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We discuss a remarkable new approach initiated by Cachazo, Svrcek and Witten for

calculating gauge theory amplitudes. The formalism amounts to an effective scalar per-

turbation theory which in many cases offers a much simpler alternative to the usual

Feynman diagrams for deriving n-point amplitudes in gauge theory. At tree level the

formalism works in a generic gauge theory, with or without supersymmetry, and for a

finite number of colors. There is also growing evidence that the formalism works for loop

amplitudes.
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1. Introduction

In a recent paper [1] Cachazo, Svrcek and Witten (CSW) proposed a new

approach for calculating scattering amplitudes of n gluons. In this approach

tree amplitudes in gauge theory are found by summing tree-level scalar dia-

grams. The CSW formalism [1] is constructed in terms of scalar propagators,

1/q2, and tree-level maximal helicity violating (MHV) amplitudes, which are

interpreted as new scalar vertices. The MHV vertices already contain an

arbitrary number of gluon lines, and are known explicitly [2,3]. Using multi-

particle MHV amplitudes as effective vertices in a new perturbation theory

enables one to save dramatically on the number of permutations found in

usual Feynman diagrams.

This novel diagrammatic approach [1] follows from an earlier construc-

tion [4] of Witten which related perturbative amplitudes of conformal N = 4

supersymmetric gauge theory in the large Nc limit to D-instanton contribu-

tions in a topological string theory in twistor space. The key observation

of [1,4] is that tree-level and also loop diagrams in SYM possess a tractable

geometric structure when they are transformed from Minkowski to twistor

space.

The results [1,4] have been tested and further developed in gauge theory

in [5–12], and in string theory and supergravity in [13–22].

The new perturbation theory involves scalar diagrams since MHV ver-

tices are scalar quantities. They are linked together by scalar propagators

at tree-level, and the internal lines are continued off-shell in a particular

fashion. The final result for any particular amplitude can be shown to be

Lorentz-covariant and is independent of the particular choice for the off-

shell continuation. The authors of [1] derived new expressions for a class of

tree amplitudes with three consecutive negative helicities and any number

of positive ones. It already has been verified in [1] that the new scalar graph

approach agrees with a number of known standard results for scattering

amplitudes in pure gauge theory. Furthermore, it was shown in [5] that all

MHV (or googly) amplitudes – i.e. amplitudes with two positive helicity glu-

ons and an arbitrary number of negative ones – are reproduced correctly in

the CSW formalism. Recursive relations for constructing generic tree-level

non-MHV amplitudes in the CSW formalism were obtained in [8]. More-

over, general next-to-MHV gluonic amplitudes were derived in [9] at tree

level. These are the amplitudes where any three of n gluons have negative

helicities.

We conclude that there is sufficient evidence that the CSW method works

correctly and remarkably well at tree level and for gluon-only amplitudes.
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Given this and also the fact that at present there is no detailed derivation

of the CSW rules either in gauge theory, or in string theory, we would like

to see how the method works in more general settings. There is a number

of questions one can ask about the CSW formalism from the gauge theory

perspective:

(1) Does the CSW method work only in the pure gauge sector at tree level

or can it be applied to supersymmetric theories?

(2) If the method does apply to supersymmetric theories, does it work

in N = 1 theory or in N = 4 theory or in a generic supersymmetric

Yang–Mills?

(3) Does it work for diagrams with fundamental quarks in a non-

supersymmetric SU(N) theory, i.e. in QCD?

(4) Can we work with a finite number of colors?

(5) Can the CSW approach be used for practical calculations of amplitudes

needed in phenomenological applications?

(6) Ask the five questions listed above for amplitudes at loop level.

The goal of these notes is to discuss and answer some of these questions.

It is often said that any gauge theory at tree level behaves as if it

was supersymmetric. More precisely, in a supersymmetric theory the non-

supersymmetric sector and the superpartners are completely decoupled at

tree level. This is because at tree level superpartners cannot propagate in

loops. This observation, on its own, does not answer the question of how

to relate amplitudes with quarks to amplitudes with gluinos. The color

structures of these amplitudes are clearly different.a

In Section 2 we will briefly recall well-known results about the decompo-

sition of full amplitudes into the color factor Tn and the purely kinematic

partial amplitude An. A key point in the approach of [1, 4] is that only the

kinematic amplitude An is evaluated directly. Since An does not contain

color factors, it is the same for tree amplitudes involving quarks and for

those with gluinos.

A priori, when comparing kinematic amplitudes in a non-supersymmetric

and in a supersymmetric theory, we should make sure that both theories have

a similar field content. In particular, when comparing kinematic amplitudes

in QCD and in SYM, (at least initially) we need to restrict to the SYM

theory with vectors, fermions and no scalars. Scalars are potentially danger-

ous, since they can propagate in the internal lines and spoil the agreement

a Also, amplitudes with gluons and gluinos are automatically planar at tree level. This is not the

case for tree diagrams with quarks, as they contain 1/N-suppressed terms in SU(N) gauge theory.
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between the amplitudes. Hence, while the kinematic tree-level amplitudes

in massless QCD agree with those in N = 1 pure SYM, one might ask if the

agreement is lost when comparing QCD amplitudes to amplitudes in N = 4

(and N = 2) theories. Fortunately, this is not the case, the agreement be-

tween multi-particle quark-gluon amplitudes in QCD and the corresponding

gluino-gluon amplitudes in SYM theories does not depend on N . The main

point here is that in N = 2 and N = 4 theories, the scalars φ couple to

gluinos ΛA and ΛB from different N = 1 supermultiplets,

SYukawa = gYM tr Λ−
A[φAB,Λ−

B ] + gYM tr ΛA+[φAB ,ΛB+] , (1)

where A,B = 1, . . .N , and φAB = −φBA, hence A 6= B. Meanwhile quarks

are identified with gluinos of the same fixed A, i.e. q ↔ ΛA=1 +, q ↔

Λ−
A=1. QCD-amplitudes with m quarks, m antiquarks and l gluons in external

lines correspond to SYM-amplitudes with m gluinos Λ1+, m anti-gluinos

Λ−
1 , and l gluons. Since all external (anti)-gluinos are from the same N =

1 supermultiplet, they cannot produce scalars in the internal lines of tree

diagrams. These diagrams are all the same for all N = 0, . . . , 4. Of course,

in N = 4 and N = 2 theories there are other classes of diagrams with gluinos

from different N = 1 supermultiplets, and also with scalars in external lines.

Applications of the scalar graph approach to these more general classes of

tree amplitudes in N = 2, 4 SYM will be discussed in Sections 5 and 6.

Following [6] we conclude that, if the CSW formalism gives correct results

for partial amplitudes An in a supersymmetric theory, it will also work in a

nonsupersymmetric case, and for a finite number of colors. Full amplitudes

are then determined uniquely from the kinematic part An, and the known

expressions for Tn, given in Eqs. (4), (6) below. This means [6] that for tree

amplitudes questions (1) and (3) are essentially the same, and we have a

positive answer to question (4).

In Section 3 we will concentrate on tree-level non-MHV (NMHV) ampli-

tudes with gluons only. We will review the CSW formalism [1] for calculating

these amplitudes and note a technical subtlety which occurs in the calcu-

lation. There are unphysical singularities which occur in certain diagrams.

They must cancel between individual contributions to physical amplitudes.

These cancellations were carried out successfully in all known cases [1, 6, 9],

but it is more desirable to avoid them altogether [10]. Purely gluonic ampli-

tudes can be related via supersymmetric Ward identities to amplitudes con-

taining fermions. The latter are free of unphysical singularities for generic

phase space points and no further helicity-spinor algebra is required to con-

vert the results into an immediately usable form. The main result of Section
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3 is equation (25) which expresses purely gluonic amplitudes in terms of

amplitudes with fermions which are free from unphysical singularities.

Calculations of amplitudes involving fermions were carried out in [10] and

will be reproduced in later sections ( 7 and 8). But first we need to set up

the formalism for the CSW scalar graph method in the presence of fermions

(and scalars). A natural way to do this is to consider gauge theories with

extended supersymmetry.

In Section 4 we will write down N = 4 supersymmetry algebra in helicity

basis which can be used for deriving supersymmetric Ward identities for

generic 1 ≤ N ≤ 4 gauge theories.

In Section 5 we will present the analytic N = 4 supervertex of Nair [23]

which incorporates all the component vertices needed for the scalar graph

formalism in generic gauge theories with gauge fields, fermions and scalars.

We will see that, interestingly, all of the allowed vertices are not MHV in

theories with scalars [10]. For example, An(g−,Λ1+,Λ2+,Λ3+,Λ4+) is an

analytic, but non-MHV amplitude in N = 4 theory. This implies that the

scalar graph approach is not primarily based on MHV amplitudes.

In Section 6 we will apply the scalar graph formalism for calculating three

simple examples of MHV (or, more precisely, anti-analytic) amplitudes which

involve fermions and gluons. In all cases we will reproduce known results

for these anti-analytic amplitudes, which implies that at tree level the scalar

graph method appears to work correctly not only in N = 0, 1 theories,

but also in full N = 2 and N = 4 SYM. In particular, the N = 4 result

(55) verifies the fact that the building blocks of the scalar graph method

are indeed the analytic vertices (31), which can have less than 2 negative

helicities, i.e. are not MHV.

General tree-level expressions for n-point amplitudes with three negative

helicities carried by fermions and gluons were derived in [10]. We will repro-

duce these calculations in Sections 7 and 8. In Section 9 we will show how

to calculate tree amplitudes with vectors, fermions and scalars compactly

using the scalar graph method with the supervertex of Section 5.

In Section 10 we will briefly review the known applications of the CSW

scalar graph approach for loops and Section 11 presents our conclusions.

In the original topological string theory formulation [4], one obtains tree-

level amplitudes with d + 1 negative-helicity gluons from contributions of

D-instantons of degree d. These include contributions from connected multi-

instantons of degree-d and from d disconnected single instantons (as well as

from all intermediate mixed cases of total degree d). The CSW formalism [1]

is based on integrating only over the moduli space of completely disconnected
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instantons of degree one, linked by twistor space propagators. Degree-one

D-instantons in string theory correspond to MHV vertices, and obtaining

amplitudes with an arbitrary number of negative helicities using MHV ver-

tices is dual in twistor space to integrating over degree-one instantons.

In Refs. [13, 14] Roiban, Spradlin, and Volovich computed the integrals

in the opposite regime – over the moduli space of connected D-instantons of

degree d. They found that for MHV amplitudes, and certain next-to-MHV

amplitudes these integrals correctly reproduce known expressions for gauge

theory amplitudes. We therefore seem to have different ways of computing

the amplitudes from the topological B model. These different prescriptions

were reconciled on the string theory side in [18] by showing that the corre-

sponding integrals over instanton moduli spaces can be reduced to an integral

over the common boundary and are hence equivalent. On the field theory

side, the equivalence of different prescriptions was explained in [8] as the

freedom to choose different decompositions of any given NMHV tree dia-

gram into smaller blocks of MHV and NMHV diagrams. In this paper we

use the CSW formalism for computing gauge theory amplitudes. On the

string theory side this corresponds to choosing the disconnected instantons

prescription.

2. Tree Amplitudes

We will consider tree-level amplitudes in a generic SU(N) gauge theory with

an arbitrary finite number of colors. SU(N) is unbroken and all fields are

taken to be massless, we refer to them generically as gluons, fermions and

scalars.

2.1. Color decomposition

It is well-known that a full n-point amplitude Mn can be represented as a

sum of products of color factors Tn and purely kinematic partial amplitudes

An,

Mn({ki, hi, ci}) =
∑

σ

Tn({cσ(i)})An({kσ(i), hσ(i)}) . (2)

Here {ci} are color labels of external legs i = 1 . . . n, and the kinematic

variables {ki, hi} are on-shell external momenta and helicities: all k2
i = 0,

and hi = ±1 for gluons, hi = ±1
2 for fermions, and hi = 0 for scalars.

The sum in (2) is over appropriate simultaneous permutations σ of color

labels {cσ(i)} and kinematic variables {kσ(i), hσ(i)}. The color factors Tn are

easy to determine, and the non-trivial information about the full amplitude
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Mn is contained in the purely kinematic part An. If the partial amplitudes

An({ki, hi}) are known for all permutations σ of the kinematic variables, the

full amplitude Mn can be determined from (2).

We first consider tree amplitudes with fields in the adjoint representation

only (e.g. gluons, gluinos and no quarks). The color variables {ci} corre-

spond to the adjoint representation indices, {ci} = {ai}, and the color factor

Tn is a single trace of generators,

M tree
n ({ki, hi, ai}) =

∑

σ

tr
(

Taσ(1) ...Taσ(n)
)

Atree
n (kσ(1), hσ(1), ..., kσ(n) , hσ(n)) .

(3)

Here the sum is over (n − 1)! noncyclic inequivalent permutations of n ex-

ternal particles. The single-trace structure in (3),

Tn = tr
(

Ta1 . . . Tan
)

, (4)

implies that all tree level amplitudes of particles transforming in the adjoint

representation of SU(N) are planar. This is not the case either for loop

amplitudes, or for tree amplitudes involving fundamental quarks.

Fields in the fundamental representation couple to the trace U(1) factor of

the U(N) gauge group. In passing to the SU(N) case this introduces power-

suppressed 1/N p terms. However, there is a remarkable simplification for

tree diagrams involving fundamental quarks; the factorization property (2)

still holds. More precisely, for a fixed color ordering σ, the amplitude with

m quark-antiquark pairs and l gluons is still a perfect product,

Tl+2m({cσ(i)}) Al+2m({kσ(i), hσ(i)}) , (5)

and all 1/N p corrections to the amplitude are contained in the first term.

For tree amplitudes the exact color factor in (5) is [24]

Tl+2m =
(−1)p

Np
(Ta1 . . . Tal1 )i1α1(T

al1+1 ...Tal2 )i2α2 ...(T
alm−1+1 ...Tal)imαm .

(6)

Here l1, . . . , lm correspond to an arbitrary partition of an arbitrary permu-

tation of the l gluon indices; i1, . . . im are the color indices of quarks, and

α1, . . . αm of the antiquarks. In perturbation theory each external quark

is connected by a fermion line to an external antiquark (all particles are

counted as incoming). When quark ik is connected by a fermion line to anti-

quark αk, we set αk = īk. Thus, the set of α1, . . . αm is a permutation of the

set ī1, . . . īm. Finally, the power p is equal to the number of times αk = īk
minus 1. When there is only one quark-antiquark pair, m = 1 and p = 0.

For a general m, the power p in (6) varies from 0 to m − 1.
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The kinematic amplitudes Al+2m in (5) have the color information

stripped off and hence do not distinguish between fundamental quarks and

adjoint gluinos. Thus,

Al+2m(q, . . . , q̄, . . . , g+, . . . , g−) = Al+2m(Λ+, . . . ,Λ−, . . . , g+, . . . , g−) ,

(7)

where q, q̄, g±, Λ± denote quarks, antiquarks, gluons and gluinos of ±
helicity.

In the following sections we will use the scalar graph formalism of [1] to

evaluate the kinematic amplitudes An in (7). Full amplitudes can then be

determined uniquely from the kinematic part An, and the known expressions

for Tn in (4) and (6) by summing over the inequivalent color orderings in

(2).

From now on we concentrate on the purely kinematic part of the ampli-

tude, An.

2.2. Amplitudes in the spinor helicity formalism

We will first consider theories with N ≤ 1 supersymmetry. Gauge theories

with extended supersymmetry have a more intricate behavior of their am-

plitudes in the helicity basis and their study will be postponed until Section

4. Theories with N = 4 (or N = 2) supersymmetry have N different species

of gluinos and 6 (or 4) scalar fields. This leads to a large number of elemen-

tary MHV-like vertices in the scalar graph formalism. This proliferation of

elementary vertices asks for a super-graph generalization of the CSW scalar

graph method, which will be outlined in Section 5 following Ref. [10].

Here we will concentrate on tree level partial amplitudes An = Al+2m

with l gluons and 2m fermions in the helicity basis, and all external lines are

defined to be incoming.

In N ≤ 1 theory a fermion of helicity + 1
2 is always connected by a

fermion propagator to a helicity − 1
2 fermion hence the number of fermions

2m is always even. This statement is correct only in theories without scalar

fields. In the N = 4 theory, a pair of positive helicity fermions, Λ1+, Λ2+,

can be connected to another pair of positive helicity fermions, Λ3+, Λ4+, by

a scalar propagator.

In N ≤ 1 theory a tree amplitude An with less than two opposite helicities

vanishes b identically [25]. The first nonvanishing amplitudes contain n − 2

particles with helicities of the same sign [2,3] and are called maximal helicity

violating (MHV) amplitudes.

b In the N = 1 theory this is also correct to all orders in the loop expansion and non-perturbatively.
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In the spinor helicity formalism [2, 3, 26] an on-shell momentum of a

massless particle, pµpµ = 0, is represented as

paȧ ≡ pµσµ
aȧ = λaλ̃ȧ , (8)

where λa and λ̃ȧ are two commuting spinors of positive and negative chirality.

Spinor inner products are defined by c

〈λ, λ′〉 = εabλ
aλ′b , [λ̃, λ̃′] = εȧḃλ̃

ȧλ̃′ḃ , (9)

and a scalar product of two null vectors, paȧ = λaλ̃ȧ and qaȧ = λ′
aλ̃

′
ȧ, becomes

pµqµ =
1

2
〈λ, λ′〉[λ̃, λ̃′] . (10)

An MHV amplitude An = Al+2m with l gluons and 2m fermions in N ≤ 1

theories exists only for m = 0, 1, 2. This is because it must have precisely

n− 2 particles with positive and 2 with negative helicities, and our fermions

always come in pairs with helicities ± 1
2 . Hence, there are three types of

MHV tree amplitudes in N ≤ 1 theories:

An(g−r , g−s ) , An(g−t ,Λ−
r ,Λ+

s ) , An(Λ−
t ,Λ+

s ,Λ−
r ,Λ+

q ) . (11)

Suppressing the overall momentum conservation factor,

ign−2
YM (2π)4 δ(4)(

n
∑

i=1

λiaλ̃iȧ) , (12)

the MHV purely gluonic amplitude is [2, 3]

An(g−r , g−s ) =
〈λr, λs〉

4

∏n
i=1〈λi, λi+1〉

≡
〈r s〉4

∏n
i=1〈i i + 1〉

, (13)

where λn+1 ≡ λ1. The MHV amplitude with two external fermions and n−2

gluons is

An(g−t ,Λ−
r ,Λ+

s ) =
〈t r〉3 〈t s〉

∏n
i=1〈i i + 1〉

,

An(g−t ,Λ+
s ,Λ−

r ) = −
〈t r〉3 〈t s〉

∏n
i=1〈i i + 1〉

,

(14)

where the first expression corresponds to r < s and the second to s < r (and

t is arbitrary). The MHV amplitudes with four fermions and n − 4 gluons

c Our conventions for spinor helicities follow [1,4] and are the same as in [6,10].



September 11, 2004 15:42 WSPC/Trim Size: 9.75in x 6.5in for Proceedings khoze

632 Valentin V. Khoze

on external lines are

An(Λ−
t ,Λ+

s ,Λ−
r ,Λ+

q ) =
〈t r〉3 〈s q〉

∏n
i=1〈i i + 1〉

,

An(Λ−
t ,Λ−

r ,Λ+
s ,Λ+

q ) = −
〈t r〉3 〈s q〉

∏n
i=1〈i i + 1〉

.

(15)

The first expression in (15) corresponds to t < s < r < q, the second to

t < r < s < q, and there are other similar expressions, obtained by further

permutations of fermions, with the overall sign determined by the ordering.

Expressions (14), (15) can be derived from supersymmetric Ward identi-

ties [24, 25, 27], and we will have more to say about this in Section 5. The

MHV amplitude can be obtained, as always, by exchanging helicities + ↔ −
and 〈i j〉 ↔ [i j].

3. Gluonic NMHV amplitudes and the CSW method

The formalism of CSW was developed in [1] for calculating purely gluonic

amplitudes at tree level. In this approach all non-MHV n-gluon amplitudes

(including MHV) are expressed as sums of tree diagrams in an effective scalar

perturbation theory. The vertices in this theory are the MHV amplitudes

(13), continued off-shell as described below, and connected by scalar prop-

agators 1/q2. It was shown in [6, 10] that the same idea continues to work

in theories with fermions and gluons. Scattering amplitudes are determined

from scalar diagrams with three types of MHV vertices, (13),(14) and (15),

which are connected to each other with scalar propagators 1/q2. Also, since

we have argued above that at tree level, supersymmetry is irrelevant, the

method applies to supersymmetric and non-supersymmetric theories [6].

When one leg of an MHV vertex is connected by a propagator to a leg

of another MHV vertex, both legs become internal to the diagram and have

to be continued off-shell. Off-shell continuation is defined as follows [1]: we

pick an arbitrary spinor ξ ȧ
Ref and define λa for any internal line carrying

momentum qaȧ by

λa = qaȧξ
ȧ
Ref . (16)

External lines in a diagram remain on-shell, and for them λ is defined in

the usual way. For the off-shell lines, the same ξRef is used in all diagrams

contributing to a given amplitude.

For practical applications the authors of [1] have chosen ξ ȧ
Ref in (16) to be

equal to λ̃ȧ of one of the external legs of negative helicity, e.g. the first one,

ξȧ
Ref = λ̃ȧ

1 . (17)
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This corresponds to identifying the reference spinor with one of the kinematic

variables of the theory. The explicit dependence on the reference spinor ξ ȧ
Ref

disappears and the resulting expressions for all scalar diagrams in the CSW

approach are functions only of the kinematic variables λi a and λ̃ȧ
i . This

means that the expressions for all individual diagrams automatically appear

to be Lorentz-invariant (in the sense that they do not depend on an external

spinor ξȧ
Ref) and also gauge-invariant (since the reference spinor corresponds

to the axial gauge fixing ξµ
RefAµ = 0, where ξȧa

Ref = ξȧ
Refξ

a
Ref).

There is a price to pay for this invariance of the individual diagrams.

Equations (16), (17) lead to unphysical singularities d which occur for the

whole of phase space and which have to be cancelled between the individual

diagrams. The result for the total amplitude is, of course, free of these

unphysical singularities, but their cancellation and the retention of the finite

part requires some work, see [1] and section 3.1 of [6].

Following [6, 10] we note that these unphysical singularities are specific

to the three-gluon MHV vertices and, importantly, they do not occur in any

of the MHV vertices involving a fermion field. To see how these singularities

arise in gluon vertices, consider a 3-point MHV vertex,

A3(g
−
1 , g−2 , g+

3 ) =
〈1 2〉4

〈1 2〉〈2 3〉〈3 1〉
=

〈1 2〉3

〈2 3〉〈3 1〉
. (18)

This vertex exists only when one of the legs is off-shell. Take it to be the g+
3

leg. Then Eqs. (16), (17), and momentum conservation, q = p1 + p2, give

λ3 a = (p1 + p2)aȧ λ̃ȧ
1 = −λ1 a [1 1] − λ2 a [2 1] = −λ2 a [2 1] . (19)

This implies that 〈2 3〉 = −〈2 2〉[2 1] = 0, and the denominator of (18)

vanishes. This is precisely the singularity we are after. If instead of the g+
3

leg, one takes the g−2 leg go off-shell, then, 〈2 3〉 = −〈3 3〉[3 1] = 0 again.

Now consider a three-point MHV vertex involving two fermions and a

gluon,

A3(Λ
−
1 , g−2 ,Λ+

3 ) =
〈2 1〉3〈2 3〉

〈1 2〉〈2 3〉〈3 1〉
= −

〈2 1〉2

〈3 1〉
. (20)

Choose the reference spinor to be as before, λ̃ȧ
1, and take the second or the

third leg off-shell. This again makes 〈2 3〉 = 0, but now the factor of 〈2 3〉 is

cancelled on the right hand side of (20). Hence, the vertex (20) is regular, and

there are no unphysical singularities in the amplitudes involving at least one

d Unphysical means that these singularities are not the standard IR soft and collinear divergences

in the amplitudes.
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negative helicity fermion when it’s helicity is chosen to be the reference spinor

[6]. One concludes that the difficulties with singularities at intermediate

stages of the calculation occur only in purely gluonic amplitudes. One way

to avoid these intermediate singularities is to choose an off-shell continuation

different from the CSW prescription (16),(17).

Recently, Kosower [9] used an off-shell continuation by projection of the

off-shell momentum with respect to an on-shell reference momentum qµ
Ref , to

derive, for the first time, an expression for a general NMHV amplitude with

three negative helicity gluons. The amplitude in [9] was from the start free

of unphysical divergences, however it required a certain amount of spinor

algebra to bring it into a form independent of the reference momentum.

In [10] we proposed another simple method for finding all purely gluonic

NMHV amplitudes. Using N = 1 supersymmetric Ward identities one can

relate purely gluonic amplitudes to a linear combination of amplitudes with

one fermion–antifermion pair. As explained above, the latter are free of sin-

gularities and are manifestly Lorentz-invariant. These fermionic amplitudes

will be calculated in Section 7 using the CSW scalar graph approach with

fermions [6] and following [10].

To derive supersymmetric Ward identities [25] we use the fact that su-

percharges Q annihilate the vacuum and consider the equation,

〈[Q , Λ+
k . . . g−r1

. . . g−r2
. . . g−r3

. . .]〉 = 0 , (21)

where dots indicate positive helicity gluons. In order to make the anticom-

muting spinor Q a singlet entering a commutative (rather than anticommu-

tative) algebra with all the fields, we contract it with a commuting spinor η

and multiply it by a Grassmann number θ. This defines a commuting singlet

operator Q(η). Following [27] we can write down the following susy algebra

relations,

[Q(η) , Λ+(k)] = −θ〈η k〉 g+(k) , [Q(η) , Λ−(k)] = +θ[η k] g−(k) ,

[Q(η) , g−(k)] = +θ〈η k〉Λ−(k) , [Q(η) , g+(k)] = −θ[η k] Λ+(k) .
(22)

In what follows, the anticommuting parameter θ will cancel from the relevant

expressions for the amplitudes. The arbitrary spinors ηa, ηȧ, will be fixed

below. It then follows from (22) that

〈η k〉An(g−r1
, g−r2

, g−r3
) = 〈η r1〉An(Λ+

k ,Λ−
r1

, g−r2
, g−r3

)

+ 〈η r2〉An(Λ+
k , g−r1

,Λ−
r2

, g−r3
) + 〈η r3〉An(Λ+

k , g−r1
, g−r2

,Λ−
r3

) .
(23)

After choosing η to be one of the three rj we find from (23) that the purely

gluonic amplitude with three negative helicities is given by a sum of two
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fermion-antifermion-gluon-gluon amplitudes. Note that in the expressions

above and in what follows, in n-point amplitudes we show only the relevant

particles, and suppress all the positive helicity gluons g+.

Remarkably, this approach works for any number of negative helicities,

and the NMHV amplitude with h negative gluons is expressed via a simple

linear combination of h−1 NMHV amplitudes with one fermion-antifermion

pair.

In Sections 7 and 8 we will evaluate NMHV amplitudes with fermions.

In particular, in Section 7 we will calculate the following three amplitudes,

An(Λ−
m1

, g−m2
, g−m3

,Λ+
k ) , An(Λ−

m1
, g−m2

,Λ+
k , g−m3

) , An(Λ−
m1

,Λ+
k , g−m2

, g−m3
) .

(24)

In terms of these, the purely gluonic amplitude of (23) reads

An(g−r1
, g−r2

, g−r3
) = −

〈η r1〉

〈η k〉
An(Λ−

m1
, g−m2

, g−m3
,Λ+

k )|m1=r1,m2=r2,m3=r3

−
〈η r2〉

〈η k〉
An(Λ−

m1
, g−m2

,Λ+
k , g−m3

)|m1=r2,m2=r3,m3=r1

−
〈η r3〉

〈η k〉
An(Λ−

m1
,Λ+

k , g−m2
, g−m3

)|m1=r3,m2=r1,m3=r2 ,

(25)

and η can be chosen to be one of the three mj to further simplify this formula.

4. N = 4 Supersymmetry Algebra in Helicity Formalism

The N = 1 susy algebra relations (22) can be generalized to N ≥ 1 theories.

The N = 4 susy relations read:

[QA(η) , g+(k)] = −θA[η k] Λ+ A(k) , (26a)

[QA(η) , Λ+ B(k)] = −δAB θA〈η k〉 g+(k) − θA[η k]φAB , (26b)

[QA(η) , φAB(k)] = −θA[η k] Λ−
B(k) , (26c)

[QA(η) , φAB(k)] = θA〈η k〉Λ+ B(k) , (26d)

[QA(η) , Λ−
B(k)] = δAB θA[η k] g−(k) + θA〈η k〉φAB(k) , (26e)

[QA(η) , g−(k)] = θA〈η k〉Λ−
A(k) . (26f)

Our conventions are the same as in (22), and it is understood that QA = QA

and there is no summation over A in (26c), (26d). The conjugate scalar field

is defined in the standard way,

φAB = 1
2 εABCD φCD = (φAB)† . (27)
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Relations (26a)-(26f) can be used in order to derive N = 2 and N = 4 susy

Ward identities which relate different classes of amplitudes in gauge theories

with extended supersymmetry.

5. The Analytic Supervertex in N = 4 SYM

So far we have encountered three types of MHV amplitudes (13), (14) and

(15). The key feature which distinguishes these amplitudes is the fact that

they depend only on 〈λi λj〉 spinor products, and not on [λ̃i λ̃i]. We will call

such amplitudes analytic.

All analytic amplitudes in generic 0 ≤ N ≤ 4 gauge theories can be

combined into a single N = 4 supersymmetric expression of Nair [23],

AN=4
n = δ(8)

(

n
∑

i=1

λiaη
A
i

) 1
∏n

i=1〈i i + 1〉
. (28)

Here ηA
i are anticommuting variables and A = 1, 2, 3, 4. The Grassmann-

valued delta function is defined in the usual way,

δ(8)
(

n
∑

i=1

λiaη
A
i

)

≡
4

∏

A=1

1
2

(

n
∑

i=1

λa
i η

A
i

)(

n
∑

i=1

λiaη
A
i

)

. (29)

Taylor expanding (28) in powers of ηi, one can identify each term in the ex-

pansion with a particular tree-level analytic amplitude in the N = 4 theory.

(ηi)
k for k = 0, . . . , 4 is interpreted as the ith particle with helicity hi = 1− k

2 .

This implies that helicities take values, {1, 1
2 , 0,−1

2 ,−1}, which precisely cor-

respond to those of the N = 4 supermultiplet, {g−, λ−
A, φAB ,ΛA+, g+}.

It is straightforward to write down a general rule [6] for associating a

power of η with all component fields in N = 4,

g−i ∼ η1
i η

2
i η

3
i η

4
i , Λ−

1 ∼ − η2
i η

3
i η

4
i , φAB

i ∼ ηA
i ηB

i , ΛA+
i ∼ ηA

i , g+
i ∼ 1 ,

(30)

with expressions for the remaining Λ−
A with A = 2, 3, 4 written in the same

manner as the expression for Λ−
1 in (30). The first MHV amplitude (13) is

derived from (28) by using the dictionary (30) and by selecting the (ηr)
4 (ηs)

4

term in (28). The second amplitude (14) follows from the (ηt)
4(ηr)

3(ηs)
1

term in (28); and the third amplitude (15) is an (ηr)
3(ηs)

1(ηt)
3(ηq)

1 term.

There is a large number of such component amplitudes for an extended

susy Yang–Mills, and what is remarkable, not all of these amplitudes are

MHV. The analytic amplitudes of the N = 4 SYM obtained from (28), (30)
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are [10]:

An(g−, g−) , An(g−,Λ−
A,ΛA+) , An(Λ−

A,Λ−
B ,ΛA+,ΛB+) ,

An(g−,Λ1+,Λ2+,Λ3+,Λ4+) , An(Λ−
A,ΛA+,Λ1+,Λ2+,Λ3+,Λ4+) ,

An(Λ1+,Λ2+,Λ3+,Λ4+,Λ1+,Λ2+,Λ3+,Λ4+) ,

An(φAB ,ΛA+,ΛB+,Λ1+,Λ2+,Λ3+,Λ4+) ,

An(g−, φAB , φAB) , An(g−, φAB,ΛA+,ΛB+) , An(Λ−
A,Λ−

B , φAB) ,

An(Λ−
A, φAB , φBC ,ΛC+) , An(Λ−

A, φBC ,ΛA+,ΛB+,ΛC+) ,

An(φ, φ, φ, φ) , An(φ, φ, φ,Λ+,Λ+) , An(φ, φ,Λ+,Λ+,Λ+,Λ+) ,

(31)

where it is understood that φAB = 1
2εABCDφCD. In Eqs. (31) we do not

distinguish between the different particle orderings in the amplitudes. The

labels refer to supersymmetry multiplets, A,B = 1, . . . , 4. Analytic ampli-

tudes in (31) include the familiar MHV amplitudes, (13), (14), (15), as well

as more complicated classes of amplitudes with external gluinos ΛA, ΛB 6=A,

etc, and with external scalar fields φAB .

The second, third and fourth lines in (31) are not even MHV amplitudes;

they have less than two negative helicities, and nevertheless, these ampli-

tudes are non-vanishing in N = 4 SYM. The conclusion we draw [10] is that

in the scalar graph formalism in N ≤ 4 SYM, the amplitudes are character-

ized not by a number of negative helicities, but rather by the total number

of η’s associated to each amplitude via the rules (30).

All the analytic amplitudes listed in (31) can be calculated directly from

(28), (30). There is a simple algorithm for doing this [10].

(1) For each amplitude in (31) substitute the fields by their η-expressions

(30). There are precisely eight η’s for each analytic amplitude.

(2) Keeping track of the overall sign, rearrange the anticommuting η’s into

a product of four pairs, (sign) × η1
i η

1
j η2

kη
2
l η3

mη3
n η4

rη
4
s .

(3) The amplitude is obtained by replacing each pair ηA
i ηA

j by the spinor

product 〈i j〉 and dividing by the usual denominator,

An = (sign) ×
〈i j〉〈k l〉〈m n〉〈r s〉

∏n
l=1 〈l l + 1〉

. (32)

In this way one can immediately write down expressions for all component

amplitudes in (31). It can be checked that these expressions are inter-related

via N = 4 susy Ward identities which follow from the N = 4 susy algebra

in (26a)-(26f).
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The vertices of the scalar graph method are the analytic vertices (31)

which are all of degree-8 in η and are not necessarily MHV. These are

component vertices of a single analytic supervertex e (28). The analytic

amplitudes of degree-8 are the elementary blocks of the scalar graph ap-

proach. The next-to-minimal case are the amplitudes of degree-12 in η, and

they are obtained by connecting two analytic vertices of [23] with a scalar

propagator 1/q2. Each analytic vertex contributes 8 η’s and a propagator

removes 4. Scalar diagrams with three degree-8 vertices give the degree-12

amplitude, etc. In general, all n-point amplitudes are characterized by a

degree 8, 12, 16, . . . , (4n − 8) which are obtained from scalar diagrams with

1, 2, 3, . . . analytic vertices.f In Section 9 we will derive a simple expression

for the first iteration of the degree-8 vertex. This iterative process can be

continued straightforwardly to higher orders.

6. Calculating Simple Anti-Analytic Amplitudes

To show the simplicity of the scalar graph method at tree level and to test its

results, in this section we will calculate some simple anti-analytic amplitudes

of η-degree-12. More complicated general cases are discussed in Sections 7

– 9.

We work in N = 1, N = 2 and N = 4 SYM theories, and study

AN=1
5 (g−1 ,Λ−

(1) 2,Λ
−
(1) 3,Λ

(1)+
4 ,Λ

(1)+
5 ) , (33a)

AN=2
5 (Λ−

(1) 1,Λ
−
(2) 2, g

−
3 ,Λ

(1)+
4 ,Λ

(2)+
5 ) , (33b)

AN=4
5 (Λ−

(1) 1,Λ
−
(2) 2,Λ

−
(3) 3,Λ

−
(4) 4, g

+
5 ) , (33c)

using the scalar graph method with analytic vertices. The labels N = 1, 2, 4

on the three amplitudes above correspond to the minimal number of super-

symmetries for the given amplitude. In this section the N -supersymmetry

labels A,B are shown as (A) and (B).

In all cases we will reproduce known results for these anti-analytic am-

plitudes, which implies that at tree level the scalar graph method appears

to work correctly not only in N = 0, 1 theories, but also in full N = 2 and

N = 4 SYM. This answers the question (2) in the introduction.

e The list of component vertices (31) is obtained by writing down all partitions of 8 into groups of

4, 3, 2 and 1. For example, An(g−, φAB , ΛA+,ΛB+) follows from 8 = 4 + 2 + 1 + 1 .
f In practice, one needs to know only the first half of these amplitudes, since degree-(4n−8) ampli-

tudes are anti-analytic (also known as googly) and they are simply given by degree-8∗ amplitudes,

similarly degree-(4n − 12) are given by degree-12∗, etc.
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Furthermore, the N = 4 result (55) for the amplitude (33c) will verify

the fact that the building blocks of the scalar graph method are indeed the

analytic vertices (31), which can have less than 2 negative helicities, i.e. are

not MHV.

We will be using the of-shell prescription ξ ȧ
Ref = λ̃ȧ

2 as in Section 3. Since

in our amplitudes, the reference spinor λ̃ȧ
2 always corresponds to a gluino

Λ−, rather than a gluon g−, there will be no singularities in our formulae at

any stage of the calculation.

6.1. Anti-analytic N = 1 amplitude

There are three diagrams contributing to the first amplitude, Eq. (33a). The

first one is a gluon exchange between two 2-fermion MHV-vertices. This

diagram has a schematic form,

A4(g
−
1 ,Λ−

2 , g+
I ,Λ+

5 )
1

q2
I

A3(Λ
−
3 ,Λ+

4 , g−−I) . (34)

Here g+
I and g−−I are off-shell (internal) gluons which are Wick-contracted

via a scalar propagator, and I = (3, 4), which means, λI = (p3 + p4) · λ̃2.

The second and the third diagrams involve a fermion exchange between

a 2-fermion and a 4-fermion MHV vertices. They are given, respectively by

A(Λ−
2 ,Λ−

3 ,Λ+
4 ,Λ+

−I)
1

q2
I

A(Λ+
5 , g−1 ,Λ−

I ) , (35)

with I = (2, 4), and

A(g−1 ,Λ−
2 ,Λ+

I )
1

q2
I

A(Λ−
3 ,Λ+

4 ,Λ+
5 ,Λ−

−I) , (36)

with I = (3, 5). Both expressions, (35) and (36), are written in the form

which is in agreement with the ordering prescription of [6] for internal

fermions, ket+ ket−. All three contributions are straightforward to evaluate

using the relevant expressions for the component analytic vertices. These

expressions follow from the algorithm (32).

1. The first contribution, Eq. (34), is

−〈1 2〉2

(〈2 3〉[2 3] + 〈2 4〉[2 4])〈5 1〉[2 1]
·

1

〈3 4〉[3 4]
· 〈4 3〉[2 4]2

=
[2 4]2〈1 2〉2

[3 4](〈2 3〉[2 3] + 〈2 4〉[2 4])〈5 1〉[2 1]
.

(37)
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2. The second diagram, Eq. (35), gives

−〈2 3〉2

(〈2 3〉[2 3] + 〈2 4〉[2 4])〈3 4〉
·

1

〈5 1〉[5 1]
·
〈5 1〉[2 5]2

[2 1]

=
−[2 5]2〈2 3〉2

[2 1][5 1](〈2 3〉[2 3] + 〈2 4〉[2 4])〈3 4〉
.

(38)

3. The third contribution, Eq. (36), is

〈2 1〉

[2 1]
·

1

〈1 2〉[1 2]
·
〈3 1〉2[2 1]

〈3 4〉〈5 1〉
=

〈3 1〉2

[2 1]〈3 4〉〈5 1〉
. (39)

Now, we need to add up the three contributions. We first combine the

expressions in (37) and (38) into

[4 5]2

[2 1][3 4][5 1]
−

〈3 1〉2

[2 1]〈3 4〉〈5 1〉
(40)

using momentum conservation identities, and the fact that 〈2 3〉[2 3] +

〈2 4〉[2 4] = −〈3 4〉[3 4] + 〈5 1〉[5 1]. Then, adding the remaining contri-

bution (39) we obtain the final result for the amplitude,

AN=1
5 (g−1 ,Λ−

(1) 2,Λ
−
(1) 3,Λ

(1)+
4 ,Λ

(1)+
5 ) =

−[4 5]3[2 3]

[1 2][2 3][3 4][4 5][5 1]
. (41)

which is precisely the right answer for the anti-analytic 5-point ‘mostly mi-

nus’ diagram. This can be easily verified by taking a complex conjugation

(parity transform) of the corresponding analytic expression.

6.2. Anti-analytic N = 2 amplitude

There are three contributions to the amplitude (33b) The first contribution

is a scalar exchange between two analytic vertices,

A3(Λ
−
(1) 1,Λ

−
(2) 2, φ

(12)
−I )

1

q2
I

A4(g
−
3 ,Λ

(1)+
4 ,Λ

(2)+
5 , φ(12) I) . (42)

Here φ
(12)
−I and φ(12) I ≡ φ

(34)
I are off-shell (internal) scalars which are Wick-

contracted. The external index I = (1, 2), which implies λI = (p1+p2) · λ̃2 =

p1 · λ̃2. The second contribution to (33b) is a fermion exchange,

A3(g
−
3 ,Λ

(1)+
4 ,Λ−

(1)−I)
1

q2
I

A4(Λ
(2)+
5 ,Λ−

(1) 1,Λ
−
(2) 2,Λ

(1)+
I ) , (43)

with external index I = (3, 4), that is, λI = (p3 + p4) · λ̃2.
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The final third contribution is again a fermion exchange,

A3(Λ
−
(2) 2, g

−
3 ,Λ

(2)+
−I )

1

q2
I

A4(Λ
(1)+
4 ,Λ

(2)+
5 ,Λ−

(1) 1,Λ
−
(2) I) , (44)

with I = (2, 3), and λI = (p2 + p3) · λ̃2 = p3 · λ̃2. As before, all three

contributions are straightforward to evaluate using the rules (32).

1. The first contribution, Eq. (42), is

〈1 2〉 ·
1

〈1 2〉[1 2]
·
−〈3 5〉〈3 1〉[2 1]

〈4 5〉〈5 1〉[2 1]
=

〈3 5〉〈3 1〉

〈4 5〉〈5 1〉

1

[2 1]
. (45)

2. The second contribution (43) gives

〈3 4〉2[2 4]2

〈4 3〉[2 3]
·

1

〈3 4〉[3 4]
·

−〈1 2〉

〈5 1〉[2 1]
= −

〈1 2〉

〈5 1〉

[2 4]2

[1 2][2 3][3 4]
. (46)

3. The third contribution (44), is

−
〈2 3〉2

〈2 3〉[3 2]
·

1

〈2 3〉[2 3]
·
〈1 3〉[2 3]

〈4 5〉
=

〈1 3〉

〈4 5〉

1

[2 3]
. (47)

Now, we add up the three contributions in Eqs. (45), (46), (47) and using

the momentum conservation identities obtain

AN=2
5 (Λ−

(1) 1,Λ
−
(2) 2, g

−
3 ,Λ

(1)+
4 ,Λ

(2)+
5 ) =

[2 4][4 5]

[1 2][2 3][3 4]
, (48)

which is the correct result for the anti-analytic amplitude.

6.3. Anti-analytic N = 4 amplitude

The amplitude AN=4
5 (Λ−

(1) 1,Λ
−
(2) 2,Λ

−
(3) 3,Λ

−
(4) 4, g

+
5 ) receives contributions

only from diagrams with a scalar exchange. There are three such diagrams.

The first one is

A4(g
+
5 ,Λ−

(1) 1,Λ
−
(2) 2, φ

(12)
−I )

1

q2
I

A3(Λ
−
(3) 3,Λ

−
(4) 4, φ

(34)
I ) . (49)

Here φ
(12)
−I and φ

(34)
I are off-shell (internal) scalars which are Wick-contracted

and λI = (p1 + p2 + p5) · λ̃2 = (p1 + p5) · λ̃2.

The second contribution to (33c) is

A3(Λ
−
(1) 1

,Λ−
(2) 2

, φ
(12)
−I )

1

q2
I

A4(Λ
−
(3) 3

,Λ−
(4) 4

, g+
5 , φ

(34)
I ) , (50)

with external index I = (1, 2), that is, λI = (p1 + p2) · λ̃2 = p1 · λ̃2.
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The third diagram gives,

A3(Λ
−
(2) 2,Λ

−
(3) 3, φ

(23)
−I )

1

q2
I

A4(Λ
−
(4) 4, g

+
5 ,Λ−

(1) 1, φ
(14)
I ) , (51)

with I = (2, 3), and λI = (p2 + p3) · λ̃2 = p3 · λ̃2.

1. The first contribution, Eq. (49), is

〈1 5〉[2 5]〈1 2〉

〈5 1〉[2 1]〈5 1〉
·

1

〈3 4〉[3 4]
· 〈3 4〉 =

〈1 2〉

〈1 5〉

[2 5]

[2 1][3 4]
. (52)

2. The second contribution (50) gives

〈1 2〉 ·
1

〈1 2〉[1 2]
·
〈4 1〉[2 1]〈3 4〉

〈4 5〉〈5 1〉[2 1]
=

〈3 4〉〈4 1〉

〈4 5〉〈5 1〉[1 2]
. (53)

3. The third contribution (51), is

〈2 3〉 ·
1

〈2 3〉[2 3]
·

〈1 4〉2

〈4 5〉〈5 1〉
=

〈1 4〉2

〈4 5〉〈5 1〉[2 3]
. (54)

We add up the three contributions (52), (53), (54) and using the momen-

tum conservation identities obtain

AN=4
5 (Λ−

(1) 1,Λ
−
(2) 2,Λ

−
(3) 3,Λ

−
(4) 4, g

+
5 ) = −

[2 5][3 5]

[1 2][2 3][3 4]
. (55)

which is again the correct answer for this amplitude, as can be easily seen

from taking the complex conjugate of the corresponding analytic expression.

7. NMHV (- - -) Amplitudes with Two Fermions

In this and the following section we restrict to N ≤ 1 theory. There is

only one type of fermions, Λ1 = Λ. We start with the case of one fermion-

antifermion pair, Λ−, Λ+, and an arbitrary number of gluons, g. The am-

plitude has schematic form, An(Λ−
m1

, g−m2
, g−m3

,Λ+
k ), and without loss of gen-

erality we can have m1 < m2 < m3. With these conventions, there are three

different classes of amplitudes depending on the position of the Λ+
k fermion

relative to m1,m2,m3:

An(Λ−
m1

, g−m2
, g−m3

,Λ+
k ) , (56a)

An(Λ−
m1

, g−m2
,Λ+

k , g−m3
) , (56b)

An(Λ−
m1

,Λ+
k , g−m2

, g−m3
) . (56c)

Each of these three amplitudes receives contributions from different types

of scalar diagrams in the CSW approach. In all of these scalar diagrams
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there are precisely two MHV vertices connected to each other by a single

scalar propagator [1]. We will always arrange these diagrams in such a way

that the MHV vertex on the left has positive helicity on the internal line,

and the right vertex has a negative helicity. Then, there are three choices

one can make [9] for the pair of negative helicity particles to enter external

lines of the left vertex, (m1,m2), (m2,m3), or (m3,m1). In addition to this,

each diagram in N ≤ 1 theory corresponds to either a gluon exchange, or a

fermion exchange.
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Figure 1. Diagrams with MHV vertices contributing to the amplitude An(Λ−

m1
, g−m2

, g−m3
,Λ+

k
).

Fermions, Λ+ and Λ−, are represented by dashed lines and negative helicity gluons, g−, by solid

lines. Positive helicity gluons g+ emitted from each vertex are indicated by dotted semicircles

with labels showing the bounding g+ lines in each MHV vertex.

The diagrams contributing to the first process (56a) are drawn in Figure

1. There are three gluon exchange diagrams for all three partitions (m2,m3),

(m1,m2), (m3,m1), and there is one fermion exchange diagram for the par-

tition (m1,m2).

It is straightforward, using the expressions for the MHV vertices (13),(14),

to write down an analytic expression for the first diagram of Figure 1,

A(1)
n =

1
∏n

l=1 〈l l + 1〉

m2−1
∑

i=m1

k−1
∑

j=m3

−〈(i + 1, j) m1〉
3 〈(i + 1, j) k〉

〈i (i + 1, j)〉〈(i + 1, j) j + 1〉

×
〈i i + 1〉〈j j + 1〉

q2
i+1,j

〈m2 m3〉
4

〈(j + 1, i) i + 1〉〈j (j + 1, i)〉
.

(57)
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This expression is a direct rendering of the ‘Feynman rules’ for the

scalar graph method [1, 6], followed by factoring out the overall factor of

(
∏n

l=1 〈l l + 1〉)−1. The objects (i+1, j) and (j +1, i) appearing on the right

hand side of (57) denote the spinors λi+1,j and λj+1,i corresponding to the

off-shell momentum qi+1,j

qi+1,j ≡ pi+1 + pi+2 + . . . + pj , qj+1,i ≡ pj+1 + pj+2 + . . . + pi ,

qi+1,j + qj+1,i = 0 ,

λi+1,j a ≡ qi+1,j aȧ ξȧ
Ref = −λj+1,i a ,

(58)

where ξȧ
Ref is the reference (dotted) spinor [1] as in Eq. (16). All other spinors

λi are on-shell and 〈i (j, k)〉 is an abbreviation for a spinor product 〈λi, λjk〉.
Having the freedom to choose any reference spinor we will always choose

it to be the spinor of the fermion Λ−. In this section, this is the spinor of

Λ−
m1

,

ξȧ
Ref = λ̃ȧ

m1
. (59)

We can now re-write

〈i (i + 1, j)〉〈(i + 1, j) j + 1〉〈(j + 1, i) i + 1〉〈j (j + 1, i)〉

= 〈i−|q/i+1,j|m
−
1 〉〈j + 1−|q/i+1,j|m

−
1 〉〈i + 1−|q/i+1,j |m

−
1 〉〈j

−|q/i+1,j|m
−
1 〉 ,

(60)

and define a universal combination,

D = 〈i−|q/i+1,j |m
−
1 〉〈j + 1−|q/i+1,j|m

−
1 〉〈i + 1−|q/i+1,j|m

−
1 〉〈j

−|q/i+1,j|m
−
1 〉

×
q2
i+1,j

〈i i + 1〉〈j j + 1〉
.

(61)

Note that here we introduced the standard Lorentz-invariant matrix element

〈i−|p/ k|j
−〉 = ia pk aȧ jȧ, which in terms of the spinor products is

〈i−|p/ k|j
−〉 = 〈i−|a |k+〉a 〈k+|ȧ |j−〉ȧ = −〈i k〉 [k j] = 〈i k〉 [j k] . (62)

The expression for A
(1)
n now becomes

A(1)
n =

−1
∏n

l=1 〈l l + 1〉

m2−1
∑

i=m1

k−1
∑

j=m3

〈m−
1 |q/i+1,j|m

−
1 〉

3〈k−|q/i+1,j|m
−
1 〉〈m2 m3〉

4

D
.

(63)
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For the second diagram of Figure 1, we have

A(2)
n =

−1
∏n

l=1 〈l l + 1〉

k−1
∑

i=m3

m3−1
∑

j=m2

〈m−
3 |q/i+1,j|m

−
1 〉

4〈m2 m1〉
3〈m2 k〉

D
. (64)

The MHV vertex on the right in the second diagram in Figure 1 can collapse

to a 2-leg vertex. This occurs when i = m3 and j + 1 = m3. This vertex

is identically zero, since qj+1,i = pm3 = −qi+1,j, and 〈m3 m3〉 = 0. Similar

considerations apply in (65), (68), (68), (69), (69), (71) and (72).

Expressions corresponding to the third and fourth diagrams in Figure 1

are

A(3)
n =

−1
∏n

l=1 〈l l + 1〉

m3−1
∑

i=m2

m2−1
∑

j=m1

〈m−
2 |q/i+1,j|m

−
1 〉

4〈m3 m1〉
3〈m3 k〉

D
, (65)

A(4)
n =

−1
∏n

l=1 〈l l + 1〉

×
n+m1−1

∑

i=k

m3−1
∑

j=m2

〈m−
3 |q/i+1,j|m

−
1 〉

3〈m−
2 |q/i+1,j |m

−
1 〉〈m2 m1〉

3〈m3 k〉

D
. (66)

Note that the first sum in (66),
∑n+m1−1

i=k , is understood to run in cyclic

order, for example
∑3

i=4 =
∑

i=4,...,n,1,2,3 . The same comment will also apply

to similar sums in Eqs. (68), (68), (69), (69) below.

The total amplitude is the sum of (63), (64), (65) and (66),

An(Λ−
m1

, g−m2
, g−m3

,Λ+
k ) =

4
∑

i=1

A(i)
n . (67)

There are three sources of zeroes in the denominator combination D de-

fined in (61). First, there are genuine zeroes in, for example, 〈i−|q/i+1,j |m
−
1 〉

when qi+1,j is proportional to pi. This occurs when j = i−1. Such terms are

always associated with two-leg vertices as discussed above and produce ze-

roes in the numerator. In fact, the number of zeroes in the numerator always

exceeds the number of zeroes in the denominator and this contribution van-

ishes. Second, there are zeroes associated with three-point vertices when, for

example, i = m2 and qi+1,j = pm2 + pm1 so that 〈m−
2 |m/1 + m/2|m

−
1 〉 = 0. As

discussed in Sec. 2, there is always a compensating factor in the numerator.

Such terms give a finite contribution (see (20)). Third, there are accidental

zeroes when qi+1,j happens to be a linear combination of pi and pm1 . For

general phase space points this is not the case. However, at certain phase

space points, the Gram determinant of pi, pm1 and qi+1,j does vanish. This



September 11, 2004 15:42 WSPC/Trim Size: 9.75in x 6.5in for Proceedings khoze

646 Valentin V. Khoze

produces an apparent singularity in individual terms in (63)–(66) which can-

cels when all contributions are taken into account. This cancellation can be

achieved numerically or straightforwardly eliminated using standard spinor

techniques [9].

For the special case of coincident negative helicities, m1 = 1, m2 = 2,

m3 = 3, the double sums in Eqs. (63)–(66) collapse to single sums. Further-

more, we see that the contribution from (65) vanishes due to momentum

conservation, q2,1 = 0. The remaining three terms agree with the result

presented in Eq. (3.6) of Ref. [6].

We now consider the second amplitude, Eq. (56b). The scalar graph

diagrams are shown in Figure 2. There is a fermion exchange and a gluon

exchange diagram for two of the line assignments, (m1,m2), and (m3,m1),

and none for the remaining assignment (m2,m3). These four diagrams result

in:

A(1)′
n =

1
∏n

l=1 〈l l + 1〉

×
n+m1−1

∑

i=m3

k−1
∑

j=m2

〈m−
3 |q/i+1,j|m

−
1 〉

3〈m−
2 |q/i+1,j |m

−
1 〉〈m2 m1〉

3〈m3 k〉

D
,

A(2)′

n =
1

∏n
l=1 〈l l + 1〉

k−1
∑

i=m2

m2−1
∑

j=m1

〈m−
2 |q/i+1,j|m

−
1 〉

4〈m3 m1〉
3〈m3 k〉

D
,

A(3)′
n =

1
∏n

l=1 〈l l + 1〉

×
m3−1
∑

i=k

m2−1
∑

j=m1

〈m−
2 |q/i+1,j|m

−
1 〉

3〈m−
3 |q/i+1,j|m

−
1 〉〈m3 m1〉3〈m2 k〉

D
,

A(4)′
n =

−1
∏n

l=1 〈l l + 1〉

n+m1−1
∑

i=m3

m3−1
∑

j=k

〈m−
3 |q/i+1,j|m

−
1 〉

4〈m2 m1〉
3〈m2 k〉

D
,

and the final answer for (56b) is,

An(Λ−
m1

, g−m2
,Λ+

k , g−m3
) =

4
∑

i=1

A(i)′

n . (68)

Finally, we give the result for (56c). The corresponding diagrams are

drawn in Figure 3. We find
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Figure 2. Diagrams with MHV vertices contributing to the amplitude An(Λ−

m1
, g−m2

, Λ+
k
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).
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Figure 3. Diagrams with MHV vertices contributing to the amplitude An(Λ−

m1
, Λ+

k
, g−m2

, g−m3
).

A(1)′′
n =

1
∏n

l=1〈l l+1〉

m2−1
∑

i=k

n+m1−1
∑

j=m3

〈m−
1 |q/i+1,j|m

−
1 〉

3〈k−|q/i+1,j|m
−
1 〉〈m2 m3〉

4

D
,

A(2)′′
n =

1
∏n

l=1〈l l+1〉

n+m1−1
∑

i=m3

m3−1
∑

j=m2

〈m−
3 |q/i+1,j|m

−
1 〉

4〈m2 m1〉
3〈m2 k〉

D
,

A(3)′′
n =

1
∏n

l=1〈l l+1〉

m3−1
∑

i=m2

m2−1
∑

j=k

〈m−
2 |q/i+1,j|m

−
1 〉

4〈m3 m1〉
3〈m3 k〉

D
,

A(4)′′
n =

−1
∏n

l=1〈l l+1〉

m3−1
∑

i=m2

k−1
∑

j=m1

〈m−
2 |q/i+1,j |m

−
1 〉

3〈m−
3 |q/i+1,j |m

−
1 〉〈m3 m1〉

3〈m2 k〉

D
.



September 11, 2004 15:42 WSPC/Trim Size: 9.75in x 6.5in for Proceedings khoze

648 Valentin V. Khoze

As before, the full amplitude is given by the sum of contributions,

An(Λ−
m1

,Λ+
k , g−m2

, g−m3
) =

4
∑

i=1

A(i)′′
n . (69)

8. NMHV (- - -) Amplitudes with Four Fermions

We now consider the amplitudes with 2 fermion-antifermion lines. In what

follows, without loss of generality we will choose the negative helicity gluon to

be the first particle. With this convention, we can write the six inequivalent

amplitudes as:

An(g−1 ,Λ−
m2

,Λ−
m3

,Λ+
mp

,Λ+
mq

) , (70a)

An(g−1 ,Λ−
m2

,Λ+
mp

,Λ−
m3

,Λ+
mq

) , (70b)

An(g−1 ,Λ−
m2

,Λ+
mp

,Λ+
mq

,Λ−
m3

) , (70c)

An(g−1 ,Λ+
mp

,Λ−
m2

,Λ−
m3

,Λ+
mq

) , (70d)

An(g−1 ,Λ+
mp

,Λ−
m2

,Λ+
mq

,Λ−
m3

) , (70e)

An(g−1 ,Λ+
mp

,Λ+
mq

,Λ−
m2

,Λ−
m3

) . (70f)

The calculation of the amplitudes of (70a)-(70f) is straightforward [10].

The diagrams contributing to the first process are shown in Figure 4. It

should be noted that not all the amplitudes in (70a)-(70f) receive contri-

butions from the same number of diagrams. For example, there are four

diagrams for the process of (70a) while there are six for that of (70b). In

order to avoid vanishing denominators, one can choose the reference spinor

to be η̃ = λ̃m2 . With this choice the result can be written as:

Ã(1)
n =

1
∏n

l=1 〈l l + 1〉

q−1
∑

i=p

m3−1
∑

j=m2

〈m−
3 |q/i+1,j|m

−
2 〉

3〈p−|q/i+1,j|m
−
2 〉〈1 m2〉

3〈1 q〉

D
,

Ã(2)
n =

−1
∏n

l=1 〈l l + 1〉

m2−1
∑

i=1

n
∑

j=q

〈1−|q/i+1,j |m
−
2 〉

4〈m2 m3〉
3〈p q〉

D
,

Ã(3)
n =

1
∏n

l=1 〈l l + 1〉

m2−1
∑

i=1

q−1
∑

j=p

〈1−|q/i+1,j |m
−
2 〉

3〈p−|q/i+1,j|m
−
2 〉〈m2 m3〉

3〈1 q〉

D
,

Ã(4)
n =

−1
∏n

l=1 〈l l + 1〉

n
∑

i=q

m3−1
∑

j=m2

〈m−
3 |q/i+1,j|m

−
2 〉

3〈1−|q/i+1,j|m
−
2 〉〈1 m2〉

3〈p q〉

D
.
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Figure 4. Tree diagrams with MHV vertices contributing to the four fermion amplitude

An(g−1 ,Λ−

m2
, Λ−

m3
,Λ+

mp
, Λ+

mq
).
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Figure 5. Tree diagrams with MHV vertices contributing to the four fermion amplitude

An(g−1 ,Λ−

m2
, Λ+

mp
,Λ−

m3
, Λ+

mq
).

As before the final result is the sum

An(g−1 ,Λ−
m2

,Λ−
m3

,Λ+
mp

,Λ+
mq

) =

4
∑

i=1

Ã(i)
n . (71)
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Once again, for the case of coincident negative helicities, m2 = 2, m3 = 3,

the double sums collapse to single summations and we recover the results

given in Ref. [6]. As a last example we write down the expression for the

amplitude of (70b). The corresponding diagrams are shown in Figure 5. We

find,

Ã(1)′

n =
−1

∏n
l=1〈l l+1〉

q−1
∑

i=m3

p−1
∑

j=m2

〈m−
3 |q/i+1,j|m

−
2 〉

3〈p−|q/i+1,j|m
−
2 〉〈1 m2〉

3〈1 q〉

D
,

Ã(2)′
n =

1
∏n

l=1〈l l+1〉

n
∑

i=q

m3−1
∑

j=p

〈m−
3 |q/i+1,j|m

−
2 〉

3〈q−|q/i+1,j|m
−
2 〉〈1 m2〉

3〈1 p〉

D
,

Ã(3)′
n =

1
∏n

l=1〈l l+1〉

n
∑

i=q

p−1
∑

j=m2

〈m−
3 |q/i+1,j |m

−
2 〉

3〈1−|q/i+1,j |m
−
2 〉〈1 m2〉

3〈p q〉

D
,

Ã(4)′
n =

1
∏n

l=1〈l l+1〉

m3−1
∑

i=p

m2−1
∑

j=1

〈m−
2 |q/i+1,j |m

−
2 〉

3〈p−|q/i+1,j |m
−
2 〉〈1 m3〉

3〈1 q〉

D
,

Ã(5)′
n =

1
∏n

l=1〈l l+1〉

m2−1
∑

i=1

n
∑

j=q

〈1−|q/i+1,j|m
−
2 〉

4〈m2 m3〉
3〈p q〉

D
,

Ã(6)′

n =
−1

∏n
l=1〈l l+1〉

m2−1
∑

i=1

q−1
∑

j=m3

〈1−|q/i+1,j|m
−
2 〉

3〈p−|q/i+1,j |m
−
2 〉〈m2 m3〉

3〈1 q〉

D
.

And the full amplitude is

An(g−1 ,Λ−
m2

,Λ+
mp

,Λ−
m3

,Λ+
mq

) =

6
∑

i=1

Ã(i)′
n . (72)

We close this section by listing the inequivalent NMHV amplitudes with

three fermion–antifermion pairs. There are ten such amplitudes since choos-

ing the first particle to be a negative helicity fermion we are left with five

fermions (two of which have negative helicity and three positive) which

should be distributed in all possible ways among themselves, and, in addi-

tion there are (n − 6) positive helicity gluons. Thus the number of different

possible ways is 5!. However, the order of the particles of the same helicity

is immaterial (since one can always choose m2 ≤ m3 and mp ≤ mq ≤ mr).

This means that we have to divide 5! by 3! (for the positive helicity fermions)

and by 2! (for the negative helicity fermions.) Thus there are ten different
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fermion amplitudes. These are listed below:

An(Λ−
1 ,Λ−

m2
,Λ−

m3
,Λ+

mp
,Λ+

mq
,Λ+

mr
) , An(Λ−

1 ,Λ−
m2

,Λ+
mp

,Λ−
m3

,Λ+
mq

,Λ+
mr

) ,

An(Λ−
1 ,Λ−

m2
,Λ+

mp
,Λ+

mq
,Λ−

m3
,Λ+

mr
) , An(Λ−

1 ,Λ+
mp

,Λ−
m2

,Λ−
m3

,Λ+
mq

,Λ+
mr

) ,

An(Λ−
1 ,Λ+

mp
,Λ−

m2
,Λ+

mq
,Λ−

m3
,Λ+

mr
) , An(Λ−

1 ,Λ+
mp

,Λ+
mq

,Λ−
m2

,Λ−
m3

,Λ+
mr

) ,

An(Λ−
1 ,Λ+

mp
,Λ+

mq
,Λ+

mr
,Λ−

m2
,Λ−

m3
) , An(Λ−

1 ,Λ+
mp

,Λ+
mq

,Λ−
m2

,Λ+
mr

,Λ−
m3

) ,

An(Λ−
1 ,Λ+

mp
,Λ−

m2
,Λ+

mq
,Λ+

mr
,Λ−

m3
) , An(Λ−

1 ,Λ−
m2

,Λ+
mp

,Λ+
mq

,Λ+
mr

,Λ−
m3

) .

(73)

These amplitudes also present no difficulty, and they can be evaluated in the

same manner as before.

9. Two analytic supervertices

PSfrag replacements

(i + 1) i

(j + 1)
j

n1n2

n +

Ī I

2−
m2−

m3−

+ −

Figure 6. Tree diagram with two analytic supervertices.

We now consider a diagram with two analytic supervertices (28) con-

nected to one another by a single scalar propagator. The diagram is depicted

in Figure 6. We follow the same conventions as in the previous sections, and

the left vertex has a positive helicity on the internal line Ī, while the right

vertex has a negative helicity on the internal line I. The labelling of the

external lines in Figure 6 is also consistent with our conventions. The right

vertex has n1 lines, and the left one has n2 lines in total, such that resulting

amplitude An has n = n1 + n2 − 2 external lines. Suppressing summations

over the distribution of n1 and n2 between the two vertices, we can write

down an expression for the corresponding amplitude which follows immedi-

ately from (28) and Figure 6,

An =
1

∏n
l=1 〈l l + 1〉

1

q2
I

〈j j + 1〉〈i i + 1〉

〈j Ī〉〈Ī i + 1〉〈i I〉〈I j + 1〉

×

∫ 4
∏

A=1

dηA
I δ(8)

(

λĪaη
A
I +

n2
∑

l2 6=Ī

λl2aη
A
l2

)

δ(8)
(

λIaη
A
I +

n1
∑

l1 6=I

λl1aη
A
l1

)

.

(74)
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The two delta-functions in (74) come from the two vertices (28). The sum-

mations in the delta-function arguments run over the n1 − 1 external lines

for right vertex, and n2 − 1 external lines for the left one. The integration

over d4ηI arises in (74) for the following reason. Two separate (unconnected)

vertices in Figure 6 would have n1 +n2 lines and, hence, n1 +n2 different η’s

(and λ’s). However the I and the Ī lines are connected by the propagator,

and there must be only n = n1 + n2 − 2 η-variables left. This is achieved in

(74) by setting

ηA
Ī = ηA

I , (75)

and integrating over d4ηI . The off-shell continuation of the internal spinors

is defined as before,

λIa =

n1
∑

l1 6=I

pl1 aȧ ξȧ
Ref = −λĪa . (76)

We now integrate out four ηI ’s which is made simple by rearranging the

arguments of the delta-functions via
∫

δ(f2)δ(f1) =
∫

δ(f1 + f2)δ(f1), and

noticing that the sum of two arguments, f1 + f2, does not depend on ηI .

The final result is

An =
1

∏n
l=1 〈l l + 1〉

δ(8)
(

n
∑

i=1

λiaη
A
i

)

4
∏

A=1

(

n1
∑

l1 6=I

〈I l1〉η
A
l1

) 1

D
, (77)

and D is the same as (61) used in Sections 3 and 4,

1

D
=

1

q2
I

〈j j + 1〉〈i i + 1〉

〈j I〉〈I i + 1〉〈i I〉〈I j + 1〉
. (78)

There are 12 η’s in the superamplitude (77), and the coefficients of the Taylor

expansion in η’s give all the component amplitudes of degree-12.

10. One-Loop Results

The next logical step is to extend the formalism to the computation of loop

graphs. The simplicity and elegant structure of tree level and also loop

amplitudes in gauge theory was quantified in [4] by reinterpreting these

amplitudes in terms of a topological string theory with twistor space as a

target.

At present we do not know how to compute SYM loop amplitudes directly

from string theory. It was noted in [22] that the currently known topological

string models conjectured to be dual to N = 4 SYM, at loop level describe
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SYM coupled to conformal supergravity. No obvious way was found to

decouple supergravitons circulating in the loops. Also, loop amplitudes in

SYM directly in 4 spacetime dimensions suffer from infrared (IR) – soft

and collinear – divergences. At tree level there are no integrations over loop

momenta and IR divergences in the amplitudes can be avoided by selecting a

non-exceptional set of external momenta (i.e the set with none of the external

momenta being collinear or soft). Hence tree amplitudes can be made IR

finite and it is meaningful to be calculating them directly in 4D without

an explicit IR cutoff. Loop amplitudes, however, are always IR divergent

and one cannot choose a set of external momenta which would make an on-

shell loop amplitude finite in 4D. Any successful string computation of loop

amplitudes in gauge theory will have to provide an infrared cutoff, i.e. a sort

of dimensional regularization, but it is not entirely clear at present how this

is encoded in the string with target space CP 3|4 [6].

Having said this, we expect that it is very likely that twistor space CP 3|4

will continue to play an important rôle for understanding amplitudes at loop

level. The origins of the tree level CSW method [1] lay in the unexpected

simplicity of tree-level SYM amplitudes in the helicity basis transformed

to twistor space. Recently it was shown in [11] that when gauge theory

amplitudes at 1-loop level are Fourier transformed to twistor space, their

analytic structure again acquires geometric meaning. It is not known what

kind of twistor string theory can generate this geometric structure.

Instead of appealing to string theory, it appears to be more productive (at

present) to calculate loop amplitudes directly in SYM in scalar perturbation

theory of CSW [1]. In order to compute 1-loop amplitudes with the CSW

scalar graph method one can choose two different routes. The first is to use

the unitarity approach of Bern, Dixon, Dunbar and Kosower [28] for sewing

tree amplitudes to form loops. The CSW method [1] can be used here to

efficiently calculate tree amplitudes [6, 9, 10], as reviewed in Sections 3, 7,

8, 9 above, and 1-loop amplitudes would be obtained from these trees by

sewing them together and using the cut-constructibility method [28]. This

is a promising direction for future study, which cannot fail to lead to new

results. The second approach, is a direct calculation of loop diagrams in

the CSW scalar graph perturbation theory. A priori, there is no proof that

the original CSW approach should work beyond tree level. Moreover, the

twistor space motivation (given in Section 2 of [11]) of the tree level CSW

formalism [1], does not apply directly to loop amplitudes. Nevertheless, the

success of the CSW method at tree level is encouraging enough to try to

apply it at 1-loop level. The first such calculations were carried out very
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recently by Brandhuber, Spence and Travaglini in [12].

The authors of [12] have calculated 1-loop MHV amplitudes in N = 4

theory directly using the CSW scalar graph Feynman rules. This is done

by taking off-shell and joining together two external lines from two differ-

ent vertices in Figure 6, thus obtaining a 1-loop MHV diagram with two

tree-level analytic supervertices. Carrying out the integration over the loop

momentum and summing over all inequivalent 1-loop diagrams gives the final

result for this amplitude. Remarkably, this result turns out to be in precise

agreement with the earlier expression derived in [28], thus vindicating the

CSW method at 1-loop level in the simplest case of N = 4 theory and for

MHV loop diagrams.

The calculation of [12] is facilitated by finding a particularly convenient

representation for the integral over the loop momentum. An off-shell loop

momentum Lµ can be represented as a linear combination of an on-shell

momentum lµ and a reference momentum ξµ
Ref which is also on-shell [8, 9],

Lµ = lµ + z ξµ
Ref , l2 = 0 , ξ2

Ref = 0 , (79)

where z is a real number,

z =
L2

2(LξRef)
. (80)

We now write the on-shell vectors l and ξRef in terms of spinors as laȧ = la l̃ȧ
and ξȧa

Ref = ξ̃ȧ
Refξ

a
Ref , and find that

la =
Laȧ ξ̃ȧ

Ref

[l̃ ξ̃Ref ]
=> Laȧ ξ̃ȧ

Ref , (81a)

l̃ȧ =
ξa
Ref Laȧ

〈l ξRef〉
=> ξa

Ref Laȧ . (81b)

The denominators on the right hand sides of (81a) and (81b) are dropped

because the final expressions for the amplitude are homogeneous in variables

l and l̃.

Note that equation (81a) is identical to the off-shell continuation pre-

scription (16) used so far. Hence the off-shell continuation of external legs

for loop amplitudes is precisely the same as at tree level.

The integration over the loop momentum can now be represented in a

particularly useful form [12] in terms of z and the on-shell spinors l, l̃,

d4L

L2
=

dz

z
dµ(l, l̃) , (82)
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where dµ(l, l̃) is the Nair’s measure [23],

dµ(l, l̃) = 〈l dl〉 d2 l̃ − [l̃ dl̃] d2l . (83)

This representation of the integration measure over the loop momentum in

terms of on-shell spinors and the variable z allows a straightforward eval-

uation of the loop integral in [12]. Another useful property [12] of Nair’s

measure dµ(l, l̃) is that it is equal to the Lorentz-invariant space measure for

a massless particle,

dµ(l, l̃) ∼ d4l δ(+)(l2) . (84)

This fact makes a remarkable connection between the direct evaluation of

loop integrals and the unitarity approach of [28].

It will be very interesting to extend the results of [12] and to see if and

how the CSW formalism will work in general settings, i.e. at 1-loop and

beyond, for N ≤ 4 supersymmetry, and for non-MHV amplitudes.

11. Conclusions

We summarize by returning to the questions listed in the introduction.

First we consider tree level amplitudes.

(1) The CSW method works in pure gauge sector and in a supersymmetric

theory. This was discussed in the introduction and it follows from

considerations in Section 2.1 and calculations in Sections 3, 6 – 8.

(2) The method works in a generic supersymmetric gauge theory with

N = 1, 2, 4 supersymmetries. This follows from calculations in Section

6 and also from Sections 7 – 9.

(3) At tree level the method also works in N=0 theory, such as QCD, and

(4) It works for finite number of colors, as explained in the Introduction

and in Section 2.1

(5) The purpose of Sections 7, 8 and 3 and of [10] was to demonstrate that

large classes of previously unknown tree amplitudes with gluons and

fermions can now be calculated straightforwardly. No further helicity-

spinor algebra is required to convert the results into a numerically

usable form. In principle one could use the results presented here to

write a numerical program for evaluating generic tree-level processes

involving fermions and bosons.

At loop level:

(6) So far the calculations at 1-loop level were carried out only in N = 4

theory. It is known [12] that the method works correctly in N = 4
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for MHV amplitudes and at 1-loop. Given this and the fact that the

method was successful at tree level in general settings, it is likely that

it will work for general supersymmetric theories at 1-loop level and for

NMHV loop diagrams.

(7) There are known difficulties in applying the CSW method N = 0

theories at 1-loop level, as outlined in Section 5.2 of [11]. At best,

the original CSW method needs to be modified by adding additional

off-shell 1-loop vertices as new building blocks.

(8) So far the calculations at loop level were performed in the planar limit.

It is not known whether the method can be used to find non-planar

contributions.

The list of things to do includes:

• Calculate NMHV 1-loop diagrams in N = 4 theory.

• Calculate MHV (and NMHV) amplitudes in N = 1 theory using either

direct loop integrations or by sewing trees.

• Consider modifications of the method for nonsupersymmetric theories

at loop level.

• Include masses.

• Find a twistor space interpretation of the 1-loop calculation in [12]

and compare it with [11].

• Search for a string theory calculation of 1-loop amplitudes.

• Understand higher loops, at least in N = 4 SYM.
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