) − ζ(y)]

}

(1.3)

with ζ(x) and G(x, y) being c-number functions.

Another serious problem is that of “ultraviolet modes”. The main mo-

tivation of a variational calculation in a strongly interacting theory is to

learn about the distribution of the low momentum modes of the field in the

vacuum wave functional. However, the VEV of the energy (and all other in-

tensive quantities) is dominated entirely by contributions of high momentum

fluctuations, for the simple reason that there are infinitely more ultraviolet

modes than modes with low momentum. Therefore, even if one has a very

good idea of how the WF at low momenta should look, if the ultraviolet
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part of the trial state is even slightly incorrect the minimization of energy

may lead to absurd results. Due to the interaction between the high and low

momentum modes, there is a good chance that the infrared (IR) variational

parameters will be driven to values which minimize the interaction energy,

and have nothing to do with the dynamics of the low momentum modes

themselves.

Finally, in gauge theories there is an additional complication: that of

gauge invariance. The allowed wave functions must be invariant under the

time independent gauge transformations. If one does not impose the Gauss’

law on the states exactly, one is not solving the right problem. The QCD

Hamiltonian is only defined on the gauge invariant states, and its action on

non gauge invariant states can be modified at will. Thus, by minimizing

a particularly chosen Hamiltonian without properly restricting the set of

allowed states, one is taking the risk of finding a “vacuum” which has nothing

to do with the physical one, but is only picked due to a specific form of the

action of the Hamiltonian outside the physical subspace. There are two

ways to approach this problem. One is to solve Gauss’ law operatorially à la

Dirac [7,8]. This leads to a “completely gauge fixed” formalism. Once this is

done any state can be chosen. The price to be paid is that the Hamiltonian

in any completely fixed gauge is very complicated. The calculation of the

expectation value of energy then is not analytically manageable. Another

way is to let the Gauss’ law constraint be, but write down trial states which

are explicitly gauge invariant. The Hamiltonian in such a calculation is

simple, but the trial states are usually very complicated. Thus the problem

of gauge invariance is linked very strongly with the problem of calculability.

2. The variational setup

So given that the only path integral that we know how to calculate analyt-

ically is that of a Gaussian wave function, what kind of progress can one

make with variational calculations in QFT? Surprisingly enough in QFT

without gauge symmetry a Gaussian ansatz can take one a long way. The

famous BCS theory of superconductivity is nothing but a variational analysis

of the interacting QFT using a Gaussian variational state [9]. The Gaus-

sian Ansatz has also been applied to self-interacting relativistic scalar and

spinor theories [10], where it gives non-trivial exact results in the large N

limit. The reason it works is quite simple. A Gaussian wave functional is

the exact ground state in quantum field theories of non-interacting fields,

massless or massive. As a trial state it is thus flexible enough to probe the

existence of a mass gap in the spectrum. Therefore, whenever the main ef-
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fect of the interaction is to dynamically generate (or significantly change)

the mass of the particles, the Gaussian Ansatz is adequate and informative.

Put another way, one can hope that the Gaussian WF is useful if the non-

perturbative physics is dominated by a single condensate, that of the lowest

possible dimension. From this point of view, it would seem that, it is per-

fectly reasonable to try a similar variational Ansatz in the Yang-Mills theory.

After all, it is strongly suggested by the QCD sum rules [15] that the pure

glue sector is strongly dominated by the lowest dimensional non-perturbative

condensate 〈F 2〉.
The difficulty comes from the necessity to impose gauge invariance. It

is very easy to see that in a non-abelian theory it is impossible to write a

Gaussian WF that satisfies the constraint of gauge invariance. The SU(N)

gauge theory is described by a Hamiltonian

H =

∫

d3x

[

1

2
Ea2

i +
1

2
Ba2

i

]

(2.1)

where

Ea
i (x) = i

δ

δAa
i (x)

,

Ba
i (x) =

1

2
εijk{∂jA

a
k(x) − ∂kA

a
j (x) + gfabcAb

j(x)A
c
k(x)} , (2.2)

and all physical states must satisfy the constraint of gauge invariance

Ga(x)Ψ[A] =
[

∂iE
a
i (x) − gfabcAb

i(x)E
c
i (x)

]

Ψ[A] = 0 . (2.3)

Under a gauge transformation U – generated by Ga(x) – the vector potential

transforms as

Aa
i (x) → AUa

i (x) = Sab(x)Ab
i (x) + λa

i (x) , (2.4)

where

Sab(x) =
1

2
tr
(

τaU †τ bU
)

, λa
i (x) =

i

g
tr
(

τaU †∂iU
)

, (2.5)

and τa are traceless Hermitian N by N matrices satisfying tr(τ aτ b) = 2δab.

A Gaussian wave functional

Ψ[Aa
i ] = exp

{

− 1

2

∫

d3x d3y [Aa
i (x) − ζa

i (x)]

× (G−1)ab
ij (x, y)

[

Ab
j(y) − ζb

j (y)
]}

(2.6)
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transforms under the gauge transformation as

Ψ[Aa
i ] → Ψ[(AU )ai ] . (2.7)

In the abelian case it is enough to take ∂iG
−1
ij = 0 to satisfy the constraint

of gauge invariance. In the non-abelian case, however, due to the homoge-

neous piece in the gauge transformation Eq. (2.4), no gauge invariant Gaus-

sian WF exists. Thus one has to abandon the notion of a simple Gaussian

variational Ansatz on the Hilbert space spanned by the canonical variables

{Aa
i (x), E

a
i (x)}.

One option is to attempt to solve the constraint Eq. (2.3) operatorially.

Such a procedure leads to a “completely gauge fixed” formalism. For example

if one solves Eq. (2.3) for Ea
3 and then performs Dirac quantization, one

obtains the Hamiltonian in the axial gauge. Another popular choice is to

express ∂iE
a
i in terms of the transverse components of electric field and

vector potential. This leads to the Hamiltonian in the Coulomb gauge.

In either case, after the Hilbert space has been reduced to the physical

space, the Gaussian trial state in the remaining degrees of freedom can be

considered. However, the actual calculations are extremely difficult since the

Hamiltonian in any completely fixed gauge is very complicated. Attempts

to perform such a calculation in the axial gauge were made in [16, 17]. The

problem encountered here is that the calculation is plagued by a spurious

infrared pole of the form 1/k3. The results depend very much on the way one

treats this pole, and there is no clear understanding as to the proper way to

do so. The Coulomb gauge calculation is even less straightforward, primarily

because the Coulomb gauge is known to suffer from Gribov ambiguity [18].

Thus the expression for the Hamiltonian that one obtains in this gauge is

only formal, and has to be very carefully defined by considering zeros of

the Fadeev-Popov operator. Non-perturbative analytic calculations in this

gauge are therefore all but impossible [19]. Attempts have been made to

perform numerical variational minimization taking account of the Gribov

horizon [20, 21], but the interpretation of the results is very difficult.

Another route, pursued in [22], is to modify the Gaussian trial state in

a “minimal” way to make it compatible with gauge invariance. Thus one

considers the state

Ψ[A] = exp

{

−
∫

d3x d3y Ba
i (x)W ab(x, y)Bb

j (y)Gij(x− y)

}

(2.8)

where W ab is the Wilson path ordered integral along the straight line con-

necting points x and y taken in the adjoint representation. Explicit intro-

duction of the Wilson line indeed makes the state gauge invariant. Some
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semi-quantitative arguments were given in [22] to the effect that the best

variational state of this type will have a short range variational function

G(x − y) and therefore will be confining at large distances. However the

state is so complicated that no reasonable way to get the actual calculation

going was ever found.

Finally, another series of works attempts to initially disregard the Gauss’

law constraint, and subsequently calculate corrections due to its implementa-

tion perturbatively [23–27]. A clear discussion of this method and the anal-

ogy with nuclear physics calculations is given in a recent review paper [28].

Although the method is mathematically very elegant, it is not suited for

systems whose energy may be lowered by a non-perturbative amount due to

the exact implementation of Gauss’ law. As we believe this to be the case

for the Yang-Mills theory, we strongly doubt the usefulness of this method

to obtain realistic results.a

In this review we will therefore restrict ourselves to the discussion of the

approach proposed in [14]. The scheme devised in [14] is rather straightfor-

ward. One opts for strictly preserving gauge invariance, and constructs a

gauge invariant wave functional by projecting the Gaussian wave functional

of Eq. (2.6) onto the gauge invariant sector. Restricting ourselves to the case

of zero classical fields (ζ = 0), the variational Ansatz proposed in [14] is

Ψ[Aa
i ] =

∫

DU(x) exp

{

−1

2

∫

d3x d3y AUa
i (x)G−1ab

ij (x, y) AUb
j (y)

}

(2.9)

with AUa
i defined in Eq. (2.4) and the integration is performed over the space

of special unitary matrices with the SU(N) group invariant measure.

The trial state defined in this way is explicitly gauge invariant. It is not

obvious at this stage that we will be able to deal with it analytically. But

as we will see in the following, some headway can be made using analytical

approximation schemes to calculate various expectation values in this state.

In this review we will discuss the applications of this technique to the pure

Yang-Mills theory at zero as well as at finite temperature.

But before plunging head first into the discussion of non-abelian Yang-

Mills theories, we will consider the much simpler, but nevertheless infor-

mative, case of a compact U(1) gauge theory in 2+1 dimensions [30]. The

theory is known to be confining, and our aim is to see whether the confining

properties of the ground state can be captured with our simple Ansatz. It

a There has also been some work on the application of the variational principle to determine excited

states, rather than the ground state [29]. In this review we restrict ourselves to the problem of

the vacuum.
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will also illustrate how the use of different field theoretical techniques allows

one to carry out the variational estimation of the ground state.

3. Compact QED in 2+1 dimensions

We start by setting up the Hamiltonian description of U(1) compact QED.

First of all, we need to determine what the Hilbert space of admissible states

is. It is clear that Gauss’ law should be implemented, and thus all the

physical states should satisfy

exp

{

i

∫

d2x ∂iφ(x)Ei(x)

}

|Ψ〉 = |Ψ〉 (3.1)

for an arbitrary continuous function φ(x). This is true for both compact

and non-compact QED. There is however a crucial difference between Gauss’

law in the compact theory and in the non-compact one. In the non-compact

theory Eq. (3.1) should be satisfied only for regular functions φ. For example,

the operator

V (x) = exp

{

i

g

∫

d2y εij
(x− y)j

(x− y)2
Ei(y)

}

(3.2)

which has the form of Eq. (3.1) with the function φ proportional to the

planar angle θ, i.e. φ = 1
gθ(x), does not act trivially on the physical states.

In fact, this operator creates a point-like magnetic vortex with magnetic flux

2π/g and therefore changes the physical state on which it acts.

In the compact theory the situation in this respect is quite different.

Point-like vortices with quantized magnetic flux 2πn/g cannot be detected

by any measurement. This translates into the requirement that the creation

operator of a point-like vortex must be indistinguishable from the unit op-

erator. In other words, the operator Eq. (3.2) generates a transformation

which belongs to the compact gauge group, and should therefore act trivially

on all physical states. Eq. (3.1) should therefore be satisfied also for these

operators.

Accordingly, the Hamiltonian of the compact theory must be also in-

variant under these transformations. The magnetic field itself, defined as

B = εij∂iAj, does not commute with V (x) (cf. Ref. [11]),

V †(x)B(y)V (x) = B(y) +
2π

g
δ2(x− y) . (3.3)

The Hamiltonian should therefore contain not B2 but rather a periodic func-
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tion of B. We will choose our Hamiltonian to be

H =
1

2
a2
∑

E2
ni −

1

g2a2

∑

cos ga2Bn . (3.4)

Since we will need in the following an explicit ultraviolet regulator, we

switched temporarily to lattice notation. Here a is the lattice spacing,

and the sums are respectively over the links and plaquettes of the two-

dimensional spatial lattice. The coefficients of the two terms in the Hamil-

tonian are chosen so that in the weak coupling limit, upon formal expansion

to lowest order in g2, the Hamiltonian reduces to the standard free Hamil-

tonian of 2+1 dimensional electrodynamics. Following Polyakov [32], we

work in the weakly coupled regime. Since the coupling constant g2 in 2+1

dimensions has dimension of mass, weak coupling means that the following

dimensionless ratio is small

g2a� 1 . (3.5)

Our aim now is to find variationally the vacuum wave functional of this

theory.

3.1. The variational Ansatz

As our variational trial ground state we choose the Gaussian wave function

of A projected onto the gauge singlet. The projection has to be performed

with respect to the full compact gauge group of Eq. (3.1).

To facilitate this, we define a vortex field AV (x) that satisfies (we suppress

the lattice spacing a henceforth)

∇×AV (x) =
2π

g
δ2(x) , ∇ · AV = 0 . (3.6)

This is the vector potential corresponding to a magnetic field that is zero

everywhere except at x = 0, where it takes the value 2π
g . The explicit solution

of Eq. (3.6) is

AV
i (x) = −1

g
εij

xj

x2
. (3.7)

The compact gauge invariance requires the variational wave function ψ[A]

to be invariant under shifts A→ A+AV . This is, of course, consistent with

the periodicity of H under B → B + 2π
g .
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Hence we define a field, shifted by a non-compact gauge transformation

φn and by an integer valued vortex distribution m(x),

A(φ,m)(x) = A(x) −∇φ(x) −
∑

y

m(y)AV (x− y) (3.8)

or, for short,

A(φ,m) = A−∇φ−AV ·m . (3.9)

We choose the gauge invariant and periodic trial wave function as

ψ[A] =
∑

{m(x)}

∫

[dφ] exp

[

−1

2

∫

d2xd2yA(φ,m)
x G−1(x− y)A(φ,m)

y

]

. (3.10)

Under a gauge transformation,

ψ[A+ ∇λ] = ψ[A] (3.11)

since λ can be absorbed into a shift in φ. The simple rotational structure

of Gij = δijG that appears in the variational wave function Eq. (3.10) is

consistent with perturbation theory. We also take G(x) to be a real function.

Our task now is to calculate the expectation value of the Hamiltonian in

this state, and to minimize it with respect to the variational function G. We

start by considering the normalization of the wave function.

3.2. The normalization integral

The norm of |ψ〉 is

Z ≡ 〈ψ|ψ〉 =
∑

{m,m′}

∫

[dφ][dφ′][dA]

× exp

[

−1

2
A(φ,m)G−1A(φ,m)

]

exp

[

−1

2
A(φ′,m′)G−1A(φ′,m′)

]

. (3.12)

We shift A by ∇φ′ +AV ·m′ and absorb the shift into φ and m, obtaining

Z =
∑

{m}

∫

[dφ][dA] e−
1
2
A(φ,m)G−1A(φ,m)

e−
1
2
AG−1A . (3.13)

Now we combine the exponents according to

A(φ,m)G−1A(φ,m) +AG−1A = 2A(φ/2,m/2)G−1A(φ/2,m/2)

+
1

2
S(φ,m)G−1S(φ,m) , (3.14)
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where

S ≡ ∇φ+AV ·m . (3.15)

It is easy to see that SG−1S contains no cross terms between m and φ. We

shift A by ∇φ/2 +AV ·m/2, and all the fields decouple. We have then

Z = ZAZφZv , (3.16)

where

ZA = detπG , (3.17)

Zφ =

∫

[dφ] e−
1
4
∇φ·G−1·∇φ =

(

det 4π
1

∇2
G

)1/2

, (3.18)

Zv =

∫

{m
n
′}

exp

[

− 1

4g2

∫

d2x d2ym(x)D(x− y)m(y)

]

. (3.19)

Here, Zv is the vortex “partition function”, with the “vortex-vortex interac-

tion” D given by

D(x′ − y′) = g2

∫

d2xd2y AV (x− x′) ·G−1(x− y)AV (y − y′) . (3.20)

We can split off the x = y terms in Eq. (3.19) and write

Zv =

∫

[dm(x)] exp

[

− 1

4g2

∫

x6=y
m(x)D(x− y)m(y)

]

∏

y

zm(y)2 , (3.21)

where we have defined the vortex fugacity

z = e
− 1

4g2 D(0)
. (3.22)

We expect the ultraviolet behavior of the variational function G to be

the same as in the free theory, viz. (for the Fourier transform),

G−1(k) ∼ k , (3.23)

so that

D(0) ∼
∫ Λ d2k

(2π)2
4π2

k2
G−1(k) ∼ 2πΛ (3.24)

and thus

z ∼ e
−π

2
Λ
g2 , (3.25)

where we use the momentum space cutoff Λ = a−1.
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In the weak coupling region we have z � 1, which allows us to restrict

possible values of m to 0,±1 in Eqs. (3.19, 3.21).

3.3. Expectation values

We are now ready to calculate the expectation value of the Hamiltonian

Eq. (3.4). Using the definition Eq. (3.10), we obtain

V −1

〈
∫

E2 d2x

〉

= − 1

V

〈

ψ

∣

∣

∣

∣

∣

∣

∑

n,i

∂2

∂A2
n,i

∣

∣

∣

∣

∣

∣

ψ

〉

=
1

2

∫

d2k

(2π)2
G−1(k) − π2

g2

∫

d2k

(2π)2
k−2G−2(k)K(k) ,

(3.26)

where K(k) is the correlation function of the vorticity

K(k) ≡
∫

d2x eikx 〈m(x)m(0)〉 . (3.27)

To calculate correlation functions of m we use a duality transformation

[31, 33–35]. We add an iJ · m term to the exponent in Eq. (3.19) and use

the formula

e
− 1

4g2 m·D·m
= const

∫

[dχ] e−g2χ·D−1·χeiχ·m (3.28)

to obtain

Zv[J ] =

∫

[dχ] e−g2χ·D−1·χ
∏

x

[1 + 2 cos(χ(x) + J(x))] . (3.29)

Noting that b

cos(χ+ J) = 〈cosχ〉0 : cos(χ+ J) := z : cos(χ+ J) : , (3.30)

we have

Zv =

∫

[dχ] e−g2χ·D−1·χ
∏

[1 + 2z : cos(χ+ J) :]

'
∫

Dχ exp

[

−g2χD−1χ+ 2z

∫

d2x : cos
(

χ(x) + J(x)
)

:

]

. (3.31)

b The normal ordering is performed relative to the free theory defined by the quadratic action in

Eq. (3.29).
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Correspondingly [30],

〈m(x)m(y)〉 = 2g2D−1(x− y) − 4g4
〈

D−1χ(x)D−1χ(y)
〉

(3.32)

and

K(k) = 2z +O(z2) , (3.33)

which, in this approximation, does not depend on momentum.

The propagator of χ is also easily calculated. To first order in z,

∫

d2x eikx 〈χ(x)χ(0)〉 =
1

2g2D−1(k) + 2z

=
D(k)

2g2
− z

D2(k)

2g4
+O(z2) . (3.34)

Thus we have

V −1

〈
∫

E2 d2x

〉

=
1

2

∫

d2k

(2π)2
G−1(k)− 2π2

g2
z

∫

d2k

(2π)2
k−2G−2(k) . (3.35)

The magnetic part is easily calculated since it has an exponential form

and, therefore, with our trial wave function leads to a simple Gaussian inte-

gral. We find

〈

eingBn

〉

= exp

[

−1

4
n2g2

∫

d2k

(2π)2
k2G(k)

]

〈

einπmn

〉

. (3.36)

The second factor is different from unity only for odd values of n. Using

Eq. (3.31) we find
〈

eiπm
〉

= e−4z . Expanding to leading order in g2 and z,

we get

〈

− 1

g2
cos gB

〉

=
1

4

∫

d2k

(2π)2
k2G(k) +

4

g2
z , (3.37)

where we have dropped an additive constant. Finally, the expression for the

variational vacuum expectation value of the energy to first order in z is

1

V
〈H〉 =

1

4

∫

d2k

(2π)2

[

G−1(k) + k2G(k) − 4π2

g2
z

(

k−2G−2(k) − 4

π2

)]

.

(3.38)
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3.4. Determination of the ground state

The expression Eq. (3.38) has to be minimized functionally with respect to

G(k). From Eqs. (3.22, 3.24) we find

δz

δG(k)
=

1

4g2
k−2G−2(k) z . (3.39)

The variation of Eq. (3.38) gives c

k2 −G−2(k) =
4π4

g4
zk−2G−2(k)

∫

d2p

(2π)2

[

p−2G−2(p) − 4

π2

]

. (3.40)

Equation (3.40) has the solution

G−2(k) =
k4

k2 +m2
, (3.41)

where

m2 =
4π4

g4
z

∫

d2k

(2π)2

[

k−2G−2(k) − 4

π2

]

. (3.42)

The main contribution to the integral in the gap equation, Eq. (3.42), comes

from momenta k2 � m2. For these momenta k2G−2(k) = 1. Therefore, we

see that Eq. (3.42) has a non-trivial solution. Using Eqs. (3.22, 3.24, 3.41)

we obtain

m2 =
4π4

g4
exp

(

−π
2

g2

∫

d2p

(2π)2
1

√

p2 +m2

)

∫

d2k

(2π)2

[

k2

k2 +m2
− 4

π2

]

,

(3.43)

which for g2a = g2/Λ � 1 can be simplified to (cf. eq (3.25))

m2 = 4π2 (π2 − 4)Λ4

g4
exp

(

− πΛ

2g2

)

, (3.44)

where we have restored the ultraviolet cutoff dependence explicitly. The

resulting m is the mass gap of the theory, in the sense that it is the inverse

of the spatial correlation length. Calculating, for example, the propagator

of magnetic field, we find

〈

eigBme−igBn

〉

=
∣

∣

〈

eigB
〉
∣

∣

2
e

g2

2
∇2G(m−n) , (3.45)

c We have dropped a term − 8π2

g2
zk−2G−3(k) from the right-hand side of Eq. (3.40) since it is

smaller by a factor of g2k

Λ2
than the term retained when one assumes G ∼ k−1 at large k.
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and at large distances (neglecting power-like prefactors),

∇2G(x) = −
∫

d2k

(2π)2
(k2 +m2)1/2eik·x ∼ e−mx . (3.46)

This dynamically generated mass is Polyakov’s result [36, 37]. Thus, we

recover in the Hamiltonian approach the first important result known about

compact QED: a finite mass gap m, as well as its correct dependence on the

coupling constant.

3.5. Spatial Wilson loops

We also want to see whether the charges are confined in our best variational

state. The simplest quantity that is related to confinement is the expectation

value of the Wilson loop. Therefore, we will calculate it in our ground state

Wl[C] =

〈

exp

(

ilg

∮

C
A · dx

)〉

=

〈

exp

(

ilg

∫

Σ
B dS

)〉

, (3.47)

where l is an integer and the integral is over the area Σ bounded by the loop

C. We have

Wl[C] =

〈

∏

S

eilπmn

〉

Z−1
A

∫

DA exp

(

−AG−1A+ ilg

∫

Σ
B dS

)

. (3.48)

The second factor is a Gaussian integral, which gives

WA = exp

(

l2g2

4

∫

Σ
d2x

∫

Σ
d2y∇2G(x − y)

)

. (3.49)

In the limit of large Σ the leading behavior of the exponent is

− l
2

4
g2Σ lim

k→0
k2G(k) = − l

2

4
g2mΣ . (3.50)

This gives the area law with the string tension

σ =
l2

4
g2m. (3.51)

The first factor in Eq. (3.48) is different from unity only for odd l. It can be

easily calculated but gives only subleading corrections to the string tension

[30].
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3.6. Potential between external charges

We have thus found that in the best variational state the Wilson loop has

an area law behavior. This usually signals confinement, and one is naturally

inclined to conclude that we have indeed found confinement with the string

tension related in the expected way to the dynamically generated scale, σ ∝
g2m. One must be however a tad more careful at this stage, since the spatial

Wilson loop does not directly give the potential between external charges.

Although in the Euclidean formulation there is no difference between spatial

and time-like Wilson loops, in the Hamiltonian approach this is not obvious.

It is, therefore, desirable to calculate directly the potential between external

charges.

How does one do this? Obviously one has to introduce into the theory

the source corresponding to the pair of external charges. The result is a

modification of Gauss’ law,

∂iEi(x) = gρ(x) , (3.52)

with ρ(x) = δ(x − x1) − δ(x − x2). As the external charges do not have

dynamics of their own, the Hamiltonian remains unchanged. The seemingly

simplest option seems to be to take the same Gaussian variational state

which minimizes the energy in the vacuum sector, and project it with the

modified projection operator corresponding to the new Gauss’ law. This

“minimally modified” state would be

ψ[A] =
∑

{m(x)}

∫

[dφ] exp

[

− 1

2

∫

d2xd2yA(φ,m)
x G−1(x− y)A(φ,m)

y

+ igρ(x)φ(x)

]

. (3.53)

One could then calculate the energy expectation value in this state and

take this as an estimate of the interaction potential. This procedure was

suggested in [38–40]. However it turns out that the estimate obtained for

the interaction energy in this way is very unreliable. For example, in the

compact QED3 case this calculation was performed in [41] with the resulting

energy being not even infrared finite. Instead, to get a reasonable estimate

for the energy one has to introduce additional variational parameters. In [41]
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the variational Ansatz was extended to

ψ[A] =
∑

{m(x)}

∫

[dφ] exp

[

− 1

2

∫

d2xd2yA(φ,m)
x G−1(x− y)A(φ,m)

y

+ iei(x)A
(φ,m)
i + igρ(x)φ(x)

]

. (3.54)

Here, the “classical” electric field profile ei(x) is to be varied so as to minimize

the energy. It turns out that with this extra variational parameter the

calculation gives very satisfactory results [41]. Without giving the details of

this calculation, we note that it confirms the expectation that the potential

between external charges is a linear function of the separation. The string

tension calculated this way coincides within ten percent with Eq. (3.51).

What have we learned from this toy model? First of all it is very encour-

aging that the Gaussian projected Ansatz is good enough to reproduce all

known results and, in particular, confinement and dynamical mass genera-

tion with parameterically correct values of string tension and mass.

We have also seen that we need some ingenuity to be able to carry out

the calculations with the variational wave function. We were able to do it

in this simple case as the coupling constant was small and we could utilize

existing methods for treating weakly interacting two dimensional systems. It

is quite clear that in 3+1 dimensions no such techniques will be available and

consequently the situation will be, in this respect, much more complicated.

Finally, we learned that we could not impose the Gauss’ law constraint on

the state perturbatively. Perturbatively, the operator V , Eq. (3.2), simply

vanishes. However, without including it into the projection procedure of

the Gaussian Ansatz, we would not get any non-trivial results; we would

have found the vacuum of a free massless photon without a dynamical mass

gap and with vanishing string tension. We fully expect that this aspect will

remain important in the application to QCD, to which we turn in the next

section.

4. The Yang-Mills theory

The dynamics of the pure glue sector of QCD is described by the Yang-Mills

(also often called gluodynamics) Hamiltonian

H =

∫

d3x

[

1

2
Ea2

i +
1

2
Ba2

i

]

, (4.1)
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where

Ea
i (x) = i

δ

δAa
i (x)

,

Ba
i (x) =

1

2
εijk

{

∂jA
a
k(x) − ∂kA

a
j (x) + gfabcAb

j(x)A
c
k(x)

}

, (4.2)

and all physical states must satisfy the constraint of gauge invariance

Ga(x)Ψ[A] =
[

∂iE
a
i (x) − gfabcAb

i(x)E
c
i (x)

]

Ψ[A] = 0 . (4.3)

We thus have to choose a set of variational states which are invariant

under the action of Eq. (4.3). We start then with a Gaussian state

Ψ0[A
a
i ] = exp

{

−1

2

∫

d3x d3y Aa
i (x)(G

−1)ab
ij (x, y)Ab

j(y)

}

, (4.4)

where the set of functions Gij
ab(x) are variational parameters.

We hope that the freedom allowed by variation of G−1 is sufficiently

wide to probe the non-perturbative physics of the Yang-Mills vacuum. As

discussed in the introduction, the states of the form Eq. (4.4) are not gauge

invariant and, therefore, as such do not belong to the physical Hilbert space

of gluodynamics. To remedy this problem we project the states onto the

gauge invariant subspace by gauge transforming them and integrating over

the whole gauge group d,

Ψ[Aa
i ] =

∫

DU(x) exp

{

−1

2

∫

x,y
AUa

i (x)G−1ab
ij (x, y)AUb

j (y)

}

(4.5)

with AUa
i defined as

AUa
i (x) = Sab(x)Ab

i (x) + λa
i (x) , (4.6)

and

Sab(x) =
1

2
tr
(

τaU †τ bU
)

, λa
i (x) =

i

g
tr
(

τaU †∂iU
)

(4.7)

with the τs, which are traceless N ×N hermitian matrices, normalized by

tr (τaτ b) = 2δab . (4.8)

The integration in Eq. (4.5) is performed over the space of special uni-

tary matrices with the SU(N) group invariant measure. This integration

d Hereafter we use the notational shorthand
R

x
≡

R

d3x.
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projects the original Gaussian state onto a color singlet. Due to the pro-

jection operation, the calculation of expectation values in this state is much

more involved than in the case of a simple Gaussian. A full functional min-

imization with respect to the variational functions G−1ab
ij (x, y) is, therefore,

beyond our calculational abilities.

In order to render calculations possible, we will impose several restric-

tions on the form of G−1, which will lead to considerable simplifications.

First, we require the state to be translationally invariant, that is we assume

that Lorentz symmetry is not spontaneously broken in the ground state,

restricting the form of G−1 to

G−1(x, y) = G−1(x− y) . (4.9)

Further, we will only consider matrices G of the form

Gab
ij (x− y) = δabδijG(x− y) . (4.10)

This form is certainly the right one in the perturbative regime. In the

leading order in perturbation theory, the non-abelian character of the gauge

group is not important, and the integration in Eq. (4.5) is basically over

the U(1)N2−1 group. The δab structure is then obvious; there is a complete

democracy between different components of the vector potential. The δij

structure arises in the following way. If it were not for the integration over

the group, G−1
ij would be precisely the (equal time) propagator of the electric

field. However, due to the integration over the group, the actual propagator

is the transverse part of G−1. It is easy to check that the longitudinal

part ∂iG
−1
ij drops out of all physical quantities. At the perturbative level,

therefore, one can take Gij ∼ δij without any loss of generality. Outside the

perturbative framework Eq. (4.10) is a genuine restriction on the Ansatz, and

we will adopt this form of the matrix G in order to simplify our variational

calculation.

We can use additional perturbative information to further restrict the

form of G. The theory of interest is asymptotically free. This means that

the short distance asymptotics of correlation functions must be the same as

in perturbation theory. Since G−1 in perturbation theory is directly related

to correlation functions of gauge invariant quantities (e.g. E2), we must have

G−1(x) → 1

x4
, x→ 0 . (4.11)

Finally, we expect the theory non-perturbatively to have a gap. In other
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words, the correlation functions should decay to zero at some distance scale

G(x) ∼ 0 , x >
1

M
. (4.12)

We will build this into our variational Ansatz in a fairly naive way. We will

take M to be our only variational parameter. This can be done by choosing

for G(x) a particular form that has the UV and IR asymptotics given by

Eqs. (4.11) and (4.12) such as, for example, a massive scalar propagator with

mass M . We find another parameterization slightly more convenient. The

form that will be used throughout this calculation has the Fourier transform

G−1(k) =

{
√
k2 if k2 > M2,

M if k2 < M2.
(4.13)

Using a massive propagator instead changes the results very little. Equation

(4.5), together with Eqs. (4.10, 4.13), defines our variational Ansatz.

We now have to calculate the energy expectation value in these states

and minimize it with respect to the only variational parameter left – the

scale M . Note that the perturbative vacuum is included in this set of states

and corresponds to M = 0. A non-zero result for M would therefore mean

a non-perturbative dynamical scale generation in the Yang-Mills vacuum.

Now we have to face up to the question of how to calculate averages in the

state Eq. (4.5).

4.1. The effective σ-model: the running coupling and the low

momentum limit

The expectation value of an arbitrary gauge invariant operator O is given

by the functional integral

〈O〉 =
1

Z

∫

DUDU ′〈O〉A ,

〈O〉A =

∫

DAe−
1
2

R

x,y
AUa

i (x)G−1(x−y)AUa
i (y)

×O e−
1
2

R

x′,y′
AU′b

j (x′)G−1(x′−y′)AU′b
j (y′) , (4.14)

where Z is the norm of the trial state. Two simplifications are immediately

obvious. First, for gauge invariant operators O, one of the group integrations

is redundant. Performing the change of variables A→ AU (and remembering

that both integration measures DU and DA are group invariant), we obtain
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(omitting the volume of SU(N) factor
∫

dU)

〈O〉 =
1

Z

∫

DU〈O〉A ,

〈O〉A =

∫

DAe−
1
2

R

x,y
AUa

i (x)G−1(x−y)AUa
i (y)

×O e−
1
2

R

x′,y′
Ab

j(x
′)G−1(x′−y′)Ab

j(y
′) . (4.15)

Also, since the gauge transform, Eq. (4.6), of a vector potential is a linear

function of A, for fixed U(x) this is a Gaussian integral, and can therefore

be performed explicitly for any reasonable operator O. We are then left only

with a path integral over one group variable U(x). But this is not easy.

Let us consider first the normalization factor Z. After integrating over

the vector potential we obtain

Z =

∫

DU exp{−Γ[U ]} (4.16)

with

Γ[U ] =
1

2
Tr lnM +

1

2
λ [G+ SGST ]−1λ , (4.17)

where multiplication is understood as matrix multiplication with the indices:

color a, space i and position (the values of space coordinates) x, i.e.

(AB)ac
ik (x, z) =

∫

y
Aab

ij (x, y)Bbc
jk(y, z) ,

λOλ =

∫

x,y
λa

i (x)O
ij
ab(x− y)λb

j(y) . (4.18)

The trace Tr is understood as a trace over all three types of indices. In

Eq. (4.17) we have defined

Sab
ij (x, y) = Sab(x)δijδ(x − y) ,

Mab
ij (x, y) =

[

STac(x)Scb(y) + δab
]

G−1(x− y)δij , (4.19)

where Sab(x) = 1
2 tr
(

τaU †τ bU
)

and λa
i (x) = i

g tr
(

τaU †∂iU
)

were defined in

Eq. (4.7) and tr is a trace over color indices only. Using the completeness

condition for SU(N),

τa
ijτ

a
kl = 2

(

δilδjk − 1

N
δijδkl

)

, (4.20)
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one can see that Sab is an orthogonal matrix

SabScb =
1

4
τ b
ijτ

b
kl

(

UτaU †
)

ji

(

Uτ cU †
)

kl
=

1

2
tr
(

τaτ b
)

= δab . (4.21)

We have written Eq. (4.17) in a form which suggests a convenient way of

thinking about the problem. The functional integral Eq. (4.16) defines a par-

tition function of a non-linear sigma model with the target space SU(N)/ZN

in three dimensional Euclidean space. The fact that the target space is

SU(N)/ZN rather than SU(N) follows from the observation that the action

Eq. (4.17) is invariant under local transformations belonging to the center of

SU(N). This can be trivially traced back to invariance of Aa
i under gauge

transformations that belong to the center of the gauge group.

Note that the quantity U(x) has a well defined gauge invariant mean-

ing, and it is not itself a matrix of a gauge transformation. A contribution

of a given U(x) to the partition function Eq. (4.16) and to other expecta-

tion values corresponds to the contribution to the same quantity from the

off-diagonal matrix element between the initial Gaussian and the Gaussian

gauge rotated by U(x). Consequently, if matrices U(x) which are far from

unity give significant contribution to the partition function, it means that

the off-diagonal contribution is large, and therefore that the simpleminded

non gauge invariant Gaussian approximation (which neglects the off diagonal

elements) misses important physics.

The action of this sigma model is rather complicated. It is a non-local and

a non-polynomial functional of U(x). There are, however, two observations

that will help us devise an approximation scheme to deal with the problem.

First, remembering that the bare coupling constant of the Yang-Mills theory

is small, let us see how it enters the sigma model action. It is easy to observe

that the only place it enters is in the second term in the action Eq. (4.17),

because λa
i (x) has an explicit factor 1/g. Moreover, it enters in the same way

as a coupling constant in a standard sigma model action. We can, therefore,

easily set up perturbation theory in our sigma model. With the standard

parameterization

U(x) = exp
{

i
g

2
φaτa

}

(4.22)

one gets λa
i (x) = −∂iφ

a(x) + O(g), Sab(x) = δab + O(g) and the leading

order term in the action becomes

1

16

∫

x,y
∂iφ

a(x)G−1(x− y)∂iφ
a(y) . (4.23)
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This is a free theory albeit with a non-standard propagator which at large

momenta behaves as

D(k) ∼ G(k)
1

k2
∼ 1

|k|3 . (4.24)

It is easy to see that in this sigma model perturbation theory the cou-

pling constant renormalizes logarithmically. The first order diagram that

contributes to the coupling constant renormalization is the tadpole. In a

sigma model with a standard kinetic term this diagram diverges linearly as
∫

d3k/k2, a sign of perturbative non-renormalizability. In our model, how-

ever, due to a non-standard form of the kinetic term Eq. (4.24), the diagram

diverges only logarithmically as
∫

d3k/k3. The form of the β-function is,

therefore, very similar to the β-function in ordinary QCD perturbation the-

ory. It is a straightforward albeit tedious matter to calculate the one loop

graphs in the σ-model perturbation theory and to extract the renormaliza-

tion of the coupling constant [42]. The result is

β(g) = − g3

(4π)2
4N . (4.25)

For comparison, the pure Yang-Mills β-function is

β(g) = − g3

(4π)2

(

4 − 1

3

)

N . (4.26)

The two almost coincide. The first contribution to the Yang-Mills β-function

which is reproduced by Eq. (4.25) is due to the longitudinal gluons, or in

other words to the implementation of Gauss’ law. Since we have imple-

mented Gauss’ law exactly on our trial wave function, this (major) part

of the β-function is correctly reproduced by the σ-model renormalization

group. The second contribution, which is not present in Eq. (4.25), is due to

the dynamics of transverse gluons. The fact that this contribution is miss-

ing in the σ-model suggests that our Ansatz is not perfect in the ultraviolet.

However, as this contribution is relatively small, we will not be discouraged

at this stage. We will simply think of Eq. (4.25) as representing the com-

plete one loop Yang-Mills β-function, keeping in mind that it would indeed

be very interesting to eliminate this discrepancy by perhaps exploring a less

simplistic form of the variational propagator G(k) [38].

Since the σ-model is asymptotically free, perturbation theory becomes

worse and worse as we go to lower momenta, and at some point becomes

inapplicable.
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Now, however, let us look at the other side of the coin: let us see how

the action looks for the matrices U(x) which are slowly varying in space.

Due to the short range of G(x), for U(x) which contain only momenta lower

than the variational scale M the action is local. In fact, with our Ansatz

Eq. (4.13), it becomes the standard local action of the non-linear σ-model

ΓL[U ] =
M

2g2
tr

∫

x
∂iU

†(x)∂iU(x) + . . . . (4.27)

In this low-momentum approximation we also neglected the space depen-

dence of Sab
ij (x) in the term SGST in Eq. (4.17); then, using the fact that S

is an orthogonal matrix Eq. (4.21), one gets SGST → G.

Strictly speaking, due to the ZN local symmetry of Eq. (4.17), the action

for the low momentum modes is slightly different. The derivatives should be

understood as ZN covariant derivatives. The most convenient way to write

this action would be to understand U(x) as belonging to U(N) rather than

SU(N) and introduce a U(1) gauge field by

ΓL =
1

2

M

g2
tr

∫

x
(∂i − ibi)U

†(x)(∂i + ibi)U(x) . (4.28)

This defines a sigma model on the target space U(N)/U(1), which is iso-

morphic to SU(N)/ZN . This subtlety is unimportant for large N and will

not play a significant role in our analysis.

The action Eq. (4.27) does not look too bad. Even though it still cannot

be solved exactly, it is amenable to analysis by standard methods, such as

the mean field approximation, which in 3 dimensions and for large number

of fields should give reasonably reliable results.

We adopt therefore the following strategy for dealing with the integra-

tion over the SU(N) group. We integrate perturbatively the high momentum

modes of the field U(x). This is the renormalization group (RG) transfor-

mation. We would like to integrate out all modes with momenta k2 > M2.

This procedure will necessarily generate a local effective action for the low

momentum modes. At the same time, because of the (presumed) equiva-

lence of the RG flows in QCD and our effective sigma-model, the effective

coupling constant will be the the running QCD coupling constant αQCD(M)

at scale M . This part of the theory can then be solved in the mean field

approximation. Clearly, in order for the perturbative RG transformation to

be justified, the QCD running coupling constant at the scale M must be

small enough. Our procedure makes sense provided the energy is minimized
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at a value of the variational parameter M for which

αQCD(M) < 1 . (4.29)

We will check whether this consistency condition is satisfied at the end of

the calculation. In the next section we will calculate the expectation value

of the Hamiltonian in the lowest order of this approximation scheme, and

perform the minimization with respect to M .

4.2. Solving the variational equations; dynamical mass

generation

We will now calculate the energy, i.e. the expectation value of the Hamil-

tonian Eq. (4.1). We first perform the Gaussian integrals over the vector

potential at fixed U(x). Let us consider, for example, the calculation of the

chromoelectric energy,

∫

x
〈Ea2

i 〉A =

∫

x

〈

− δ

δAa
i (x)

δ

δAa
i (x)

〉

A

= TrG−1 −
∫

x,y,z
G−1(x− y)G−1(x− z)〈Aa

i (y)A
a
i (z)〉A . (4.30)

The Gaussian averaging over A is easily performed. Defining for convenience

aa
i (x) =

∫

y,z
λb

i(y)G
−1(y − z)Sbc(z)(M−1)ca(z, x) , (4.31)

one gets

∫

x
〈Ea2

i 〉A = 3(N2 − 1)

∫

x
G−1(x, x) −

∫

x
(G−1M−1G−1)aa

ii (x, x)

−
∫

x,y
aa

i (x)G
−2(x− y)aa

i (y) . (4.32)

For the chromomagnetic contribution the calculation is straightforward and

one gets

〈(εijk∂jA
a
k)

2〉A = (εijk∂ja
a
k)

2 + εijkεilm∂
x
i ∂

y
l (M−1)aa

km(x, y)|x=y , (4.33)

〈∂jA
a
kA

b
lA

c
m〉A = ∂ja

a
ka

b
la

c
m + ∂ja

a
k(M−1)bclm(x, x)

+ ab
l∂

x
j (M−1)ac

km(x, y)|x=y + ac
m∂

x
j (M−1)ab

kl (x, y)|x=y , (4.34)
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and

εijkεilmf
abcfade〈Ab

jA
c
kA

d
lA

e
m〉A = 2fabcfadeab

ja
c
ka

d
l a

e
m

+ 8fabcfadeab
ia

d
i (M−1)ce(x, x)

+ 12fabcfade(M−1)bd(x, x)(M−1)ce(x, x) . (4.35)

Here, we have used the obvious notation Mab
ij = Mabδij . The next step is

to decompose the matrix field U(x) into low and high momentum modes.

In general this is a non-trivial problem. However, since we are only going to

integrate over the high momenta in the lowest order in perturbation theory,

for the purposes of our calculation we can write

U(x) = UL(x)UH(x) , (4.36)

where UL contains only modes with momenta k2 < M2, and UH has the

form UH = 1 + igτaφa
H and φH contains only momenta k2 > M2. This

decomposition is convenient, since it preserves the group structure. Also,

since the measure DU is group invariant, we can write it as DULDUH .

With this decomposition we have

λa
i (x) = Sab

H (x)λb
iL(x) + λa

iH(x) . (4.37)

Further simplifications arise, since we only have to keep the leading piece in

φa
H . In this approximation:

Sab(x) = Sab
L (x) ,

Mab(x, y) = 2δabG−1(x− y) ,

λa
i (x) = λa

iL(x) + λa
iH(x) ,

aa
i (x) =

1

2
λa

iL(x) +
1

2
λb

iH(x)Sba
L (x) . (4.38)

The chromoelectric part of the energy can then be written

∫

x
〈Ea2

i 〉A =
3(N2 − 1)

2

∫

x
G−1(x, x) − 1

4

∫

x,y
λa

iL(x)G−2(x− y)λa
iL(y)

− 1

4

∫

x,y
λa

iH(x)G−2(x− y)λa
iH(y) . (4.39)

The cross term vanishes since to this order, as we shall see, there is a de-

coupling between the high and the low momentum modes in the action, and

therefore the product factorizes, and also 〈λa
iH〉 = 0. The Ansatz Eq. (4.13)
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allows us to simplify this expression further. Recalling that λL(x) contains

only momenta below M , it is immediate to see that

∫

x,y
λa

iLG
−2(x− y)λa

iL(y) = M2

∫

x
λa

iL(x)λa
iL(x) . (4.40)

We can then rewrite Eq. (4.39) as

∫

x
〈Ea2

i 〉A =
3(N2 − 1)

2

∫

G−1(x, x)

− M2

4

∫

x
λa

iL(x)λa
iL(x) − 1

4

∫

x,y
λa

iH(x)G−2(x− y)λa
iH(y) . (4.41)

The contribution of the magnetic term to the energy is very simple. All

cross terms between the low and high momentum modes drop out. Some

vanish for the same reason as the cross terms in Eq. (4.39), and others

because they are explicitly multiplied by a power of the coupling constant.

Since our approximation is the lowest order in g, except for the non-analytic

contributions that come from the low mode effective action, those terms do

not contribute. In fact, the entire low momentum mode contribution drops

out of this term. The reason for this is that the only term which could give

a leading order contribution, i.e.

∫

(εijk∂jλ
a
kL)2 (4.42)

can be rewritten as

(fa
ijL)2 +O(g2) , (4.43)

where fa
ijL is the “magnetic field” corresponding to the “vector potential”

λa
iL. However, λL has the form of a pure gauge vector potential. Therefore

fa
ijL = 0, and the contribution of this term is higher order in g2. One can

check a posteriori that including this term indeed changes the energy density

in the best variational state by a small amount (O(10%)), but has no effect

at all on the best value of the variational parameter M . The entire magnetic

field contribution to the energy is then

1

2
〈Ba2

i 〉A =
1

8
(εijk∂jλ

a
kH)2 +

N2 − 1

2
∂x

i ∂
y
i G(x− y)|x=y . (4.44)

The last step is to perform an averaging over the U -field. For convenience,

we rewrite the complete expression for the energy density (here V =
∫

d3x
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is a space volume)

〈2H〉
V

=
3(N2 − 1)

2
G−1(x, x) + (N 2 − 1) ∂x

i ∂
y
i G(x− y)|x=y

− 1

4V

∫

x,y
〈λa

iH(x)G−2(x− y)λa
iH(y)〉U +

1

4
〈(εijk∂jλ

a
kH)2〉U

− M2

4V

∫

x
〈λa

iL(x)λa
iL(x)〉U , (4.45)

where the averaging over the U -field should be performed with the sigma

model action Eq. (4.17). In our approximation this action has a simple

form. Using Eq. (4.38) we obtain

Γ =
1

4

∫

x,y
λa

iH(x)G−1(x− y)λa
iH(y) +

M

4

∫

x
λa

iL(x)λa
iL(x) . (4.46)

The low momentum mode part is precisely equal to ΓL in Eq. (4.28). The

only difference is that the coupling constant that appears in this action

should be understood as the running coupling constant at the scale M . This

obviously is the only O(1) effect of the high momentum modes on the low

momentum effective action

ΓL =
1

2

M

g2(M)
tr

∫

x
(∂i − ibi)U

†(x)(∂i + ibi)U(x) . (4.47)

We are now in a position to evaluate the VEV of the energy. The contri-

bution of the high momentum modes is immediately calculable. Using the

parameterization UH(x) = 1 − i
2gφ

aτa, we find that φa are free fields with

the propagator

〈φa(x)φb(y)〉 = 2δab[∂x
i ∂

y
i G

−1(x− y)]−1
∣

∣

∣

p2>M2
. (4.48)

Also to this order λa
iH(x) = ∂iφ

a(x) and therefore εijk∂jλ
a
kH = 0. Using

Eq. (4.48) one finds

1

4

∫

x,y
〈λa

iH(x)G−2(x− y)λa
iH(y)〉U = V

N2 − 1

2

∫ Λ

M

d3k

(2π)3
G−1(k) , (4.49)

where Λ is the ultraviolet cutoff, and the contribution of the high momentum
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modes to the energy (first two lines in Eq. (4.45)) is

2E0

V
= (N2 − 1)

{
∫ Λ

0

d3k

(2π)3
[

G−1(k) + k2G(k)
]

+
1

2

∫ M

0

d3k

(2π)3
G−1(k)

}

=
N2 − 1

2π2

{
∫ M

0
k2dk

[

3

2
M +

k2

M

]

+ 2

∫ Λ

M
k3dk

}

=
N2 − 1

10π2
M4 + ... . (4.50)

Terms omitted in Eq. (4.50) depend on Λ, but are independent of the vari-

ational scale M .

We now have to evaluate the contribution of the low momentum modes.

It is clear from the form of the action Eq. (4.47) that this contribution, as

a function of M , will not be featureless. The most convenient way to think

about it is from the point of view of classical statistical mechanics. Com-

paring Eqs. (4.45) and (4.47), we see that we have to evaluate the internal

energy of the sigma model (with the UV cutoff M) at a temperature propor-

tional to the running coupling constant g2(M). For large M , the coupling

constant is small, which corresponds to the low temperature regime of the

sigma model. In this regime the global SU(N)⊗SU(N) symmetry group of

the model is spontaneously broken. Lowering M , we raise g2(M), and there-

fore the temperature. At some critical value gC , the σ-model undergoes a

phase transition into the unbroken (disordered) phase. Clearly, in the vicin-

ity of the phase transition all thermodynamical quantities will vary rapidly,

and therefore this is a potentially interesting region of coupling constants.

Before analyzing the phase transition region let us calculate E(M) for

large M . In this regime the low momentum theory is weekly coupled. The

calculation is straightforward, and to lowest order in g2 gives

1

4
M2〈λa

iL(x)λa
iL(x)〉 =

N2 − 1

12π2
M4 . (4.51)

Putting this together with the high momentum contribution, we find

E(M)

V
=
N2 − 1

120π2
M4, M � ΛQCD . (4.52)

This indeed is the expected result. The energy density monotonically in-

creases as M 4, with a slope which is given by the standard perturbative

expression. Note, however, that the slope is very small, and the contribu-

tion of the low momentum modes to the energy is negative. Therefore, if

the internal energy of the sigma model grows significantly in the phase tran-
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sition region, the sign of E(M) could be reversed e and the energy will then

be minimized for M in this region.

To see whether this indeed happens, we will now study the low momentum

sigma model in the mean field approximation. We rewrite the partition

function by introducing a (hermitian matrix) auxiliary field σ which imposes

a unitarity constraint on U(x)

Z =

∫

DUDσDbi exp (−Γ[U, b, σ]) , (4.53)

with

Γ[U, b, σ] =
M

2g2(M)
tr

∫

x

[

(∂i − ibi)U
†(x) (∂i + ibi)U(x)

+ σ
(

U †U − 1
)]

. (4.54)

The role of the vector field bi is to impose a U(1) gauge invariance and,

thereby, to eliminate one degree of freedom. As far as the thermodynamical

properties are concerned, its effect is only felt as an O(1/N 2) correction. At

the level of accuracy of the mean field approximation, we can safely disregard

it, which we do in the following. The mean field equations are

〈U †U〉 = 1 , (4.55)

〈σU〉 = 0 . (4.56)

From Eq. (4.56) it follows that either 〈σ〉 = 0, 〈U〉 6= 0 (the ordered, broken

symmetry phase with massless Goldstone bosons), or 〈σ〉 6= 0, 〈U〉 = 0

(the disordered, unbroken phase with massive excitations). We are mostly

interested in the disordered phase, since there the mean field approximation

should be reliable. Since the symmetry is unbroken, the expectation value

of σ should be proportional to a unit matrix

〈σαβ〉 = σ21αβ . (4.57)

Equation (4.55) then becomes

2N2 g
2(M)

M

∫ M

0

d3k

(2π)3
1

k2 + σ2

=
N2g2(M)

π2

(

1 − σ

M
arctan

M

σ

)

= N . (4.58)

e The energy, of course, never becomes negative, since Eq. (4.50) contains a divergent M-

independent piece. Here we concentrate only on the M-dependence of E.
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The gap equation, Eq. (4.58), has solution only for couplings (temperatures)

g2(M) larger than the critical coupling (temperature) g2
C , which is deter-

mined by the condition that σ = 0,

αC =
g2
C

4π
=
π

4

1

N
. (4.59)

The low momentum mode contribution to the ground state energy is

N2M

∫ M

0

d3k

(2π)3
k2

k2 + σ2
=
N2

2π2
M

[

1

3
M3 − σ2M + σ3 arctan

M

σ

]

. (4.60)

The final mean field expression for the ground state energy density is f

E =
N2

4π2
M4

[

− 2

15
+

σ2

M2

αC

α(M)

]

, (4.61)

where α(M) is the QCD coupling at the scale M , αC is given by Eq. (4.59),

and σ is determined by

σ

M
arctan

M

σ
=
α(M) − αC

α(M)
. (4.62)

The energy as a function ofM is plotted in Fig. 1 forN = 3. Qualitatively

it is the same for any N . The minimum of the energy is obviously at the

point α(M) = αC . Using the one-loop Yang-Mills β function and ΛQCD =

150 MeV, we find for N = 3

M = ΛQCD e
24
11 = 8.86ΛQCD = 1.33GeV . (4.63)

We thus find that the best variational state is non-perturbative and is

characterized by a dynamically generated mass scale. To get a rough idea

whether the value of this mass is reasonable we have calculated the value

of the gluon condensate (α/π)〈F a
µνF

a
µν〉 = (2α/π)

(

〈Ba 2
i 〉 − 〈Ea 2

i 〉
)

. These

calculations are straightforward, and yield g

〈Ea 2
i 〉 = − 1

24π2
N2M4 , 〈Ba 2

i 〉 = − 1

40π2
N2M4 , (4.64)

f We do not distinguish between N2 and N2 − 1 since we have neglected the contribution of the

U(1) gauge field. The errors are of order 1/N2 and even for N = 2 are very likely smaller than

the error introduced by using the mean field approximation in the first place.
g We have again kept only the M-dependent pieces. Each one of the quantities 〈Ea 2

i 〉 and 〈Ba 2
i 〉

is of course positive, due to positive UV divergent, but M independent, pieces. It is easy to check

that the energy density E = 1/2(〈Ea 2
i 〉+ 〈Ba 2

i 〉) = −(1/30π2)N2M4 coincides with the first term

in Eq. (4.61), as it must.
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Figure 1. Energy density of a variational trial state as a function of the variational parameter

M in units of ΛQCD . The energy is only shown for M < 8.86ΛQCD , which corresponds to the

disordered phase of the effective low momentum σ-model.

and finally

α

π
〈F a

µνF
a
µν〉 =

N

120π2
M4 = 0.008 GeV4 . (4.65)

The preferred phenomenological value of this condensate is 0.012 GeV4 [15],

although the uncertainty in this number is large. Considering this, and the

unsophisticated nature of our calculation, the agreement is quite reasonable.

A natural question is of course whether one can assign to M directly

the meaning of some physical mass? In the initial Gaussian wave function,

before the projection, it appears as the “gluon mass”. However the projec-

tion changes the wave functional very considerably, and the direct meaning

of M (apart from it being a dimensional variational parameter) is not so

clear. Nevertheless, naively one expects that, as the gauge invariant opera-

tors E2 −B2 and EB to leading order in g2 are quadratic in the gluon field,

the scale 1/2M should appear as the correlation length in these correlators.

Thus we are tempted to identify 2M with the glueball mass. An attempt

to calculate glueball correlation functions was made in [43]. The result is

somewhat unexpected. It was found in [43] that the scale 2M does indeed

dominate the long distance behavior of the correlation function of the pseu-

doscalar glueball. However it appears that the scalar glueball correlator at

long distances is dominated by the scale σ – the gap of the effective σ-model.

If correct, this would mean that the phenomenologically acceptable scalar

glueball mass can only arise in our calculation if the phase transition in the

effective σ-model is of the first order with significant latent heat (see next

subsection). This point clearly warrants further investigation.
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4.3. Is it safe?

For N = 3, the value of the QCD coupling constant at the variational scale

is αC = 0.26. It is reasonably small, so that the consistency condition for the

perturbative integration of the high momentum modes is satisfied. However,

it is not so small that higher order corrections would be negligible. We

expect therefore that including higher orders in perturbation theory could

give corrections to our result for α(M) of order 25%. Since M depends

exponentially on α(M), such change in α may change the value of M by

a factor of 2 − 3. Consequently our result for the dynamical scale M and

other dimensional quantities should be taken only as an order of magnitude

estimate. In particular, the value of the condensate 〈F 2〉 is proportional

to the fourth power of M , and would change dramatically as a result of a

moderate change of αc. This is the normal state of affairs in theories with

a logarithmically running coupling constant. The best accuracy is always

achieved for dimensionless quantities, since those are usually slowly varying

functions of α. The overall scale depends on α exponentially, and therefore

always has the largest error.

The use of the mean field approximation to analyze the σ-model intro-

duces uncertainties into the result. As a rule, the mean field approximation

gives a good estimate of the critical temperature. Sometimes, however, it

gives wrong predictions for the order of the phase transition. We believe

that this is indeed the case here. The mean field approximation indicates

that the phase transition is second order. The mass gap in the sigma model

vanishes continuously at the critical point. The universality class describing

the symmetry breaking pattern (SU(N) ⊗ SU(N)) /SU(N) was considered

in the context of finite temperature chiral phase transition in QCD. The

results of ε expansion [44] and also numerical simulations [45, 46] strongly

suggest that the phase transition is of first order except for N = 2. In our

case there is an additional ZN symmetry in the game. However its presence

is likely only to increase the latent heat rather than turn the transition into

a second order one. The reason is that the ZN gauge invariant theory allows

for the existence of topological defects, the ZN strings, and condensation of

topological defects frequently leads to discontinuous phase transitions.

Nevertheless, we believe that the bulk of our results is robust against

this uncertainty. The mean field approximation should be reliable in the

regime where the mass gap in the sigma model is not too small. At the

point M = 4.5ΛQCD we find

σ = 0.23M, α(M) = 0.38 . (4.66)
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Since the gap of the σ-model is at this point of the order of the UV cutoff, the

mean field approximation should be reliable here. Perturbation theory is also

still reasonable at this value of α. The fact that the energy is negative and

has a minimum for some α(M) < 0.38, seems to be, therefore, unambiguous.

In fact, independently of the mean field calculation, it is physically very

plausible that the energy is minimized precisely at the critical temperature,

on the disordered side of the phase transition (if it is of the first order). Con-

sider first, the contribution of the high momentum modes to the ground state

energy, Eq. (4.50). It is proportional to M 4 with a fixed (M -independent)

proportionality coefficient x = (N 2−1)/10π2. Consider now the low momen-

tum contribution in the largeM region, Eq. (4.51). It is again proportional to

M4 with the coefficient y0 = N2/12π2. The proportionality coefficient of the

low momentum contribution at the phase transition point, according to our

calculation, is twice as big yC = 2N2/12π2. This is physically quite trans-

parent. In the large M , low-temperature, regime the global SU(N)⊗SU(N)

symmetry of the sigma model is broken down spontaneously to SU(N). This

leads to the appearance of N 2 − 1 massless Goldstone bosons. At zero tem-

perature, those are the only propagating degrees of freedom in the model.

All the rest have masses of the order of the UV cutoff, and therefore do not

contribute to the internal energy. When the temperature is raised (M is

lowered), the Goldstone bosons remain massless and other excitations be-

come lighter. If the transition is second order, at the phase transition point

the symmetry is restored, and one should have a complete multiplet of the

SU(N)⊗SU(N) symmetry of massless particles. The dimensionality of this

multiplet is 2N 2. The contribution of every degree of freedom to the in-

ternal energy is still roughly the same as at zero temperature. This is so,

since, although at the phase transition the particles are interacting, critical

exponents of scalar theories in 3 dimensions are generally very close to their

values in a free theory [47]. The internal energy of the σ-model at this point

therefore should be roughly twice its value at zero temperature. Moving

now to higher temperatures, all the particles become heavier, and therefore

their contribution to internal energy decreases. The internal energy therefore

should have a maximum at the phase transition temperature.

Note that the ground state energy of the Yang-Mills theory is the dif-

ference between the high momentum contributions and the internal energy

of the low mode sigma model. Already at zero temperature, these two con-

tributions differ only by 20%, which is why the coefficient in the expression

Eq. (4.52), even though positive, is so small. At the critical point, where the

low momentum mode internal energy is twice as large, the chances of the
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slope becoming negative are very good. This is what happens in our mean

field analysis but, according to the previous argument, this in large measure

is independent of the approximation. If the phase transition is first order

one should be more careful. The internal energy then changes discontinu-

ously across the phase transition. The particles in the disordered phase are

always massive, and the internal energy is smaller than in the case of the

second order phase transition. However, if the transition is only weakly first

order the same argument still holds (the fact that the mean field predicts a

second order phase transition may be an indication that if it is in fact first

order, it is only weakly so). It does seem quite likely that the Yang-Mills

ground state energy will become negative, since it only needs the internal

energy of the σ-model to grow by 20% at the phase transition relative to its

zero temperature limit. In this case there will be a finite latent heat, which

means that the internal energy in the disordered (high temperature) phase is

higher. The Yang-Mills variational ground state energy, therefore, will have

its minimum in the disordered phase.

There is good reason to believe, therefore, that these results are qualita-

tively correct, and will survive the improvement of the approximation.

4.4. Instantons

Instantons are believed to play a very important role in the non-perturbative

dynamics of QCD [13]. It is, therefore, interesting to see if our variational

calculation has any relation to the instanton approach.

The first thing is to understand how we expect to see instantons in this

formalism. Instantons are localized, finite-action classical solutions of the

field equations of QCD in Euclidean space-time. Physically they represent

tunneling processes between topologically distinct vacuum sectors with the

exponent of the instanton action being equal to the transition probability

between two of these vacuum states. Although the notion of the instanton

is intrinsically Euclidean, the tunneling between different vacuum sectors

can be formulated both in the Hamiltonian and the Lagrangian languages.

In fact, the gauge projected variational approach we discuss here is very

well suited for this purpose. The projection of the initial Gaussian onto

the gauge invariant subspace is achieved by the integration over the gauge

group. The effective σ-model arises as an integration over the relative gauge

transformations between the two Gaussian states in the linear superposition

Eq. (4.5). The Boltzmann factor exp(−Γ[U ]) for a given matrix U is therefore

just the overlap of the initial and the gauge rotated state or, in other words,
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the transition amplitude between the two states h. The instanton transition

is precisely a transition of this type, where the two states (at t → −∞
and t → +∞) are related by a large gauge transformation. The matrix of

this large gauge transformation must carry a non-zero topological charge

Π3(SU(N)).

The integration measure over U indeed includes integration over topo-

logically non-trivial configurations. The finiteness of the action Eq. (4.17)

requires that the matrix U approaches a constant value at infinity. This

identifies all points at spatial infinity, hence the physical space of the model

is S3. Field configurations are maps from S3 into the manifold of SU(N)

and are classified by their winding number, or topological charge, which is

an element of the homotopy group Π3(SU(N)) = Z. The σ-model action

in a given topological sector is minimized on some configuration which is a

solution of classical σ-model equations of motion. In particular, the solution

with a unit topological charge is expected to have a “hedgehog” structure

much like the topological soliton in the Skyrme model [12]. The integral

over U in the steepest descent approximation is saturated by these classical

solutions.

These σ-model configurations that belong to a non-trivial topological

sector with a unit winding number represent QCD transitions between the

topologically distinct sectors. The topologically non-trivial classical soliton

solutions of the σ-model are therefore the three dimensional images of the

QCD instantons.

The QCD instantons are defined in space-time and are therefore four

dimensional point-like objects. The σ-model solutions are intrinsically three

dimensional. Nevertheless, there is a natural simple relation between the

two. For a given Yang-Mills instanton solution Ainst(xµ) one can find a three

dimensional SU(N) matrix U(xi) by the procedure discussed by Atiyah and

Manton [48],

UAM(xi) = P exp

(

i

∫

C
dxµAinst

µ

)

, (4.67)

where the contour of integration C is a straight line xi = const, −∞ <

x0 < ∞. The matrix UAM gives the relative gauge transformation between

the initial trivial vacuum at x0 → −∞ and the topologically non-trivial

vacuum at x0 → +∞ or, in other words, between the initial and final states

of the instanton transition. Clearly, its meaning is precisely the same as

h Since the space of the matrices U is continuous, strictly speaking the Boltzmann factor is the

differential rather than the total amplitude.
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that of the classical soliton solution of the effective σ-model Eq. (4.17).

Also, the QCD instanton action and the σ-model soliton action have the

same physical meaning. They both give the transition probability between

different topological sectors in QCD. We will therefore refer to the σ-model

solitons as instantons in the following.

Although the QCD and the σ-model instantons have the same physical

meaning, it is not assured that the numerical value for their respective ac-

tions is the same. They both approximate the value of the transition proba-

bility in QCD, but the approximations involved are quite different. The QCD

instanton action is the result of the standard WKB approximation which is

valid at weak coupling and therefore for small instantons, but breaks down

for instantons of large size. The σ-model instanton action on the other hand

is the value of this transition probability in a particular Gaussian variational

approximation. It is natural to expect that the variational calculation un-

derestimates the value of the transition probability at very weak coupling.

The transition probability is given by the overlap of the “ground state” wave

functions in two topological sectors. For simplicity let us consider a quan-

tum mechanical system with two vacua at x±. If the area below the barrier

separating the vacua is large, the standard WKB instanton calculation is

applicable. The wave function of each of the vacua below the barrier has

essentially an exponential fall off exp{i
∫ x√

E − V (x− x±)}. The instan-

ton calculation is the calculation of the overlap of these functions. Our

variational calculation corresponds to approximating the respective “ground

states” at x± by Gaussian wave functions. The tails of the Gaussians fall

off much faster away from the minimum than the actual wave function and

the overlap is therefore expected to be smaller. When the coupling con-

stant is not too small (or when the area below the barrier is not too large)

the overlap between the two states is no longer determined by the behavior

of the “tails” of the wave functions. In this situation one can expect the

Gaussian approximation to do much better, since the overlap region con-

tributes significantly to the energy and therefore plays an important role in

the minimization procedure.

In fact, implicitly, the instantons played a very important role already in

the energy minimization described in this section. As we have seen above,

the energy is minimized for the value of the mass parameter M at which

the σ-model is in the disordered phase. The transition between ordered and

disordered phases in a statistical mechanical system can usually be described

as a condensation of topological defects. This is a standard description of the

phase transition in the Ising and XY models [49]. In the σ-model Eq. (4.17)
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the relevant topological defects are none other than the instantons. In this

sense the appearance of the dynamical mass in the best variational state is

itself driven by the condensation of instantons.

Perhaps the most significant difference between the kinks in the Ising

model and the QCD instantons, is that the former have a fixed size, while

the latter come in a variety of sizes. This is a direct consequence of the

dilatation symmetry of the classical Yang-Mills action. It is not necessary

for instantons of all sizes to condense in order to drive the transition. The

naive expectation therefore is that the large size instantons (larger than

1/M) condense, while the smaller ones should still exist as semi-classical

solutions in the effective σ-model action.

The simple qualitative argument to this effect is the following. Consider

the effective σ-model action for very large size instantons. In such a con-

figuration only field modes with small momentum k < M are present. For

these momenta the action is the standard local σ-model where M plays the

role of an ultraviolet cutoff

Γ =
1

2

M

g2(M)
tr

∫

x
∂iU

†(x)∂iU(x) . (4.68)

If the large size instantons are stable at all, they should also be present

as stable solutions in this local action Eq. (4.68). However this is not the

case as can be easily seen by the standard Derrick type scaling argument.

Take an arbitrary configuration u(x) in the instanton sector and scale all the

coordinates by a common factor λ. Then obviously

Γ[u(λx)] = λ−1Γ[u(x)] . (4.69)

The dependence of the action on λ is monotonic and is minimized at λ→ ∞.

This means that the instantons in the local σ-model shrink to the ultraviolet

cutoff 1/M . For instantons smaller than the inverse cutoff we cannot use the

local action anymore. However, the behavior of these small size instantons

is already familiar. We know that classically they exist at arbitrary size, but

that when the running of the coupling is taken into account, these instantons

are pushed to the large size. This is the familiar infrared problem of large

instantons. In our variational state, the coupling constant stops running at

the scale M . The picture is therefore very simple. The small size instantons

are pushed to larger size by the effect of the coupling constant, while the

large size instantons are pushed to smaller size by the effect of the local σ-

model scaling. We therefore expect that the instanton size will be stabilized

somewhere in the vicinity of ρ ∼ 1/M .
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The behavior of the instantons in the variational ansatz Eq. (4.5) was

studied in detail in [50]. The results are indeed very much in line with

the expectations just outlined. The action of a small size instanton in the

σ-model was found to be independent of its size (neglecting the running

coupling effects), and numerically equal to

Γ = 1.96
8π2

g2
. (4.70)

This is about twice the value of the instanton action in QCD, Γinst = 8π2

g2 .

Thus, as expected, the tunneling transition amplitude is underestimated

in the Gaussian approximation for small instantons. Interestingly enough,

however, the actual configuration of the σ-model field that minimizes the

action in the one instanton sector was found to be practically indistinguish-

able from the Atiyah-Manton expression calculated on the QCD instanton.

This means that even though the value of the transition probability is un-

derestimated in the Gaussian approximation, the actual field configurations

into which the tunneling is most probable are identified correctly; they are

precisely the same as in the WKB calculation.

As for the large size instantons, when the running of the coupling constant

is taken into account their size is stabilized at about ρ = (1 − 1.5)/M . The

uncertainty is to do with the way the running of the coupling constant is

modified at k < M . It is in fact interesting to note that this instanton size

is consistent with the average size of the instantons in the instanton liquid

model of [51–55]. For the case of SU(2), the average instanton size, in units

of the gluon condensate obtained in the instanton liquid model, turns out to

be [53–55],

ρ
(

〈F a
µνF

a
µν〉α/π

)1/4 ∼ 0.4 . (4.71)

In our case, taking the value of the gluon condensate obtained in the varia-

tional approach, we find

ρ
(

〈F a
µνF

a
µν〉α/π

)1/4 ∼ 0.2 − 0.3 . (4.72)

The relation to the instanton liquid model is an interesting question which

deserves further study.

We also note that the variational Ansatz which has been considered so far

corresponds to a zero value of the QCD θ-parameter, since we have integrated

over the entire gauge group without any extra phases. As is well known, the
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general θ-vacuum is defined as

|θ〉 =
∑

n

einθ|n〉 , (4.73)

where n labels the topological sectors in the configuration space (space of

all potentials Aa
i (x)). Generalization of our trial wave functions to non-zero

θ is trivial; all we need to do is to insert in the integrand of Eq. (4.5) the

extra phase factor

exp

{

i
θ

24π2

∫

dxεijktr
[

(U †∂iU)(U †∂jU)(U †∂kU)
]

}

. (4.74)

The integrand here is a properly normalized topological charge, and it takes

integer values for topologically non-trivial configurations U(x), i.e. this fac-

tor reproduces the exp(inθ) term in Eq. (4.73). This phase factor can be

also obtained if one remembers that usually the θ-dependence of the wave

functional is given by the exp [iθSCS(A)], where SCS(A) is a Chern-Simons

term, which under the gauge transformation U transforms as

SCS(AU ) = SCS(A) +
1

24π2

∫

dxεijktr
[

(U †∂iU)(U †∂jU)(U †∂kU)
]

, (4.75)

so that integrating over U leads precisely to the phase factor Eq. (4.74).

The state thus constructed is an eigenstate of an operator of the large gauge

transformation with eigenvalue eiθ. This modification results in the addition

of the same topological term to the effective action Eq. (4.17). It is amusing

to note that for θ = π, the “Skyrmions” in the effective theory will be

“fermions”.

While the extension of the variational calculation to non-vanishing θ-term

is quite straightforward, it has not been performed thus far.

4.5. Confinement?

The most interesting question is of course whether our variational state is

confining. In the toy model in 2+1 dimensions discussed in the previous

section, we were able to answer this question by calculating both the ex-

pectation value of the spatial Wilson loop, and the potential between static

charges. Unfortunately, in the Yang-Mills theory the calculation is much

more complicated and the answer is not known. Although there are some

arguments that the state is indeed confining (see next section), it has not

been proved or disproved by a direct calculation. The calculation of a po-

tential between static charges á la [41] has not been attempted. As for the
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calculation of the Wilson loop, some progress has been made in reducing

this calculation to the σ-model level, but no final result has been obtained.

The difficulty in the calculation of the Wilson loop,

W (C) =

〈

tr P exp

(

i
g

2

∮

C
dxiA

a
i τ

a

)〉

, (4.76)

is to take into account the P -ordering of the exponent. One way of doing

so is to introduce new degrees of freedom living on the contour C which,

after quantization, become the SU(N) matrices τ a [56]. We briefly describe

the construction in the case of the SU(2) group – the generalization of this

construction to an arbitrary Lie group has been discussed in [56].

The construction is based on the observation, made in [57, 58], that in-

stead of considering the ordered product of τ a matrices one can consider the

correlation function

〈

τa(t1)

2

τ b(t2)

2
. . .

τ c(tk)

2

〉

−→ 〈na(t1)n
b(t2) . . . n

c(tk)〉

=

∫

Dn(t)na(t1)n
b(t2) . . . n

c(tk)

× exp

[

i(S + 1/2)

∫

Σ
d2ξεµνε

abcna∂µn
b∂νn

c

]

, (4.77)

where S is the spin of the representation, i.e. for the fundamental represen-

tation S = 1/2; na(t) is a unit vector nana = 1 living on a contour C (t is

a coordinate on the contour); and Σ is an arbitrary two-dimensional surface

with the boundary C = δΣ. The two-dimensional action,

S[n] =

∫

Σ
d2ξ εµνε

abcna∂µn
b∂νn

c , (4.78)

depends only on values na(t) at the boundary.

It can be shown that the Wilson loop can be rewritten as

W (C) =

〈
∫

Dn(t) exp

[

i

∫

Σ
d2ξ εµνε

abcna∂µn
b∂νn

c

]

× exp

(

ig

∮

C
dxiA

a
i (x(t))n

a(t)

)〉

. (4.79)
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The average over Ai can be performed using Eqs. (4.17, 4.31)

〈

exp

(

ig

∮

C
dxiA

a
i (x(t))n

a(t)

)〉

A

= exp

(

−ig
∮

C
dxi a

a
i (x(t))n

a(t)

)

× exp

(

−1

2

∮

C

∮

C
dt1dt2 ẋi(t1)ẏi(t2)n

a(t1)n
b(t2)(M−1)ab(x, y)

)

, (4.80)

where aa
i was defined in Eq. (4.31). The Wilson loop can be calculated as

the average over two scalar fields: U(x) living in the whole space and na(ξ)

living on a two-dimensional surface Σ such that C = δΣ

W (C) =

∫

DU

∫

Dn exp (−Γ[U ] + iS[n]) exp

(

−ig
∮

C
dxi a

a
i (x(t))n

a(t)

)

× exp

(

−1

2

∮

C

∮

C
dt1dt2 ẋi(t1)ẏi(t2)n

a(t1)n
b(t2)(M−1)ab(x, y)

)

. (4.81)

In the infrared limit one can use Eq. (4.38) to simplify Eq. (4.81) and get

W (C) =

∫

DUL

∫

Dn exp (−ΓL[U ] + iS[n])

× exp

(

−ig
2

∮

C
dxi λ

a
i L(x(t))na(t)

)

× exp

(

−1

4

∮

C

∮

C
dt1dt2 ẋi(t1)ẏi(t2)n

a(t1)n
a(t2)G(x − y)

)

×
∫

DUH exp (−ΓH [U ]) exp

(

−ig
2

∮

C
dxi λ

b
i H(x(t))Sba

L n
a(t)

)

.

(4.82)

Integrating over UH one obtains

W (C) =

∫

Dn exp (iS[n])

× exp

(

−1

2

∮

C

∮

C
dt1dt2 ẋi(t1)ẏi(t2)n

a(t1)n
a(t2)G(x − y)

)

×
∫

DU exp (−Γ[U ]) exp

[

1

2

∮

C
dxi tr

(

τaU †∂iU
)

na(t)

]

,

(4.83)

where the integration DU is over the low momentum modes only and Γ[U ]

is the corresponding low momentum action. Since G(x − y) is short range,
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the term

exp

(

−1

2

∮

C

∮

C
dt1dt2 ẋi(t1)ẏi(t2)n

a(t1)n
a(t2)G(x− y)

)

(4.84)

gives only perimeter dependence and can be neglected when calculating the

string tension. Now reverting back from na to τa we find

W (C) =

〈

trP exp

(

1

2

∮

C
dli U

†∂iU

)〉

U

, (4.85)

where the averaging is performed with the low momentum σ-model action.

This is reminiscent of the average of the monodromy operator

M = trP exp

(
∮

C
dli U

†∂iU

)

(4.86)

and one might expect that the result is similar. Since the target space of the

sigma model is M = SU(N)/ZN , and Π1(M) = ZN , the monodromy can

take on values exp(i2πn/N). It has a natural interpretation in terms of the

topological defects in the sigma model. As mentioned above, the topology

of the σ-model allows for the existence of ZN strings (the soliton-instantons

discussed in the previous subsection do not play any special role in the

monodromy calculation). The string creation operator and the operator M

satisfy the commutation relations of the t’ Hooft algebra [59]. Therefore, in

the presence of a string, the operator M has expectation value exp(i2πn/N),

where n is the linking number between the loop C and the string. As we

have argued, the sigma model is in the disordered phase and the disordering

can be thought of as the condensation of the topological defects. We have

thus far discussed skyrmions (instantons) as the relevant defects, but it is

quite plausible that the ZN strings are condensed as well. That would mean

that the vacuum of the sigma model has a large number of strings and also

that the fluctuations in this number are large. In this situation the VEV of

M must average to zero very quickly, and for large loops will have an area

law. We then may expect that the Wilson loop will also have an area law

W (C) ∼ exp (−α′A).

While this argument is not implausible, currently we have no quantitative

method of estimating Eq. (4.85).

Even though the question about confining properties of the state remains

unanswered, the results of the variational calculation so far are quite inter-

esting. It yields the dynamical generation of the scale which is of the right

magnitude, a reasonable value of the gluon condensate and a neat relation

to the instanton physics. All these results are intrinsically non-perturbative.
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Apart from the vacuum structure, there is another mysterious domain

of the QCD physics which is not accessible with perturbative tools: the

deconfining phase transition. We may hope that the variational method

can give us a handle to understanding the deconfinement physics. In the

next section we describe its application to the Yang-Mills theory at finite

temperature and the study of the deconfinement phase transition.

5. The Yang-Mills theory at finite temperature

Attempts to understand the nature of the deconfining phase transition in

QCD date back almost 30 years. Since the pioneering work of Polyakov [60]

and Susskind [61], much effort has been made to study the basic physics as

well as the quantitative characteristics of the transition. The high tempera-

ture phase of QCD is widely believed to resemble an almost free plasma of

quarks and gluons. At asymptotically high temperatures this is confirmed by

explicit perturbative calculations of the free energy [62]. Perturbation theory

in its simplest form, however, is valid only at unrealistically high tempera-

tures. In recent years a different and promising avenue has been explored.

This incorporates analytical resummation of the effects of the gluon screen-

ing mass into the 3D effective Lagrangian, which is then solved numerically

by 3D lattice gauge theory methods [63–66]. The results of this approach

seem to be in agreement [67] with direct 4D lattice gauge theory calcula-

tions [68, 69] all the way down to 2Tc. Although we are quite advanced in

the understanding of the high temperature phase, the transition region itself

is very poorly understood. This region of temperatures, Tc < T < 2Tc, is of

course the most interesting one, since it is in this region that the transition

between “hadronic” and “partonic” degrees of freedom occurs. Interestingly

enough, the numerical results indicate that although asymptotically the free

energy does approach that of the free partonic plasma, the deviations from

the Stefan-Boltzmann law even at temperatures of order 10Tc are quite siz-

able, of order of 15%. This is an indication that the interesting physics of

the transition region remains important even at these high temperatures.

The study of the transition region itself is a complicated and inherently

non-perturbative problem.

The purpose of this section is to study the deconfining phase transition in

a pure SU(N) Yang-Mills theory using the variational approach described

in the previous sections suitably extended to finite temperature [70]. We

will minimize the relevant thermodynamic potential at finite temperature,

i.e. the Helmholtz free energy, on a set of gauge invariant density matrices.
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5.1. The variational Ansatz for the density matrix

The equilibrium state of a quantum mechanical system at finite temperature

is not a pure state, but is described by a mixed density matrix. Thus in

order to extend the variational analysis to finite temperature we have to

generalize our ansatz Eq. (4.5) so that it includes mixed states. In scalar

theories the Gaussian approximation has a long history of applications at

finite temperature [71, 72]. We generalize our Ansatz along the same lines.

We start by considering the density matrices which in the field basis have

Gaussian matrix elements [70]

%̃[A,A′] = exp

{

− 1

2

∫

x,y
Aa

i (x)G
−1ab
ij (x, y)Ab

j(y)

+A
′a
i (x)G−1ab

ij (x, y)A
′b
j (y) − 2Aa

i (x)H
ab
ij (x, y)A

′b
j (y)

}

. (5.1)

As before, we take the variational functions diagonal in both color and

Lorentz indices, and translationally invariant,

G−1ab
ij (x, y) = δabδijG

−1(x− y) , (5.2)

Hab
ij (x, y) = δabδijH(x− y) .

Then we find

%̃[A,A′] = exp

{

− 1

2

∫

x,y

(

AG−1A+A′G−1A′ − 2AHA′
)

}

. (5.3)

For H = 0 this density matrix represents a pure state, since it can be written

in the form

%̃ = |Ψ[A] 〉〈Ψ[A]| , (5.4)

with Ψ[A] a Gaussian wave function, Eq. (4.4). At non-zero H the density

matrix is, however, mixed. The magnitude of H, therefore, determines the

entropy of this trial density matrix.

We now make an additional simplification in our ansatz. First, we restrict

the functions G−1(x) to the same functional form as at zero temperature

Eq. (4.13), i.e.

G−1(k) =

{
√
k2 if k2 > M2,

M if k2 < M2.
(5.5)
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Further, we will take H(k) to be small and non-vanishing only at low mo-

menta,

H(k) =

{

0 if k2 > M2,

H �M if k2 < M2.
(5.6)

The logic behind this choice of Ansatz is the following. At finite tem-

perature we expect H(k) to be roughly proportional to the Bolzmann factor

exp{−E(k)β}. In our ansatz, the role of one particle energy is played by

the variational function G−1(k). We will be interested only in temperatures

close to the phase transition, and those we anticipate to be small, Tc ≤ M .

For those temperatures, one particle modes with momenta k ≥ M are not

populated, and we thus can put H(k) = 0. For k ≤M the Bolzmann factor

is non-vanishing, but small. Further, it depends only very weakly on the

value of the momentum. We will have, of course, to verify a posteriori that

our assumptions about the smallness of Tc and H are justified.

As before, we explicitly impose gauge invariance by projecting % onto the

gauge invariant sector

%[A,A′] =

∫

DU ′DU ′′ exp

{

− 1

2

∫

x,y
AU ′

G−1AU ′

+A′U
′′

G−1A′U
′′

− 2AU ′

HA′U
′′

}

, (5.7)

where AU is given by Eqs. (4.6, 4.7). One of the group integrations in

Eq. (5.7) is redundant, since we will only calculate the quantities of the form

Tr %O, with O being gauge invariant. Our Ansatz for the density matrix

then is

%[A,A′] =

∫

DU exp

{

− 1

2

∫

x
AG−1A+A′UG−1A′U − 2AHA′U

}

. (5.8)

This expression is not explicitly normalized to unity. Nevertheless, we find

it convenient to refer to it as density matrix while explicitly inserting a nor-

malization factor whenever necessary. Thus the average of a gauge invariant

operator O is given by

〈O〉A,U = Z−1Tr(%O)

= Z−1

∫

DUDAO(A,A′)

· exp

{

− 1

2

∫

x
AG−1A+A′UG−1A′U − 2AHA′U

}

∣

∣

∣

∣

∣

A′=A

, (5.9)
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where Z is the normalization of the trial density matrix %, i.e.

Z = Tr% =

∫

DUDA exp

{

− 1

2

∫

x
AG−1A+AUG−1AU − 2AHAU

}

=

∫

DUDÃ exp

{

−1

2

∫

x
Ã∆Ã+ λ

(

G−1 − ω∆−1ωT
)

λ

}

, (5.10)

with

Ã = A+ λω∆−1 , (5.11)

∆ = 2G−1
(

1 − HG

2
(S + ST )

)

, (5.12)

ω = (G−1S −H) . (5.13)

The Ã integration can be performed to yield

Tr% =

∫

DU exp

{

− 1

2
λ
(

G−1 − ω∆−1ωT
)

λ− 3

2
Tr ln

∆

2

}

. (5.14)

We now adopt the same strategy for treating the high momentum modes

of U as at T = 0. Namely, they are integrated perturbatively to one loop

accuracy. The result is the effective σ-model for the matrices U with mo-

menta below M . The coupling constant g of this σ-model gets renormalized

as before according to the one loop Yang-Mills β-function, and thus has to

be understood as g(M). Additionally, due to independence of H on momen-

tum, for low momentum modes of U the function H(x− y) is equivalent to

Hδ3(x− y).

The final approximation has to do with the fact that H is assumed to

be small. For arbitrarily large H the variational calculation is forbiddingly

complicated even with all the above mentioned simplifications. This is be-

cause the gauge projection renders the calculation of entropy in the general

case unfeasible. However, at small H we only need to calculate the leading

term in the entropy. This calculation can indeed be done, and is described

below. Since we are only calculating the leading order contribution in H, we

only have to consider corrections to the σ-model action of first order in H.

With this in mind, the normalization factor becomes

Tr% =

∫

DU exp

{

− 1

2
λ
( G−1

2
+
H

4

(

S + ST
)

)

λ+
3

4
HG tr

(

S + ST
)

}

.

(5.15)
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5.2. The effective σ-model

Just as at zero temperature, the normalization Z can be interpreted as the

generating functional for a theory defined by the action S(U),

Z = Tr% =

∫

DUe−S(U) , (5.16)

where

S(U) =
M

4
λλ+

1

8
λ H(S + ST ) λ− 1

4π2
HM2trS . (5.17)

We simplify this expression using

λλ =
2

g2
tr(∂U∂U †) , (5.18)

λSTλ = λSλ = − 1

2g2
tr
[

(U †∂U − ∂U †U)(∂UU † − U∂U †)
]

, (5.19)

trS = trST = trU †trU − 1 . (5.20)

Inserting these into the action we get

S(U) =
M

2g2
tr (∂U∂U †) − H

8g2
tr
[

(U †∂U − ∂U †U)(∂UU † − U∂U †)
]

− 1

4π2
HM2 trU † trU , (5.21)

where U -independent terms have been dropped.

At this point it is useful to relate our effective σ-model with a standard

tool used in finite temperature calculations, namely the effective action for

the Polyakov loop. The matrix U plays a similar role to the Polyakov loop

P at finite temperature – the functional integration over U projects out

the physical subspace of the large Hilbert space on which the Hamiltonian

of gluodynamics is defined. The effective σ-model Eq. (5.21) therefore is

a close analogue of the effective theory for the low momentum modes of

the Polyakov loop variable. Its status and applicability region are however

different from the usual perturbative effective actions, see e.g. [73]. The

standard effective action is calculated in perturbation theory and is valid at

high temperature. Our effective action Eq. (5.21) depends on the variational

parameters M and H, and in a sense is a variational effective action. Also

due to our restrictions to small values of H, a priori we do not expect it to

be valid at high temperatures but, rather, it should represent correctly the

physics in the phase transition region.
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Another important difference is that our effective σ-model does not have

the local gauge invariance U(x) → V †(x)U(x)V (x) which is usually asso-

ciated with the effective action for the Polyakov loop. The reason for this

is that our setup is different from that of the standard finite temperature

calculation. The way this gauge invariance usually appears is the following.

Consider the calculation of any gauge invariant observable in the equilibrium

density matrix at finite temperature

〈O〉 =

∫

DU Tr [exp{−βH}Og(U)] , (5.22)

where g(U) is the second quantized operator of the gauge transformation

represented by the matrix U . This expression for fixed U can be compared

to the same expression but with U gauge transformed,

Tr [exp{−βH}Og(V †UV )] = Tr [exp{−βH}Og(V †)g(U)g(V )]

= Tr [exp{−βH}Og(U)] . (5.23)

The last equality here follows from the fact that both O and exp{βH} are

gauge invariant, and thus the operator g(V †) can be commuted all the way

to the left. The only effect of the transformation is then to change the

basis over which the trace is being taken, which obviously leaves the trace

invariant.

Our variational setup is somewhat different. Expectation values are cal-

culated as
∫

DUTr [%̃g(U)O] (5.24)

with %̃ defined in Eq. (5.3). This expression is altogether gauge invariant,

since the integral over U correctly projects only the contribution of gauge

singlet states. However the operator %̃ is not itself explicitly gauge invari-

ant. For that reason the gauge transformation operator g(V †) cannot be

commuted through it, and thus

Tr [%̃Og(V †UV )] 6= Tr [%̃Og(U)] (5.25)

even for gauge invariant operators O. This manifests itself as absence of

local gauge invariance in the action of the effective σ-model, Eq. (5.21).

Nevertheless, we stress again that since the integration over the SU(N)

valued field U projects out the physical Hilbert space, its meaning in this

sense is the same as that of the Polyakov loop.
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5.3. The calculation of the free energy

To find the best variational density matrix we have to minimize the free

energy with respect to the variational parameters M and H. The Helmholtz

free energy F of the density matrix % is given by

F = 〈H〉 − TS , (5.26)

where H is the standard Yang-Mills Hamiltonian Eq. (4.1), S is the entropy,

and T is the temperature.

Thus

F =
1

2

(

Tr(E2%) + Tr(B2%)
)

+ T · Tr(% ln %) . (5.27)

First of all we need to perform the integration over the gauge fields, and

reduce this expression to the average of a U -dependent operator in the ef-

fective σ-model. In fact, as we shall see soon, to leading order in H the only

non-trivial calculation we need to perform is that of the entropy.

We will calculate the entropy up to the first non-trivial order in H. As

we now show, the leading term at small H is O(H lnH). Let us denote by

%0 the density matrix of the pure state with H = 0,

%0 = |0〉〈0| . (5.28)

Here |0〉 does not denote necessarily the actual ground state, but rather a

projected Gaussian state with arbitrary M . Now, since the matrix elements

of the density matrix can be expanded in powers of H, to leading order we

can write

% = %0 + δ% , (5.29)

where δ% is O(H).

Imagine that we have diagonalized %. It will have one large eigenvalue

α0 = 1 −O(H), which corresponds to the eigenstate

|0′〉 = |0〉 +O(H) . (5.30)

All the rest of the eigenvalues αi are at most O(H). Then the entropy can

be written as

S = −Tr(% ln %) = −α0 lnα0 −
∞
∑

i=1

αi lnαi . (5.31)

The second term is O(H lnH), and it is the coefficient of this term that we

will now calculate. Neglecting O(H) corrections, we can substitute αi =
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H/M under the logarithm. Thus to leading logarithmic order

S = −
∑

i

αi lnH/M . (5.32)

Thus we have to calculate
∑

i αi. Let

|0′〉 = |0〉 +H|x〉 . (5.33)

Then we have

% = α0|0′〉〈0′| +
∞
∑

i=1

αi|xi〉〈xi| (5.34)

with

〈xi|0′〉 = 0 . (5.35)

Note that 〈0|x〉 6= 0, but

〈0|x〉 + 〈x|0〉 = 0 , (5.36)

since |0′〉 has to be normalized at O(H). Also

〈xi|0〉 +H〈xi|x〉 = 0 . (5.37)

Thus the overlap 〈xi|0〉 is O(H), and we have

% = α0|0〉〈0| +H
(

|0〉〈x| + |x〉〈0|
)

+ αi|xi〉〈xi| . (5.38)

Multiplying this by %0 we get

%0 · % = α0 · %0 +H|0〉〈x| +H〈0|x〉|0〉〈0| , (5.39)

% · %0 = α0 · %0 +H|x〉〈0| +H〈x|0〉|0〉〈0| ,

and thus,

%0 · %+ % · %0 − % = α0 · %0 − αi|xi〉〈xi| . (5.40)

Multiplying again by %0, we get rid of |xi〉〈xi| to O(H)

α0 · %0 = %0 · %+ %0 · % · %0 − %0 · % = %0 · % · %0 . (5.41)

Then we have

α0 = Tr(%0 · %) . (5.42)

Since Tr % = 1 we have
∑

i

αi = 1 − α0 = Tr (%0(1 − %)) (5.43)
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which, inserted into Eq. (5.31), gives

S = −(1 − Tr (%0 · %)) lnH/M . (5.44)

The derivation has been given for the normalized density matrices %0 and

%. In terms of our Gaussian matrices we should restore the normalization

factors Z and Z0, so that finally we have

S =
( Tr (%0 · %)

Tr %0 · Tr %
− 1
)

lnH/M . (5.45)

It is easy to check that to O(H)

Tr (%0 · %) = (Tr %0)
2 , (5.46)

and

S =
(Tr %0

Tr %
− 1
)

lnH/M . (5.47)

From Eq. (5.15), it is clear that

Tr% =

[

1 +H
( 1

4π2
M2 trS − 1

4
λSλ

)

]

· Tr %0 . (5.48)

Using Eqs. (5.19, 5.20) we finally get

S = −
[

〈 1

8g2
tr (U †∂U − ∂U †U)(∂UU † − U∂U †)

+
1

4π2
M2(trU †trU − 1)

〉

U

]

H lnH/M . (5.49)

To leading order in H, the averaging over U in this expression has to be

performed with the σ-model action with H = 0.

The expression of Eq. (5.49) has the following striking property. For

M < Mc it vanishes identically. The reason is very simple. The first term

in Eq. (5.49) is the product of the left handed SU(N) current and the right

handed SU(N) current in the σ-model. Thus it transforms as an adjoint

representation under each one of the SU(N) factors of the SUL(N)⊗SUR(N)

transformation. The same is also true for the second term in Eq. (5.49).

The σ-model action at H = 0 is itself obviously invariant under the whole

SUL(N) ⊗ SUR(N) group. Now, at M < Mc, the symmetry group is not

spontaneously broken, and thus any operator which is not a scalar has a

vanishing expectation value. It follows immediately that the entropy has an

O(H lnH/M) contribution only for M >Mc, when the SUL(N) ⊗ SUR(N)

group is spontaneously broken down to SUV (N).
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This observation makes our task considerably simpler. Since for M <Mc

the entropy is zero, we do not have to consider at all the disordered phase

of the effective σ-model. In this disordered phase the free energy coincides

with energy, and thus the calculation is identical to the calculation at zero

temperature presented in Sec. (4).

Thus we only need to consider the effective σ-model in the ordered phase.

As at T = 0 we perform the calculations in the ordered phase to leading order

in αs. Since there are no O(H lnH/M) corrections to energy at this order,

the result for the energy in the disordered phase is identical to the result at

zero temperature, Eq. (4.52). Thus our expression for the free energy in the

ordered phase of the σ-model is

F =
N2

120π2
M4 + T

(

〈 1

8g2
tr (U †∂U − ∂U †U)(∂UU † − U∂U †)

+
1

4π2
M2(trU †trU − 1)

〉

U

)

H lnH/M . (5.50)

We now average over U in the leading order perturbation theory.

5.4. The σ-model perturbation theory; minimization of the

free energy and the Debye mass

For the purpose of the perturbative σ-model calculation we parameterize the

U matrices as

U = exp
{ i

2
gφaτa

}

. (5.51)

Although we only need the leading order, it is instructive to check that the

order g2 term in the expansion is indeed small. To this order we have

U '
(

1 +
i

2
gφaτa − 1

8
g2φaφbτaτ b − i

48
g3φaφbφcτaτ bτ c

)

. (5.52)

So that the σ-model action becomes

S =
M

2g2
tr (∂U∂U †)

=
M

4
∂φ∂φ+

M

192
g2(∂φa)(∂φc)φbφdtr

[

τaτ bτ cτd − τaτ cτ bτd
]

.(5.53)

The propagator of the phase field φ is thus

〈φaφb〉 =
2

Mk2
δab . (5.54)
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To get the idea of the quality of this perturbative expansion we can calculate

for example 〈S〉. In this calculation one has to take into account the fact

that the measure in the path integral over the phase φa is not the simple

Dφ, but rather the group invariant U(N) measure µ. To first order in g2 it

is

µ = Dφa exp
{M3N

144π2
g2

∫

d3xφ2(x)
}

. (5.55)

Taking this into account we find that 〈S〉 gets no correction of order g2. We

thus feel confident that the use of the perturbation theory in the ordered

phase of the σ-model is an admissible approximation. In the following we

will only keep leading order expressions.

Calculating to leading order the entropy Eq. (5.49) and keeping only the

O(N2) terms we find

〈S〉 = −N2

6π2
M2H ln

H

M
. (5.56)

Introducing the dimensionless quantity

h =
H

M
, (5.57)

we can write the expression for the free energy as

F = 〈H〉 − T〈S〉

=
N2

120π2
M4 + T

N2

6π2
M3h lnh . (5.58)

We now have to minimize this expression with respect to h and M . It is

convenient to first perform the minimization with respect to h at fixed M .

This obviously gives

∂F

∂h
= 0 → h =

1

e
. (5.59)

Thus as a function of M only, the free energy becomes

F =
N2

120π2
M4 − T

e

N2

6π2
M3 . (5.60)

Now minimizing with respect to M we find

∂F

∂M
= 0 →M =

15T

e
. (5.61)
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Thus for M ≥ Mc the free energy of the best variational density matrix as

a function of temperature is

FM≥Mc = − N2

360π2

(15T

e

)4
. (5.62)

We now have to compare this value with the free energy for M ≤ Mc.

As we have discussed above, this is given by the expectation value of the

Hamiltonian alone, and is minimized at M = Mc. Its value is

FM≤Mc = − N2

30π2
M4

c . (5.63)

Comparing the two expressions we find

Tc =
12

1
4 e

15
Mc . (5.64)

Using the value of Mc from Eq. (4.63) we have

Tc = 450MeV . (5.65)

For T ≤ Tc the free energy is minimized in the variational state with

M = Mc. In our approximation this state is the same as at zero temperature.

Its entropy vanishes, and the effective σ-model is in the disordered phase.

The Polyakov loop vanishes, 〈U〉 = 0 and according to the standard wisdom

this is a confining state.

For T ≥ Tc the best variational state is very different. The entropy of

this state is non-zero,

S =
N2

6π2e

(15T

e

)3
. (5.66)

The Polyakov loop is non-zero 〈U〉 6= 0 and thus the high temperature density

matrix describes a deconfined phase.

Finally, we note that in the deconfined phase our best variational density

matrix has a non-vanishing “electric screening” or “Debye” mass. The Debye

mass is conveniently defined as the “mass” of the phase of the Polyakov loop.

This mass is non-vanishing in our calculation for the following reason. As

long as H = 0, the effective σ-model action has a global SUL(N)⊗SUR(N)

symmetry. Thus in the ordered phase of the σ model the phases φa are

massless. However, as discussed above, the terms of order H in Eq. (5.21)

break this symmetry explicitly down to the diagonal SUV (N). As a result

the would be “Goldstone” phases φa acquire mass. To calculate this mass it
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is convenient first to note that to O(g2)

tr (U †∂U − ∂U †U)(∂UU † − U∂U †)

= −4 tr (∂U †∂U) − g4

4
φaφc∂φb∂φd tr

(

τaτ bτ cτd − τaτ cτ bτd
)

. (5.67)

The contribution of the SUL(N)⊗SUR(N) term to the mass cancels against

the contribution of the measure Eq. (5.55). Using Eqs. (5.21, 5.67) we then

find to O(g2), and to leading order in H,

M2
D =

4

3π
αs(M)NMH . (5.68)

As a function of temperature we have

M2
D = αs

(15

e
T
)

N
300

πe3
T

2 . (5.69)

Let us summarize the results of our analysis of the deconfinement transi-

tion. We find the phase transition at a temperature of about Tc ' 450MeV.

The transition is strongly first order at large N . The latent heat is

∆E = N2

90π2

(

15T
e

)4
. Below the transition the entropy is zero, the best vari-

ational state is the same as at zero temperature, and the average value of

the Polyakov loop is zero. Above the transition, the entropy is non-zero and

proportional to the number of “colored” degrees of freedom, S ∝ N 2. The

average value of the Polyakov loop is non-zero and the phase is deconfined.

It is quite interesting that at high temperature our formulae numerically

are quite close to the predictions of free gluon plasma. In particular, our

value for the free energy, Eq. (5.62), should be compared to the free gluon

plasma expression

Ffree = −N
2π2

45
T

4 . (5.70)

The ratio between the two is

Ffree

Fvar
' 0.85 . (5.71)

The ratio of the entropies is the same. Interestingly we get the same ratio

comparing our value for the Debye mass Eq. (5.69) with the leading order

perturbative one, M 2
pert = 4π

3 αsNT
2,

M2
pert

M2
D

' 0.85 . (5.72)
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The pressure approaches its asymptotic value according to the simple

formula

P(T)

Pasympt
= 1 − Tc

4

T4
. (5.73)

Here the asymptotic value of the pressure Pasympt is given by Eq. (5.62).

The pressure P(T) is given by the difference between Eq. (5.62) and the

value of the free energy at zero temperature, which coincides with expression

Eq. (5.63).

One has to take the comparison Eqs. (5.71, 5.72) with a grain of salt.

As explained above, our calculations were performed assuming small H. A

priori we expect that this restriction should confine us to not too large tem-

peratures. On the other hand the minimization of the free energy resulted

in the value H/M = 1/e independently of temperature. Thus, we feel that

the comparison Eq. (5.71) may be meaningful.

The main features of these results are indeed what we expect from the

deconfinement phase transition on general grounds. It is nice that a simple

minded calculation such as this does qualitatively so well in such a compli-

cated problem. It therefore appears that the projection of the trial density

matrix on the gauge invariant Hilbert space is, just as at zero temperature,

the crucial feature that dictates most if not all the important aspects of

the low energy and low temperature physics. In the context of the present

calculation the most important effect of the gauge projection is obviously

vanishing of the entropy in the low temperature phase. We stress that this

feature was not at all built into our initial ansatz, but followed naturally and

unavoidably in the disordered phase of the effective σ-model.

Quantitatively, this calculation of course should be taken for what it

is – an approximate implementation of the variational principle. As with

any variational calculation, the range of validity of this calculation is not

sharply defined. Even within the variational framework we had to resort

to additional approximations. The most severe simplifications that we had

to impose are the perturbation theory in the ordered phase of the σ-model

and the assumption of smallness of H. The projection over the gauge group,

which as we saw is so physically important, is what makes the calculational

task difficult and forces us to make these approximations.

The assumptions of smallness of g and of smallness of H affect different

aspects of our result. In particular, in the leading order of perturbation

theory the expectation value of the Polyakov loop U is equal to unity. The

actual value of U on the ordered side of the transition according to [74] is

close to one half. Thus our perturbative calculation is rather more reliable
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somewhat further away from the transition. The closer to the transition

we get, the more important higher order corrections in g2 become. Thus

to properly describe the transition region of QCD we need to improve our

calculational method in the vicinity of the transition in the σ-model. In

line with this we expect that the estimate for the critical temperature we

obtained here is somewhat higher than we would get, had we treated the

σ-model more accurately in the transition region. This is consistent with

the fact that our result for Tc is by about 50% higher than the lattice value

of 270MeV.

The smallness of h is quite important in a different way. The value of

h = 1/e that we obtain is in fact a reasonably small number, so omitting

the corrections in powers of h is fairly safe. On the other hand, the terms

linear in h but not enhanced by lnh, which we have ignored in the present

calculation, have to be accounted for more carefully. With the value of h

that we obtain, these terms are not suppressed in any obvious way.

The obvious stumbling block to any improvement along these lines is the

calculation of the entropy S = −tr% ln %. However, if one opts for restricting,

as before, the analysis to leading order in g2 the entropy and, therefore, the

free energy can be, without any additional approximations, calculated to all

orders in h [75]. This improved analysis is carried out below.

5.5. All-order in h analysis

Let us ask ourselves what would happen if we did not restrict H to be

small, and more generally did not restrict the functional forms of G(k) and

H(k) in our variational ansatz. We could still carry on our calculation for

a while. Namely we would be able to integrate over the vector potentials

in all averages, and would reduce the calculation to a consideration of some

non-linear σ-model of the U -field. This σ-model quite generally will have a

symmetry breaking phase transition as the variational functions G(k) and

H(k) are varied. Since at this transition the Polyakov loop U changes its

behavior, the disordered phase of the σ-model corresponds to the confining

phase of the Yang-Mills theory, while the ordered phase of the σ-model

represents the deconfined phase. Thus, in order to study deconfinement in

the SU(N) Yang-Mills theory, we should analyze the physics of each σ-model

phase as accurately as possible and calculate the transition scale Mc (or

ratherGc(k)). We then calculate the free energy of the σ-model in each phase

at temperature T and extract the minimal free energy. The deconfinement

transition occurs at the temperature for which the free energies calculated

in the ordered and disordered phases of the sigma model coincide.
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In practice in the disordered phase no progress seems possible without

restricting the arbitrary kernels and we adopt the forms Eqs. (5.5, 5.6). The

resulting minimal free energy is thus independent of the temperature and is

given by Eq. (5.63).

On the other hand, in the ordered phase we can relax the restriction on

H and G if, as before, we work in the leading order in perturbation theory.

In this case minimization with respect to arbitrary kernels G−1(k) and H(k)

is possible. We now describe this calculation following [75].

In this approximation, for the U matrices we use the parameterization

Eq. (5.51). Hence at leading order one can take

U ' 1 ,

∂iU ' ig∂iφ
a τ

a

2
. (5.74)

Thus, the gauge transformations Eq. (4.6) reduce to

Aa
i → Aa

i − ∂iφ
a (5.75)

and the Hamiltonian Eq. (4.1) reduces to

H =
1

2

[

Ea2
i + (εijk∂jA

a
k)

2
]

. (5.76)

These last two equations describe the theory U(1)N2−1; in the leading order

of the σ-model perturbation theory, the SU(N) Yang–Mills theory reduces

to the U(1)N2−1 free theory. The density matrix Eq. (5.8) becomes Gaussian

again, because the gauge transformations are linear. One has

%[A,A
′

] =

∫

Dφ exp

{

− 1

2

[

AG−1A+ (A′ − ∂φ)G−1(A′ − ∂φ)

− 2AH(A′ − ∂φ)
]

}

. (5.77)

Now the theory of N 2−1 U(1) free fields in 3+1 dimensions is completely

tractable. Both the energy and the entropy can be calculated explicitly [76].

The free energy in terms of the arbitrary kernels G−1 and H is

F =
N2 − 1

2

∫

d3p

(2π)3

[

G−1(1 +GH) + p2G(1 −GH)−1

− 4T

(

ln

[

GH

ξ

]

− ln

[

η

GH

]

· η
ξ

)]

, (5.78)
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where η = 1 − (1 − (GH)2)1/2 and ξ = (1 − (GH)2)1/2 − (1 −GH).

It is minimized by

G−1 = p

(

1 + e−
2p

T

1 − e−
2p

T

)

,

H = 2p

(

e−
p

T

1 − e−
2p
T

)

, (5.79)

and the minimal value of the free energy at temperature T is

F =
N2 − 1

π2

∫ ∞

0
p2dp

[p

2
+ T ln(1 − e−p/T)

]

= −(N2 − 1)T4

3π2

∫ ∞

0
dx

x3

ex − 1

= −π
2(N2 − 1)T4

45
, (5.80)

where, just like in Eq. (5.63), zero-point term has been discarded. This is,

of course, just the free energy of a free photon gas.

Thus the free energy of SU(N) Yang-Mills theory is minimized with M =

Mc in the disordered phase of the σ- model for temperatures below Tc, which

is obtained by equating the free energies Eqs. (5.63) and (5.80),

−N
2M4

c

30π2
= −π

2N2T4
c

45
, (5.81)

which yields

Tc =

(

3

2

)1/4 Mc

π
' 470MeV . (5.82)

The all order in h improvement discussed here allows us to take more

seriously our results at high temperature. At high temperatures the kernel,

which corresponds to the Boltzmann factor, is of order unity and thus our

original assumption of smallness of H makes sense. This is indeed obvious

from Eq. (5.79). As a result we now reproduce the expected asymptotic free

gluon plasma result for the free energy.

On the other hand this improvement affected very little our previous

results in the transition region. The transition temperature is shifted only

by about 5%. The same is true for the the value of the parameter H at low

momentum. As before, we find that the deconfinement phase transition is

strongly first order with latent heat ∆E = 4π2N2

45 T4
c .
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Although the actual value of the transition temperature is considerably

larger than the lattice estimate, as explained earlier it makes more sense

to look at dimensionless quantities. In particular, if we identify 2Mc with

the mass of the lightest glueball (see however [43] and the discussion in the

previous section), we find

Tc

2Mc
=

1

2π

(

3

2

)1/4

' 0.18 . (5.83)

This is in excellent agreement with the lattice estimate for SU(3) pure gauge

theory [77]. We should however caution that given the uncertainties in our

calculation this agreement may well be fortuitous.

6. Conclusions

We have tried here to review critically the application of the variational

principle to Quantum Field Theories with gauge invariance, with the main

focus on the approach developed by Ian Kogan and collaborators [14,30,42,

50, 70].

Although it is too early to decide whether this approach can be a use-

ful calculational scheme for strongly interacting gauge theories, we can draw

encouragement from its performance in the non-trivial toy models. In partic-

ular, in compact QED in 2+1 dimensions, we have been able to reproduce all

known non-trivial characteristics of the non-perturbative vacuum state: dy-

namical mass generation, confining potential between external charges and

area law behavior of the spatial Wilson loop with parameterically correct

values for the string tension and mass. Although this is the only example

that we have covered extensively in this review, the method has also been

applied to other lower dimensional systems, and it works very well in all

cases. Thus the deconfining phase transition in 2+1 compact QED at finite

temperature is described correctly [43]. In the (exactly solvable) Schwinger

model the variational approach reproduces the exact ground state wave func-

tional [78]. In the compact 2+1 QED with Chern-Simons term [79] it pre-

dicts a Kosterlitz-Thouless phase transition in the value of the Chern-Simons

parameter, in agreement with earlier analysis [80].

In 3+1 dimensional gluodynamics, this variational method gives results

which on the qualitative level at least, conform with our intuition about

the structure of the ground state, both at zero and finite temperature. We

find dynamical mass generation, corresponding to an acceptable value of the

gluon condensate. At finite temperature we find a first order phase transi-

tion which corresponds to the Polyakov loop acquiring a non-zero average.
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Although we have not calculated the string tension directly, the behavior of

the Polyakov loop is very much indicative that this is indeed the deconfining

phase transition. The value of the critical temperature (in units of glueball

mass) we find is in good agreement with lattice results. We also found that

in the low temperature phase the entropy remains zero all the way up to

the transition temperature. This is a rather striking result, which has not

been built into our variational ansatz, but rather emerged as the result of

the dynamical calculation.

An important lesson we learned from the lower dimensional models is

that the projection of the Gaussian trial state onto the gauge invariant

Hilbert subspace dictates most, if not all, of the important aspects of the

non-perturbative physics. It was absolutely essential to perform the pro-

jection non-perturbatively, fully taking into account the contribution of the

overlap between gauge rotated Gaussians into the variational energy prior

to minimization.

The same conclusion carries over to the pure Yang-Mills theory. We

have seen that from the point of view of the effective σ-model the energy is

minimized in the disordered phase. In other words, the low momentum fluc-

tuations of the field U are large, unlike in the perturbative regime, where U

is close to a unit matrix. From the point of view of the trial wave functional,

this means that the off-diagonal contributions, coming from the Gaussian

WF gauge rotated by a slowly varying gauge transformation, are large. It

is these “off diagonal” contributions to the energy that lowered the energy

of the best trial state below the perturbative value. In the low temperature

phase the vanishing of the entropy was also a direct consequence of the effec-

tive σ-model being in the disordered phase, and thus of the non-perturbative

nature of the gauge projection. The accounting for these off diagonal terms

non-perturbatively is the main distinction between this approach and other

attempts [23–28] to implement the variational principle in gauge theories.

Many outstanding questions remain. Is the best variational state confin-

ing? How do we calculate the interaction potential between external sources?

How do we understand better the relation between the variational parameter

and the glueball masses? Can we extend the Ansatz to include (massless)

fermions?

Both to be confident in our results and to be able to approach these ques-

tions we need first and foremost to have a better way of treating analytically

the effective non-linear σ-model. The use of the mean field approximation in

the effective σ-model was the main source of uncertainties in our calculations

both at zero and finite temperature. We believe that it should be possible
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to treat the σ-model in a better way, perhaps along the lines of a continuum

version of [74]. Such an improvement is crucial to clarify whether the quali-

tatively appealing results that we have described here are a kind of fluke due

to an interplay of two bad approximations (variational and mean field) or are

genuine predictions of a useful, workable variational approach. Personally

we do believe that these results are genuine and that there is enough scope

for further development of the approach which warrants continuing active

investigations.
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