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‡Unité mixte de Recherche du Centre National de la Recherche Scientifique et de l’Ecole Normale
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Dedicated to the Memory of Ian Kogan

We started this work when our friend Ian Kogan was still alive. We

remember well our happy gatherings at this time in his apartment in Bures-

sur-Yvette during his stay in IHES, discussing physics, but also singing,

laughing, drinking together. He attracted many different people by his gen-

erous friendliness. We hope that a spark of his generosity and friendship is

reflected in our present work. We will always remember him.

1. Introduction

The non-perturbative phenomena observed in the early 90’s in solvable mod-

els of non-critical string theories [1-7] and studied further in [8,9] are now

much better understood thanks to the recent revival of interest in this sub-

ject. In the papers [10-14], the non-perturbative corrections to the string

partition function were given a world sheet interpretation in terms of am-

plitudes of open strings attached to the ZZ branes discovered by A. and

Al. Zamolodchikov[15]. The agreement between the matrix and CFT de-

scriptions of the non-perturbative phenomena was observed not only in the

minimal (p, q) models of 2D quantum gravity but also in the c = 1 string

theory in the presence of vortex perturbations [14,16], which is believed to

describe the 2D black hole [17].

As was already pointed out in [15] and then elaborated in [11,18,19,20],

the disc amplitudes on ZZ branes appeared to be the same as the disc am-

plitudes on FZZT branes taken at special complex values of the boundary

cosmological coupling. A deeper geometrical understanding of this relation

from the CFT side was achieved in the recent work of Seiberg and Shih [21]

where the CFT description of the (p, q) models was based on the ground

ring structure [22,23]. It was shown that the ground ring relations lead to

the same algebraic curve that appears in the matrix model approach. The

algebraic curve found in [21] gives the same representation of the correlation

functions of the the FZZT brane in terms of Chebyshev polynomials as the

one found in the loop gas models in [24] and later in the two-matrix model

in [8,25]. The authors of [21] gave a nice interpretation of the ZZ branes as

degenerate (pinched) cycles of the complex curve.

The disc amplitude on the ZZ brane associated with the degenerate cycle

Amn is given by the contour integral of a certain holomorphic differential

along the dual cycle Bmn. The c = 1 version of this geometrical interpreta-

tion was proposed in [26].

In the matrix approach the non-perturbative effects are produced by

eigenvalue tunneling amplitudes. Since the complex curve is determined
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by the shape of the effective potential, it is natural to seek a correspondence

between the ZZ branes and the “non-minimal” saddle points associated with

the local extrema of the effective potential.

In this paper we show that the “non-minimal” saddle points are associated

with the pinched cycles of the complex curve and express the instanton

amplitudes through integrals along the dual cycles. Our results show that

the geometrical picture found in [21] for the (p, q) critical points, actually

holds for a general string background.

We will consider the example of the two matrix model (2MM). It is known

that all rational (p, q) models can be obtained by an appropriate tuning of

the potentials in 2MM [27,25]. The 2MM gives probably the most econom-

ical matrix description of all non-critical string theories with c ≤ 1 matter

content, such as pure gravity (c=0), the exact solution of Ising on random

dynamical graphs (c=1/2) [28,29] or the 2D string theory on the self-dual

radius [30-32]. In the case of a polynomial potential, the planar limit of this

model is described in terms of an algebraic (in general non-hyper-elliptic)

curve [33-35].

We evaluate the non-perturbative effects in the 2MM at the (p, p + 1)

critical point by extending the quasi-classical analysis developed by F. David

[6] for the 1MM. In order to obtain dimensionless quantities, we also calculate

the normalized free energy for a given complex curve using the Riemann

bilinear identity. The results reproduce those obtained by Eynard and Zinn-

Justin [8] from the string equation in the double scaling limit.

We also consider the small perturbations of the algebraic curve around

the (p, p + 1) critical point generated by order operators. We evaluate from

the 2MM the leading order non-perturbative effects in the perturbed theory

and compare them with the predictions of the boundary CFT which we

extract from the known one point functions on the ZZ brane (normalized by

the two point functions on the sphere to compare the dimensionless ratios).

In the non-perturbed theory, there are four possible choices for the Liouville

and matter boundary conditions, which lead to the same result. We find that

this degeneracy is not lifted by perturbations by order operators, at least in

linear order in the couplings. All four choices give to the same expression,

which agrees with the one obtained in 2MM.

Finally we discuss the c → 1 limit and the instanton corrections in Matrix

Quantum Mechanics. We show that the instanton amplitudes in the presence

of vortex condensation, obtained previously using the equations of the Toda

hierarchy [14,16] can be obtained as integrals along compact cycles of the

complex curve, very much as in the case of the c < 1 theory.
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2. Spectral curve, free energy and instantons of the general

2MM

In this section we will review the geometrical description of the planar limit

of the 2MM [34,35] including the formulas for the free energy in terms of

the integrals of a certain holomorphic differential along the closed A and B

cycles on the algebraic curve of the model. We will also give expressions

for the non-perturbative corrections in terms of similar integrals along non-

trivial cycles passing through conical singularities, or double points, of the

the algebraic curve a. The conical singularities can be interpreted, following

[21], as degenerate, or “pinched”, cycles of a curve of higher genus. These

results will be used in the next section, where the (p, q) critical regimes of

the 2MM will be considered.

2.1. Effective potential and saddle-point equations

The partition function of the 2MM is defined as

ZN =

∫
dX dY eTr [XY−V (X)−eV (Y)] ≡ 〈 1 〉N , (2.1)

where X,Y are the N × N hermitian matrices and

V (X) =

q∑

k=1

TkX
k, Ṽ (Y) =

p∑

k=1

T̃kY
k (2.2)

are polynomial potentials. Using the representation of the 2MM in terms of

the eigenvalues xk, yk we find [36]

ZN =

∫ N∏

k=1

(
dxk dyk exkyk−V (xk)−eV (yk)

)
∆N (x)∆N (y) , (2.3)

where ∆N (z) =
∏N

k>j=1(zk−zj) is the Vandermonde determinant. The ratio

of partition functions ZN+1 and ZN can be expressed as the double integral

ZN+1

ZN
=

∞∫

−∞

∞∫

−∞

dxdy e−Seff(x,y) , (2.4)

where Seff(x, y) is the effective action for a pair of eigenvalues x, y given by

Seff(x, y) = −xy + V (x) + Ṽ (y) − log 〈Det(x −X)Det(y −Y) 〉N . (2.5)

a If the curve is defined by the equation F (x, y) = 0, then the double points are those for which

dF (x, y) = 0.
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The integrand in the r.h.s. of (2.4) is the expectation value of having one

eigenvalue of the matrix X at position x and one eigenvalue of the matrix Y

at position y. In the large N limit one can use the factorization properties

〈DetADetB 〉 = 〈DetA 〉 〈DetB 〉 and log 〈DetA 〉 = 〈 Tr log A 〉, to write

the effective action in the form

Seff(x, y) = −xy + Φ(x) + Φ̃(y) , (2.6)

with

Φ(x) = V (x) − 〈 Tr log(x −X) 〉N ,

Φ̃(y) = Ṽ (y) − 〈 Tr log(y −Y) 〉N ,
(2.7)

and calculate the double integral (2.4) by the saddle point method. The

saddle point equations,

x = Φ′(y), y = Φ̃′(x) , (2.8)

determine not only the position of the saddle points, but also the potentials

(2.7) themselves. As follows from the studies of the two-matrix model by

different techniques [25,34,37,38],b the solution of the model in the planar

limit can be expressed in terms of the functional dependence between the

complex variables x and y,

x = X(y), y = Y (x) , (2.9)

where the functions X and Y are inverse to each other if considered as

multivalued meromorphic functions defined on their Riemann surfaces. On

the physical sheets Y (x) = Φ′(x) and X(y) = Φ̃′(y) and therefore they

satisfy (again on the physical sheets) the asymptotic relations

Y (x) = V ′(x) − N/x + o(1/x2), x → ∞ ,

X(y) = Ṽ ′(y) − N/y + o(1/y2), y → ∞ .
(2.10)

These conditions and the fact that the two meromorphic functions (2.9)

are inverse to each other and have no other poles except those at infinity

determine them completely.

b A similar approach to the evaluation of the large N characters and heat kernels is used in [39-42].



September 11, 2004 15:41 WSPC/Trim Size: 9.75in x 6.5in for Proceedings kazakov

1870 Vladimir A. Kazakov and Ivan K. Kostov

2.2. Spectral curve

The geometrical object lying behind (2.9) is a complex curve F (x, y) = 0

whose projections to the x and y complex planes are given, correspondingly,

by the Riemann surfaces of the meromorphic functions y = Y (x) and x =

X(y). For polynomial potentials (2.2), the curve is algebraic and its equation

[33-35] is a direct consequence of the asymptotics (2.10),

F (x, y) ≡
[
y − V ′(x)

]
[x − Ṽ ′(y)] + P (x, y) = 0, (2.11)

where P (x, y) is a polynomial of degree (q − 2, p − 2) [34]

P (x, y) =

〈
Tr

V ′(x) − V ′(X)

x −X

Ṽ ′(y) − Ṽ ′(Y)

y −Y

〉
− N. (2.12)

The coefficients of the polynomial P (x, y) (the moduli of the spectral curve)

are determined by the potentials (2.2) through the asymptotic conditions

(2.10) as well as by the filling numbers N1, N2, ... (
∑

i Ni = N) associated

with the cuts on the physical sheet [34,35]. As a real manifold the complex

curve represents a two-dimensional surface of genus g ≤ (p − 1)(q − 1) − 1,

with two punctures at x = ∞ and y = ∞.

In the following we will consider the simplest situation when the algebraic

curve has the topology of a sphere. We will also assume that

q = p + 1, (2.13)

which is sufficient for describing the unitary non-critical string theories.

Then the function (2.11) has (p−1)(q−1)−1 double zeros, and the functions

X(y) and Y (x) have a single cut on their physical sheets.

The projection of the complex curve to the x complex plane, or the Rie-

mann surface of Y (x), represents a branched p-covering of the Riemann

sphere and thus splits the complex curve into p sheets. The physical sheet

is the one that contains the puncture at x = ∞. In addition, there are p− 2

cuts on the lower sheets that extend to infinity, where the Riemann surface

has a branch-point of order p − 1. This branch point is the image of the

puncture at y = ∞, which we will denote by x = ∞̃. We will denote by

Y (k), k = 1, ..., p, the different branches of the function Y (x) keeping the

label k = 1 for the physical sheet (Fig. 1, right).
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Fig. 1 : Sheets of the Riemann surfaces of X(y) and Y (x) for the one-cut solution

with p = 3, q = 4.

In a similar way the Riemann surface of X(y) splits the punctured sphere

into q sheets X (1), ..., X(q) (Fig.1, left). Then the spectral curve can be

rewritten as [34]

F (x, y) ∼
p∏

k=1

(
y − Y (k)(x)

)
∼

q∏

j=1

(
x − X(j)(y)

)
. (2.14)

We will refer to the points x = ∞ and x = ∞̃ as the north and south

poles of the sphere. The punctured sphere is characterized by the two cycles

A and B dual to each other. The cycle A goes along the equator and the

cycle B connects the north and the south poles. We assume that the sheets

can be labeled so that there is exactly one cut connecting the k-th and the

k + 1-th sheet. The first and the last sheet of the Riemann surfaces of Y (x)

and X(y) have one cut and the other sheets have two cuts.

It is always possible to find an uniformization parameter ω that globally

parametrizes the complex curve [27,25],

X(ω) =

q−1∑

k=−1

Xk ωk, Y (ω) =

p−1∑

j=−1

Yk ω−j . (2.15)

One of the coefficients can be chosen arbitrarily because of the symme-

try with respect to rescalings of ω. The remaining p + q + 1 coeffi-

cients are determined through (2.10) as functions of the p + q couplings

T1, ..., Tp, T̃1, ..., T̃q in (2.2) and the number N of eigenvalues. The punc-

tured sphere is parametrized by the complex plane ω. The north (south)

pole of the sphere then corresponds to the point ω = ∞ (ω = 0).



September 11, 2004 15:41 WSPC/Trim Size: 9.75in x 6.5in for Proceedings kazakov

1872 Vladimir A. Kazakov and Ivan K. Kostov

2.3. Perturbative free energy in terms of the spectral curve

The saddle-point equations (2.8) mean that, for some k and l,

x = X(k)(y) , y = Y (l)(x) . (2.16)

Inverting the second equation we find that, for some j 6= k, X (k)(y) = X(j)(y)

which is satisfied when y is at one of the endpoints of the physical cut of

X(y). The same is true for the variable x. The “perturbative” saddle points

are at the endpoints of the physical cuts of the functions X(y) and Y (x) c.

By the asymptotics (2.10), the integral along the A-cycle is equal to the

number of eigenvalues,

N =

∮

A
ydx . (2.17)

As was shown in [6] (and generalized to the filling not only of the maxima

but of of all extrema of the potential [44]) for the one-matrix model and then

for the two-matrix model in [35], the integral of the function Y (x) along the

B-cycle is equal to the derivative in N of the planar contribution F0 to the

free energy

F = logZN . (2.18)

Indeed, the leading contribution to the integral (2.4) is given by the saddle-

point value of the effective potential (2.6). Let x′, y′ be related by y′ =

Y (1)(x′) and x′ = X(1)(y′). There is always such a point along the cycle B.

Then we write

∂NF0 = −Seff(x′, y′)

= x′y′ −
∫ y′

∞

X(1)(y) dy −
∫ x′

∞

Y (1)(x) dx

=

∫ x′

∞

Y (2)(x)dx −
∫ x′

∞

Y (1)(x) dx

=

∮

B
y dx .

(2.19)

c The same algebraic curve can describe several matrix models; they correspond to different real

sections that define different sets of local minima of the effective potential [35,32]. Note that in the

Normal matrix model, which has the same complex curve as the Hermitian two-matrix model, the

saddle point is described by a closed contour and not by isolated points. This is possible because

the Normal matrix model is described by a different real section of the complex curve [43].
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The formulas (2.17) and (2.19) determine the free energy in the planar

limit in terms of the two main cycles of the punctured sphere. These formulas

are geometrical in the sense that they do not depend on the choice of the

coordinate patches on the complex curve. In the next subsection we will

obtain similar formulas for the non-perturbative instanton contributions.

2.4. Leading order non-perturbative corrections

Besides the perturbative saddle point there are also other saddle point so-

lutions, which describe the non-perturbative corrections to the free energy

[5,6,8]. The meaning of the non-perturbative corrections depends on the

physical context. Typically they describe the decay of a metastable ground

state caused by tunnelings of eigenvalues under a maximum of the effective

potential (eigenvalue instantons).

A comprehensive description of the instanton effects in the one-matrix

model has been done in [6]. Once the effective action is known, one can

generalize the analysis of [6] to the case of the two-matrix model. Here

we will restrict ourselves to the leading non-perturbative corrections, which

allow geometrical description in terms of the spectral curve.

The “non-perturbative” saddle points are double points of the complex

curve represented by the pairs x = xkl, y = ykl such that

y = Y (k)(x), x = X(l)(y). (2.20)

At these points dF (x, y) = 0 and the effective action (2.6) has vanishing

derivatives in x and y. The pairs (1, l) and (k, 1) should be excluded because

they describe the same point of the curve (the second function is the inverse

of the first). The pair (2, 2) should be excluded as well because it determines

perturbative saddle point. The number of remaining pairs (k, l) is equal to

the maximal genus of the complex curve, gmax = (p − 1)(q − 1) − 1. Among

these saddle points there are (p−1)(q−1)/2 maxima and (p−1)(q−1)/2−1

minima of the effective action. In the last case the integration contour should

be distorted in the complex plane as explained, say, in Section 2 of [45].

Each pair (xkl, ykl) correspond to two different points of the complex

curve which can also be considered as a remnant of a collapsed handle, or

vanishing cycle Akl of the complex curve in a generic position [21]. Such a

vanishing cycle is associated with a pair of coinciding branch points of the

Riemann surface of Y (x) or X(y). Let us denote by Bkl the corresponding

B-cycle, which connects the two poles of the sphere through the pinched
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cycle Akl. Proceeding as in (2.19) we can write the effective action at the
(k, l)-th saddle point

Seff =

∫

Bkl

y dx = −∂NF0 + Skl, (2.21)

where

Skl =

∫

Bkl

y dx. (2.22)

is the effective action associated with the compact cycle Bkl passing through
the pinched cycle and the cycle A (Fig. 2).

(2)

8

Y
~ 8

23

��

��

B

(3)
X ��

�� Y

8
8~

B

(2)

23

X
(3)

Fig. 2 : The only cycle B23 for pure gravity (p = 2, q = 3). It can be viewed either as an

open contour connecting the two double points on the sphere (left) or as a closed contour

going through a pinched cycle of a torus (right).

If we take into account both minimal and non-minimal saddle points,
Eqs. (2.4) and (2.21) give

ZN+1

ZN
' e∂NF0


1 +

∑

k,l

ckl e
−Skl


 , (2.23)

where the sum is taken over all pairs (k, l) discussed above. Written for the
free energy F = logZN , this formula reads

∂NF = ∂NF0 +
∑

(k,l)6=(2,2)

ckl e
−Skl + ... . (2.24)

As was explained in [5,6], the non-perturbative corrections should be under-
stood not as an improvement of the 1/N expansion but rather as a difference
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between the two free energies corresponding to the two ways of distortion of

the integration contours in the matrix integral into the complex plane.

We believe that in any matrix model described by an algebraic curve

the non-perturbative corrections are given in the planar approximation by

the formula (2.24).d In the next section we will apply (2.24) to the critical

regimes of the 2MM, in which case it reduces to the similar formula obtained

in [21].

3. Explicit results for the (p, p + 1) critical points

3.1. The scaling limit near the (p, q = p + 1) critical point

The noncritical string theories are described by the critical points of the com-

plex curve. A critical point can occur when a branch point comes close to a

double point or to another branch point. Here we will examine the “max-

imal” critical point that arises when the right branch point of the physical

cut of Y (x) coalesces with the p − 2 branch points on the lower sheets. At

this point the equation of the curve (2.15) takes the form [25]

X(ω) = Nc
(1 − ω)p

ω
, Y (ω) = Nc ω

(
1 − 1

ω

)q

. (3.1)

In the vicinity of the origin the complex curve degenerates to

yp = xq. (3.2)

The solution (3.1) corresponds to a certain choice of the coupling constants

in (2.2), all of order of Nc. One can introduce a one-parameter deformation

of this singularity by changing the number of eigenvalues to N < Nc. The

difference Nc − N is proportional to the cosmological constant µ of the

corresponding (p, q) string theory. By introducing a small cutoff parameter

a and rescaling the variables as

x

aq
→ x,

y

ap
→ y,

N − Nc

ap+qNc
→ −µ, ap+qNc →

1

gs
, (3.3)

we blow up the the vicinity of the (deformed) critical point so that all the

cuts become semi-infinite (Fig. 3).

d We have checked that (2.24) holds also for the ADE matrix chains defined in [46].
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Fig. 3 : Sheets near the (p, q) critical point with p = 3, q = 4, in the parametrization (3.1).

On the right, the blown up scaling domain.

The physical cuts of the functions y = Y (x) and x = X(y) extend to infinity

along the intervals −∞ < x < −2M and −∞ < y < −2M̃ respectively,

where M ∼ µ1/2 and M̃ ∼ M q/2p. We will normalize X and Y so that M ,

M̃ and µ are related by

M = ξp, M̃ = ξq, µ = ξ2p. (3.4)

A very useful parametrization in the scaling limit is given by expanding X

and Y in the Chebyshev polynomials of a third variable

z = 2ξ cosh θ,

which appears naturally in the formalism using the dispersionless KP hier-

archy [25],

x = 2Tp(z/2) = 2ξp cosh pθ ,

y = 2Tq(z/2) = 2ξq cosh qθ .
(3.5)

To avoid the subtleties that arise in non-unitary theories, we will assume

below that p = q + 1. The parametrization (3.5) unfolds the branch points

of the functions Y (x) and X(y) and allows us to work with entire functions

of θ. The sheet structure is shown in Fig. 4.
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Fig. 4 : Sheets in the θ parametrization for p = 3, q = 4. All functions are symmetric

under reflection θ → −θ.

The k-th sheet of the function Y (x) is parametrized by the semi-infinite

strip

Re θ > 0,
k

p
π < | Im θ| <

k − 1

p
π ,

and the l-th sheet of the function X(y) is parametrized by the semi-infinite

strip

Re θ > 0,
l

p + 1
π < | Im (π − θ)| <

l − 1

p + 1
π.

At the critical point the parameter z is related to the parameter ω in (3.1)

by

ω = 1 + az.

In any (p, p + 1) theory of 2D gravity with matter central charge c =

1 − 6
p(p+1) , the function Y (x) defined by (3.5) gives the loop amplitude,

that is the disc amplitude with a marked point on the boundary, with the

boundary cosmological constant x and bulk cosmological constant µ. The

function X(y) does the same for the dual (p +1, p) theory e. The expression

(3.5) was first derived in [24] in the context of the ADE loop gas models.

Its interpretation from the point of view of Liouville theory is given in [49].

e The duality among (p, q) and (q, p) theories was first observed in the matrix models in [47,48].
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The two potentials (2.7) can be calculated in the scaling limit by inte-

grating (3.5). This gives (q = p + 1)

Φ = 2p ξp+q

(
cosh(p + q)θ

p + q
− cosh(q − p)θ

q − p

)
,

Φ̃ = 2q ξp+q

(
cosh(p + q)θ

p + q
+

cosh(q − p)θ

q − p

)
,

(3.6)

and one can check that the effective action is constant on the complex curve

(equal to zero in our conventions),

Φ(x) + Φ̃(y) = xy . (3.7)

To make connection with the boundary Liouville theory we introduce the

parameters

b =
√

p/q, πbs =
√

pq θ. (3.8)

Then the equation of the complex curve becomes

x = 2µ1/2 coshπbs, y = 2µ1/2b2 coshπs/b. (3.9)

3.2. Perturbations by relevant operators around the

(p, q = p + 1) critical point

A generic perturbation of the (p, p +1) critical point is described by a curve

that behaves as (3.2) at infinity. Such a curve has the parametric form

x = x(z) = zp + xp−1z
p−1 + xp−2z

p−2 + . . . + y0 ,

y = y(z) = zp+1 + yp−1z
p−1 + yp−2z

p−2 + . . . + y0 .
(3.10)

The curve (3.10) has only one singular point at infinity where the function

y(x) has a branch point of order p and the function x(y) has a branch point

of order q = p + 1.

The original Toda integrable structure of the two-matrix model is char-

acterized by two singular points, ∞ and ∞̃, and the spectral curve is deter-

mined by two asymptotic conditions (2.10) associated with the two punc-

tures. For degenerate curves of the form (3.10), the relevant integrable

structure is that of the p-reduced dispersionless KP hierarchy [50], which

has only one singular point y = x = ∞. Therefore in the scaling limit it is
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sufficient to introduce a single local coordinate in the neighborhood of the

puncture, say x, and the corresponding set of couplings t = {tn}∞n=1 defined

by the coefficients of the powers xn/p−1, n = 1, 2, ..., in the Laurent series of

y(x) at infinity,

y(x) ≡ ∂xΦ =
1

p

∑

n≥1

(
n tn xn/p−1 + vn x−n/p−1

)
. (3.11)

The curve (3.10) is described in terms of the non-zero couplings

t1, ..., tp−1, tp+1, ..., t2p+1. The coefficients vn in (3.11) are functions of these

couplings. The integer powers in x do not have a branch point at infinity

and therefore the sum is restricted to n 6= 0 (mod p).

The integrable perturbations associated with the couplings tn are gen-

erated by the Hamiltonian flows of the p-reduced KP hierarchy. Following

Krichever [50], one can associate with the Hamiltonian coupled to tn a mero-

morphic differential dHn(x, t). The form of the classical Hamiltonians are

determined by the complex curve (3.10). The differential of the effective

potential Φ(x, t) is given by

dΦ = ydx +
∑

m≥1

Hm(x)dtm . (3.12)

The dispersionless KP hierarchy can be interpreted as a classical Hamiltonian

system with Poisson bracket

{f, g} =
∂f

∂z

∂g

∂t1
− ∂f

∂t1

∂g

∂z
. (3.13)

The differential (3.12) then can be considered as a generating function for

the canonical transformation between the phase-space coordinates (z, t1) and

(x, y). Given the curve (3.10) and the expansion (3.11) at infinity, the ex-

pressions for the classical Hamiltonians are

Hm = [Xm/p]+ , (3.14)

where [ ]+ denotes the non-negative part of the Laurent series of the function

X(z) at infinity. It follows from (3.12) that the parameter z in the definition
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of the curve (3.10) can be identified with the first Hamiltonian H1,

H1 = [X1/p]+ = z. (3.15)

It is technically convenient to use the parametrization (3.10) and consider

z = H1 as a global coordinate on the complex curve. From (3.12) and (3.14)

one finds the expression of the effective potential

Φ =
∑

m≥1

Hm(z, t) tm. (3.16)

Given the relevant couplings t1, ..., tp−1, tp+1, ..., t2p−1, from (3.16) and (3.14)

one can then evaluate the 2p − 2 coefficients defining the curve (3.10).

Now let us return to the special case of the curve (3.5). The only defor-

mation parameter here, the cosmological constant µ, can be identified, up to

a normalization, with the coupling t1. Plugging (3.5) into (3.14) one finds

for the classical Hamiltonians [25]

Hm = 2ξm cosh mθ, m = 1, 2, ...., 2p − 1;

H2p+1 = 2ξ2p+1

(
cosh(2p + 1)θ +

2p + 1

p
cosh θ

)
.

(3.17)

Comparing with the expression (3.16), we conclude that the curve (3.5)

describes the point

t2p+1 =
p

2p + 1
, t1 = −(p + 1)µ, tothers = 0 , (3.18)

in the space of couplings. The relation between µ = ξ2p and t1 follows also

directly from the classical string equation {x, y} = 1 applied to the solution

(3.5).

3.3. Free energy and two-point functions

Here we will calculate the two-point functions of relevant operators on the

sphere for the background (3.5). The pair of dual variables µ and ∂µF are

expressed in terms of the complex curve through the formulas (2.19) and

(2.17). In terms of the rescaled variables defined by (3.3) these formulas

read

−∂µF =

∮

B
ydx =

∮

B
dΦ (3.19)

and

−µ =

∮

A
ydx =

∮

A
dΦ. (3.20)
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The general formulas for the 2MM with polynomial potentials, of the type

obtained in [51] cannot be immediately applied for this task in the critical

limit. In the scaling limit the integrals in (3.19) and (3.20) diverge and

need regularization. One could do it explicitly by making the cut finite. It is

however possible to extract the necessary information from (3.19) and (3.20)

without any regularization by using the Riemann bilinear identities (RBI).

RBI follow from the fact that there are no meromorphic (2, 0)-forms on one-

dimensional complex curves. For each pair of holomorphic differentials dΩ1

and dΩ2,

0 =

∫

Σ
dΩ1 ∧ dΩ2

=

∮

A
dΩ1

∮

B
dΩ2 −

∮

A
dΩ2

∮

B
dΩ1 −

∑
res (dΩ1Ω2) .

(3.21)

In particular, when

dΩ1 = ∂µY (x) dx = d∂µΦ, dΩ2 = ∂m∂nY (x) dx = d∂m∂nΦ, (3.22)

equations (3.19) and (3.20) yield

1

2πi

∮
d∂µΦ(x) · ∂m∂nΦ(x) = ∂µ∂m∂nF . (3.23)

A rigorous derivation of this identity can be done using the the fact that

the partition function of the two-matrix model is a τ -function for the KP

integrable hierarchy, which means that the coefficients vn in (3.11) are related

to the free energy by vn = ∂nF . This implies the following identities, which

have been derived in [50] (for more explicit derivation see [52,53])

∂nF = − 1

2πi

∮

∞

xn/pdΦ ,

∂m∂nF = − 1

2πi

∮

∞

xn/pdHm ,

∂k∂m∂nF = − 1

2πi

∮

∞

xn/pd∂kHm =
1

2πi

∮

∞

(∂kHm)x dHn .

(3.24)

Since µ ∼ t1, equation (3.23) is a particular case of the last of these relations.

Our aim is to calculate the two-point function ∂m∂nF in the classical

background (3.5), where the classical Hamiltonians are given by (3.17). In-

serting

(∂µHm)x = mξ−2p+m sinh(p − m)θ

p sinh pθ
, dHn = 2nξn sinhnθ dθ (3.25)
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into (3.24) we get

∂µ∂m∂nF = 2mn ξm+n−2p

∮
dθ

2πi

sinhnθ sinh(p − m)θ

p sinh pθ
. (3.26)

We evaluate the integral along the contour Im θ ∈ [0, 2π), Re θ → ∞, which

gives

∂µ∂m∂nF =
mn

p
ξ2(n−p) δm,n. (3.27)

Integrating with respect to µ = ξ2p we find for the two-point function

∂2
nF = nξ2n. (3.28)

For k = 1 we obtain from this the string susceptibility

∂2
1F = ξ2. (3.29)

3.4. Eigenvalue instantons at the (p, p + 1) critical point

As was discussed in section 2.3, the eigenvalue instantons are associated with

the points (2.20) of the curve where conical singularities occur. These points

are given by the non-trivial solutions (θ 6= θ ′) of the equations

x(θ) = x(θ′), y(θ) = y(θ′), (3.30)

where the functions x(θ) and y(θ) are defined by (3.5). The solutions of

(3.30) are θ = θmn, θ′ = θm,−n (m = 1, ..., p − 1;n = 1, ..., p) with

θmn = iπ

(
m

p
+

n

p + 1

)
. (3.31)

The equations (3.30) can be written also in the form (2.20), with k = [|m−
n p

p+1 |] and l = [|m p+1
p +n|]. Due to the symmetries θ → −θ and θ → θ+2π,

the points with parameters θmn and θp−m,p+1−n describe the same double

point of the complex curve. Therefore in the scaling limit there are only
(p−1)(q−1)

2 double points which correspond to local maxima of the effective

action. The (p−1)(q−1)
2 − 1 double points that correspond to local minima

are sent to infinity after the blow-up. In Fig. 5 we give the plots of the

closed contours in the (x, y)-plane for p = 2, 3, 4. Some of the cycles have

backtracking parts, which can be deleted. The effective action associated

with each cycle is proportional to its (algebraic) area.
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Fig. 5 : The instanton cycles for the (p, p + 1) non-critical strings with p=2,3,4.

The instanton contribution to the effective action corresponds to the non-

trivial cycle Bmn and is given by (2.22)

Smn =

∫

Bmn

Y (x)dx = Φ(θmn) − Φ(θm,−n). (3.32)

Evaluating the difference with Φ given by (3.6), we get

Smn =
8p(p + 1)

2p + 1
ξ2p+1 sin(πm/p) sin(πn/q). (3.33)

We can also calculate the first order corrections f δSmn =
∑

k tk∂kSmn to

the instanton effective action in the presence of perturbations by the order

operators Ok, k = 1, ..., p − 1,

∂kSmn = Hk(θm,n) − Hk(θm,−n) = −4ξk sin
πkn

p
sin

πkm

q
. (3.34)

To compare with the world sheet CFT we need to prepare a dimensionless

ratio that is not sensitive to the normalization of x, y and µ. We introduce

the dimensionless ratio of (3.34) and (3.28)

r(k)
m,n =

∂kSmn√
∂2

kF0

= − 4√
k

sin
πkn

p
sin

πkm

q
. (3.35)

f The pre-factors ckl in (2.23) were conjectured in [14] to behave as cmn ∼ g
1/2
s for all c < 1

theories, as is known from some explicit examples (see [7,14]).
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For k = 1 the result coincides with those found in this particular case in [8]

and reproduced within the Liouville CFT approach in [14]. We will show

now that this result can be reproduced also for any k from the CFT.

4. One-point functions on ZZ branes and instantons

Let us compare the result (3.35) to the normalized one-point functions on

ZZ branes in a Liouville theory with Q =
√

p+1
p +

√
p

p+1 , in the same spirit

as was done in [11,14]. The Hamiltonians Hk are described in the CFT

approach by the product of matter and Liouville operators

Hk →
∫

Disc

Ok · e2αkφ . (4.1)

We assume the most general boundary conditions for the matter and Li-

ouville fields. The matter boundary conditions are labeled by the entries

of the Kac table, which we denote by (m,n) ∼ (p − m, p + 1 − n) with

1 ≤ m ≤ p − 1 and 1 ≤ m ≤ p [54]. The ZZ boundary conditions for the

Liouville field (m′, n′) with m′, n′ ≥ 1 are given in [15]. We will need the

following formulas:

– The structure constant for the disc one point function of the matter order

operator Ok in presence of the boundary condition m,n [55,56],

〈Ok 〉
matter

m,n =

(
8

p(p + 1)

)1/4 sin πmk
p sin πnk

p+1√
sin πk

p sin πk
p+1

. (4.2)

– The disc partition function in presence of m′, n′ ZZ-boundary condition of

the Liouville vertex operator e2αkφ, αk = 1
2

(
Q − k√

p(p+1)

)
[15],

〈
eαkφ

〉Liouv

m′,n′
=

〈
eαkφ

〉Liouv

1,1

sin πkm′

p sin πkn′

p+1

sin πk
p sin πk

p+1

, (4.3)

where g

〈
eαkφ

〉Liouv

1,1
= −

√
2

π
Mk/p 23/4πk

√
p(p + 1)Γ

(
1 + k

p+1

)
Γ

(
1 + k

p

) (4.4)

g See the discussion on the origin of the first factor at the end of subsection 2.2 of the paper [14].
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and the constant M is related to the Liouville bulk cosmological constant

µL by

M =

√
πµLγ

(
p

p + 1

)
, γ(x) ≡ Γ(x)

Γ(1 − x)
. (4.5)

– The Liouville two-point function on the sphere [57,58] (see the Appendix

and the Eq. (3.45) of [14] for this particular formula),

〈
eαkφeαkφ

〉Liouv

sphere
= −k

√
p(p + 1)

2πp2
M2k/p γ

(
1 − k

p + 1

)
γ

(
−k

p

)
. (4.6)

Now we have to see which matter and Liouville boundary conditions

can reproduce the dimensionless ratio (3.35) obtained from the two-matrix

model. The explicit formula for r(k) obtained by combining (4.2), (4.3) and

(4.4) is

r
(k)
m,n;m′,m′ =

〈Ok 〉
matter

m,n

〈
eαkφ

〉Liouv

m′,n′√
〈 eαkφeαkφ 〉Liouv

sphere

= ρk sin
πmk

p
sin

πnk

p + 1
sin

πm′k

p
sin

πn′k

p + 1

(4.7)

with

ρk =
〈φk,k 〉

Matter

1,1 ·
〈
eαkφ

〉Liouv

1,1√
〈 eαkφeαkφ 〉Liouv

sphere

=
√

2/π

(
8

p(p+1)

)1/4 (
sin πk

p sin πk
p+1

)−1/2
23/4π 1√

p(p+1)
k

Γ
(
1 + k

p+1

)
Γ (1 + k/p)

[
−k

√
p(p+1)

πp2 γ
(
1 − k

p+1

)
γ (−k/p)

]1/2

= − 4√
k

.

(4.8)

We see that the matrix model result matches with a particular subset of

boundary conditions. The exponent of the tunneling amplitude in the matrix

model associated with the cycle m,n is reproduced by r
(k)
m,n;m′,n′ with any of
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of the following four choices

m,n;m′, n′ =





m,n; 1, 1 (1)

1, 1;m,n (2)

1, n;m, 1 (3)

m, 1, 1, n (4) .

(4.9)

In the case of a non-perturbed theory (tk = 0), the first choice was considered

in [12,14] and the last two were considered by Martinec [11].

Our first-order calculation shows that this degeneracy is not lifted by

perturbations by order operators. The matrix model does not distinguish

between the four choices in (4.9) and there is no convincing physical argu-

ment that singles out one of them.

It has been argued by the authors of [21] that in the (p, q) string theory

the |m,n; 1, 1〉 branes with 1 ≤ m ≤ p−1, 1 ≤ n ≤ q−1 and mq−np > 0 form

a complete set of distinct physical states with ZZ-type boundary conditions,

which they called “principal branes”. The other branes should be thought

of as multi-brane states formed out of these elementary ZZ branes. The

degeneracy we observed suggests that all four choices in (4.9) provide a

possible basis of “principal” branes and each of the choices describes the

same set of physical states.

This statement seems less strange if we recall the following two facts.

First, it follows from the exact expressions for wave functions of the FZZT

and ZZ boundary states [59,15], that the ZZ state 〈m,n| can be obtained as

a difference of two FZZT states 〈θ|

〈m,n| ∼ 〈θm,n| − 〈θm,−n| = 〈θm,n| − 〈θ−m,n|, (4.10)

where the angle θ is related to the boundary cosmological constant as

µB ∼ √
µ cosh(pθ) and θm,n is defined by (3.31). This fact has been fur-

ther explored in [60,19,61,11]. On the other hand, it is also known that

the target space dimension in the rational string theories is associated with

the imaginary direction of the uniformization parameter θ. Namely the

points of the discrete target space are labeled by the p − 1 cuts of the Rie-

mann surface of the function Y (x) or the q − 1 cuts of the Riemann sur-

face of the function X(y). The discontinuity of Y (x) along the m-th cut
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is given by −2πiρ(m)(θ) = Y (θ + iπ m
p ) − Y (θ − iπ m

p ). From the point of

view of CFT, the m-th cut describes a matter boundary condition of type

(m, 1). Similarly, the discontinuity of X(y) along the n-th cut is given by

−2πiρ̃(n)(θ) = X(θ + iπ n
p )−X(θ− iπ n

p ) and describes the matter boundary

condition (1, n). The matter boundary conditions (m,n) have never been

studied from the matrix point of view, but it is plausible that they can be

described in terms of the disc partition function Φ(θ) with boundary param-

eter shifted in the imaginary direction θ → θ + θ±m,±n. Thus it seems that

the translations of the boundary parameter by θ±m,±n can be interpreted

either as projection to (m,n) ZZ boundary conditions for the Liouville field,

or as projection to (m,n) boundary conditions for the matter field. Of course

this statement needs to be better understood.

5. The c → 1 limit and comparison with Matrix Quantum

Mechanics

The c = 1 limit is obtained by taking b2 ≡ p
p+1 → 1. In this limit it is

convenient to use the parameters s and M related to θ and ξ as

πbs = pθ , M = ξp . (5.1)

The complex curve (3.5)

x(s) = M coshπbs, y(s) = M 1/b2 cosh πs/b , (5.2)

becomes in the limit p → ∞

x(s) = M cosh πs, y(s) = x +
1

p
[x log M + πsM sinhπs]. (5.3)

In this limit it is convenient to redefine the variable y by subtracting the

linear in x term and rescaling by 1/p,

y(s) = πsM sinhπs. (5.4)

The function (5.4) gives the continuum limit of the resolvent in the ÂD̂Ê

matrix models [62], which describe particular sectors of the c = 1 string

theory.

In the description based on the Matrix Quantum Mechanics [63], the

natural variable is the canonical momentum p conjugate to the eigenvalue

x, which is related to the resolvent by

p(x) =
y(eiπx) − y(e−iπx)

2πi
(5.5)
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or, in terms of the parameter s,

p(s) =
y(s + i) − y(s − i)

2πi
= M sinh(πs) , x = M cosh(πs) . (5.6)

The relation

p2 − x2 = µ, µ = M 2, (5.7)

is the equation for the classical phase space trajectory in MQM. In the world-

sheet CFT this relation appears in the context of Witten’s ground ring [64].

In the c = 1 theory it is more natural to consider the chiral variables

x+ = p + x , x− = p − x , (5.8)

which describe the left and right moving tachyons. The variables x± can be

considered as a pair of local coordinates covering the two-dimensional sphere.

The punctures at the north and the south poles of the sphere correspond

to the points x+ = ∞ and x− = ∞ and the two charts are related by the

equation of the complex curve (5.7)

x+x− = µ . (5.9)

As in the case of the (p, q) string theory, the perturbations are introduced

as the asymptotics at the two punctures. The complex curve deformed by

tachyon sources
∑

n>0 t±n(x±)R is found in [14]. The analog of (3.12) is

dΦ+ = x−dx+ +
∑

n>0

Hndtn ,

dΦ− = x+dx− +
∑

n<0

Hndtn,
(5.10)

where the Hamiltonian H±n is given by the positive/negative part of the

Laurent expansion of the function xn
±(ω), ω = eπs, plus half the constant

term. Note that here we should keep both expansions since the singular

points x+ = ∞ and x− = ∞ are distinct. The parameter ω is expressed as a

function of x+ or x− as ω = ei∂µΦ+(x+) = ei∂µΦ−(x−). The conditions (3.19)

and (3.20) become

∂µF =

∫

B
x−dx+ =

∮

B
dΦ+,

µ =

∫

A
x−dx+ =

∮

A
dΦ+,

(5.11)

where the compact cycle A goes around the equator and the non-compact

cycle B connects the two punctures [32].
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Now let us concentrate on the instanton corrections in MQM compactified

at radius R and their CFT interpretation. In the non-perturbed theory

described by (5.9) the non-perturbative corrections follow from the integral

representation of the free energy [63]

F = Fpert +

∞∑

n=1

Cne−2πnµ +

∞∑

n=1

C̃ne−2πnRµ. (5.12)

The world-sheet description of the two kinds of exponential terms was dis-

cussed in [14]. The terms e−2πnµ correspond to Dirichlet boundary condi-

tions for the matter field. Due to the translational symmetry of the target

space, the instantons are labeled by only one number n (the other one is re-

dundant). The integral (2.22) is replaced by an integral along a cycle going

n times around the neck of the hyperboloid. Thus the n-instanton solution

is associated with a contour winding n times around the neck. The original

algebraic curve is actually the universal covering of the hyperboloid, due

to the logarithmic dependence of ŷ(x). The curve wraps the hyperboloid

x+x− = µ infinitely many times. Similarly, the terms e−2πnµR correspond

to Neumann boundary conditions for the matter field and correspond to the

cycles of the dual curve describing the vortex excitations. It was argued in

[16] that the Liouville boundary conditions for the n-th instanton correction

are given by the (1, n) ZZ boundary state. The argument of [16] was based

on the comparison of the first order perturbations in MQM and the world

sheet CFT.

Here we will show that the instanton corrections found in [14,16] are

related to the disc partition function by a formula similar to (3.32). This

statement is trivial when the theory is not perturbed. Indeed, in this case

x± = µ1/2ω±1 = µ1/2e±πs ,

Φ+(x+) = µ log(µ−1/2x+) = µπs − 1

2
µ log µ ,

(5.13)

and

Φ+(s = in) − Φ+(s = −iπn) = 2πinµ , (5.14)

which reproduces the first kind of instanton corrections. By construction
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the potentials Φ±(x±) are the generating functions of the tachyon operators

and as such describe Dirichlet branes with fixed time position. The second

kind of instanton corrections is reproduced by the effective potentials Φ̃± in

the dual theory, which describe vortex excitations and therefore Neumann

branes wrapping the time circle.

Below we will consider the effect of the tachyon perturbations with t̃1 =

t̃−1 = λ, tothers = 0, which affect only the Dirichlet branes. Then the

instanton corrections take the form [14,16]

∆F =
∞∑

n=1

Cne−µfn(µ,λ) +
∞∑

n=1

C̃ne−2πnRµ ,

with

fn(µ, λ) = 2πn + 4λ sin(πn/R) µ
1

2R
−1 +

λ2

R2
sin(2πn/R) µ

1
R
−2 + ... . (5.15)

The exponent (5.15) can be presented again as

µfn(µ, λ) =
Φ+(s = in) − Φ+(s = −in)

i
, (5.16)

where

Φ+(x+) = µ log(µ−1/2x+)− 2λµ
1
R (x+)−

1
R − λ2

2R2
µ

2
R
−1 (x+)−

2
R + ... (5.17)

is the effective potential in the presence of the perturbation. It can be for-

mally interpreted as the disc partition function with a “chiral” (and therefore

non-local) boundary condition labeled by the value of x+. The relation (5.16)

can be generalized to the case of finite perturbation [26].

6. Discussion

In this work we derived the non-perturbative corrections in the unitary

(p, p + 1) models of 2D quantum gravity from the collective field theory

for the two-matrix model. We used the approach developed in [5,6] for the

one-matrix model. The results have a nice algebro-geometric interpretation:

the contribution of an instanton corresponds to the integrals over the cycles

starting and ending at two different sheets of the Riemann surface of the

algebraic curve of the model, at the points corresponding to a pinched cy-

cle connecting two sheets. In the CFT description this interpretation was
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proposed in [21] where the curve appeared from the ground ring relations.

We also compared the new results with Liouville CFT (generalizing the

successful comparison done in [14] (see also [11] where the idea of such a

comparison was proposed). The CFT interpretation of our matrix instanton

calculation is the following; we computed the one point functions of primary

fields on the ZZ brane already found on the CFT side in [15]. As usual, the

normalizations of operators are different in matrix and CFT approaches, and

it only makes sense to compare the dimensionless ratios of various quantities.

For that we had to calculate the free energy and the two point functions of the

primary fields on the sphere in the same instanton approach. This calculation

appears to be subtle due to the singular nature of the critical algebraic

curve. We succeeded by using the geometry relations [5,6,44] defining the free

energy of the model through holomorphic integrals over the curve, combined

with the bilinear Riemann identity.

Our method may be not as straightforward as the old method based on

the string (KP) equations but it is more transparent geometrically and might

have a wider range of applications, especially for the matrix models where

the method of orthogonal polynomials does not exist but the curve is known.

The instanton method also clarifies the geometrical meaning of the re-

lation between FZZT brane and ZZ brains, as mentioned in [21,19]. They

correspond to different choices of the contour in the same holomorphic in-

tegral; for the FZZT brane the contour starts at any point on the curve

(corresponding to the complex boundary cosmological constant) and goes to

infinity, whereas for the ZZ brane the contour connects two different critical

points corresponding to the pinched cycle of the algebraic curve.

Our results show that the agreement between the matrix model and CFT

calculations established in [14] for the (p, p + 1) critical points, holds also in

presence of perturbations by order operators, at least in the linear order in

the couplings. The most interesting physical outcome of our calculation is

that the results do not depend on the choice of the ZZ branes; (m,n), (m, 1),

(1, n) and (1, 1) ZZ branes give the same instanton effects being combined

with (1, 1), (1, n), (m, 1) and (m,n) matter branes, respectively. This degen-

eracy is needed for the self-consistency of the matrix interpretation of the

ZZ branes as non-perturbative effects since a difference in the results would

mean that we were missing the matrix model description of some of these

branes. This degeneracy is still to be understood within the Liouville CFT

of 2D gravity.
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We also applied our method to the study of the instanton effects in the

c = 1 string compactified on an arbitrary radius and perturbed by relevant

vortex operator. We showed that the instantons have here essentially the

same geometrical meaning in terms of the holomorphic integrals along the

algebraic curve as for c < 1 models. We also identified the multi-instanton

contributions in this case as multiple windings of the integration contour

along the cycles of the curve. It is known that this model gives the black

hole realization proposed in [17]. The non-perturbative corrections play

there a crucial role for the understanding of black hole physics in the near

horizon strongly coupled area. Our method opens the way for the geometri-

cal instanton interpretation of the energy of the ZZ-brane in the black hole

calculated in [14] by the matrix approach using Toda equations of [17].

An interesting continuation of our approach would be the generalization

of the results to the models perturbed far away from the simple critical

curve (3.5). As we showed in section 2, the instanton approach works well

for any two matrix model with a general potential. Thus our methods are

directly applicable to study the non-perturbative effects in the flows between

different minimal models.

In conclusion, the non-perturbative effects in the large N matrix models

seem to find their most natural and universal interpretation in the eigen-

value instanton method studied here. Its application range should be much

wider then the methods based on orthogonal polynomials and could be use-

ful wherever the model can be described in the quasi-classical limit by its

algebraic curve.
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