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A qualitative analysis of the chiral phase transition in QCD with two massless quarks and

non–zero baryon density is performed. It is assumed that at zero baryonic density, ρ = 0,

the temperature phase transition is of second order. Due to a specific power dependence

of the baryon masses on the chiral condensate the phase transition becomes of first order

at temperature T = Tph(ρ) for ρ > 0. At temperatures Tcont(ρ) > T > Tph(ρ) there is

a mixed phase consisting of the quark phase (stable) and the hadron phase (unstable).

At the temperature T = Tcont(ρ) the system experiences a continuous transition to the

pure chirally symmetric phase.

It is well known that chiral symmetry is valid in perturbative quantum

chromodynamics (QCD) with massless quarks. It is also expected that there

is chiral symmetry in full-perturbative and nonperturbative QCD at high

temperatures, (T >∼ 200 MeV), if heavy quarks (c, b, t) are ignored. The

chiral symmetry is strongly violated, however, in hadronic matter, i.e. in

QCD at T = 0 and low density. The order of the phase transition between the

two phases of QCD with broken and restored chiral symmetry as temperature

and density vary is not completely clear now. There are different opinions

about this subject (for a detailed review see Ref. [1,2] and references therein).

We would like to consider here the influence of baryon density on the chi-

ral phase transition in hadronic matter. Kogan, Kovner and Tekin [3] have

suggested the idea that baryons may initiate the restoration of chiral symme-

try if their density is high – when roughly half of the volume is occupied by

baryons. The physical argument in favor of this idea comes from the hypoth-

esis (supported by calculation in the chiral soliton model of the nucleon [4]),

that inside the baryon the chiral condensate has the opposite sign to that in

vacuum. This hypothesis is not proved. Furthermore, it is doubtful that the

concept of quark condensate inside the nucleon can be formulated in a cor-

rect way in quantum theory. But the idea of the strong influence of baryon

density on the chiral phase transition looks very attractive. For this reason
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no assumption on the driving mechanism of chiral phase transition at zero

baryon density will be made in this paper. The problem under consideration

is to find how the phase transition changes in the presence of baryons. The

content of the paper closely follows Ref. [5].

We discuss the phase transitions in QCD with two massless quarks, u and

d. Many lattice calculations [6–9] indicate that at zero chemical potential

the phase transition is of second order. It will be shown below that taking

account of the baryon density drastically changes the situation and the tran-

sition becomes first order, and at high density the matter is always in the

chirally symmetric phase.

Let us first consider the case of zero baryonic density and suppose that

the phase transition from the chirality violating phase to the chirality con-

serving one is second order. The second order phase transition is, generally,

characterized by the order parameter η. The order parameter is a thermal

average of some operator which may be chosen in various ways. The physical

results are independent of the choice of the order parameter. In QCD the

quark condensate, η = |〈0|ūu|0〉| = |〈0|d̄d|0〉| ≥ 0, may be taken as such a

parameter. In the confinement phase the quark condensate is non-zero while

in the deconfinement phase it is vanishing.

The quark condensate has the desired properties; as was demonstrated

in the chiral effective theory [10, 11], η decreases with temperature and an

extrapolation of the curve η(T ) to higher temperatures indicates that η van-

ishes at T = T
(0)
c ≈ 180 MeV. Here the superscript “0” indicates that the

critical temperature is taken at zero baryon density. The same conclusion

follows from the lattice calculations [6,9,12], where it was also found that the

chiral condensate η decreases with increase of the chemical potential [13,14].

Apply the general theory of second order phase transitions [15] and con-

sider the thermodynamical potential Φ(η) at temperature T near T
(0)
c . Since

η is small in this domain, Φ(η) may be expanded in η,

Φ(η) = Φ0 +
1

2
Aη2 +

1

4
B η4 , B > 0 . (1)

For a moment we neglect possible derivative terms in the potential.

The terms proportional to η and η3 vanish for general reasons [15]. In

QCD with massless quarks the absence of η and η3 terms can be proved for

any perturbative Feynman diagrams. At small t = T − T
(0)
c the function

A(t) is linear in t: A(t) = at, a > 0. If t < 0 the thermodynamical potential

Φ(η) is minimal at η 6= 0, while at t > 0 the chiral condensate vanishes,

η = 0. At small t the t-dependence of the coefficient B(t) is inessential and

may be neglected. The minimum, η̄, of the thermodynamical potential can
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be found from the condition, ∂Φ/∂η = 0,

η̄ =

{
√

−at/B , t < 0 ,

0 , t > 0 .
(2)

It corresponds to a second order phase transition since the potential is quar-

tic in η and – if the derivative terms are included in the expansion – the

correlation length becomes infinite at T = T
(0)
c .

Turn now to the case of the finite, but small baryon density ρ (by ρ we

mean here the sum of baryon and anti-baryon densities). For a moment,

consider only one type of baryon, i.e. the nucleon. The temperature of

the phase transition, Tph, is, in general, dependent on the baryon density,

Tph = Tph(ρ), with Tph(ρ = 0) ≡ T
(0)
c . At T < Tph(ρ) a term proportional to

Eρ, where E =
√

p2 + m2 is the baryon energy, must be added to the ther-

modynamical potential (1). As was shown in [16,17] the nucleon mass m (as

well as the masses of other baryons) arises due to the spontaneous violation

of the chiral symmetry and is approximately proportional to the cubic root

of the quark condensate; m = cη1/3, with c = (8π2)1/3 for a nucleon. At

small temperatures T the baryon contribution to Φ is strongly suppressed

by the Boltzmann factor e−E/T and is negligible. Below we assume that

the proportionality m ∼ η1/3 is valid in a broad temperature interval. Ar-

guments in favor of such an assumption are based on the expectation that

the baryon masses vanish at T = Tph(ρ) and on dimensional grounds. Near

the phase transition point E =
√

p2 + m2 ≈ p + c2 η2/3/(2p). At η → 0 all

baryons are accumulating near zero mass and a summation over all baryons

gives us, instead of Eq. (1),

Φ(η, ρ) = Φ0 +
1

2
at η2 +

1

4
B η4 + Cη2/3ρ , (3)

where C =
∑

i c2
i /(2pi). The term ρ

∑

i pi is absorbed into Φ0 since it is

independent of the chiral condensate η. The typical momenta are of the

order of the temperature, pi ∼ T . Thus, Eq. (3) is valid in the region

η � T 3. In the leading approximation the term C can be considered as

independent of the temperature at T ∼ T
(0)
c .

Due to the last term in Eq. (3) the thermodynamical potential always has

a local minimum at η = 0 since the condensate η is always non-negative. At

small t < 0 there also exists a local minimum at η > 0, which is a solution

of the equation

∂Φ

∂η
≡ (at + B η2)η +

2

3
Cρη−1/3 = 0 . (4)
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At small enough baryon density ρ, Eq. (4) (visualized in Figure 1a) has,
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Figure 1. a) Graphical representation of Eq. (4); “I” is the first term and “II” the second term

(with the opposite sign) in the r.h.s. of the equation. b) The thermodynamic potential (3) vs.

the chiral condensate at a fixed baryon density ρ > 0. At low enough temperatures, T = T1, the

system resides in the chirally broken (hadron) phase. The first order phase transition to the quark

phase takes place at Tph = T2 > T1. At somewhat higher temperatures, T3 > Tph the system is

in a mixed state. The temperature T4 ≡ Tcont corresponds to a continuous transition to the pure

quark phase, in which the thermodynamic potential has the form T5.

in general, two roots, η1 < η0 and η2 > η0, where η0 = (−at/3B)1/2 is the

minimum of the first term in the right-hand side of Eq. (4). The calculation

of the second derivative ∂2Φ/∂η2 shows that the second root η2 (if it exists)

corresponds to a minimum of Φ(η) and, therefore, is a local minimum of Φ.

The point η = η1 corresponds to a local maximum of the thermodynamical

potential since at this point the second derivative is always non-positive.

The thermodynamical potential Φ(η, ρ) at (fixed) non-zero baryon density

ρ has the form plotted in Figure 1b. At low enough temperatures (curve T1)

the potential has a global minimum at η > 0 and the system resides in the

chirally broken (hadron) phase. As the temperature increases the minima

at η = 0 and at η = η̄2 > 0 become of equal height (curve T2 ≡ Tph). At

this point the first order phase transition to the quark phase takes place. At

somewhat higher temperatures, T = T3 > Tph, the η > 0 minimum of the

potential still exist but Φ(η = 0) < Φ(η̄2). This is a mixed phase in which

bubbles of the hadron phase may still exist. However, as the temperature

increases further, the second minimum disappears (curve T4 ≡ Tcont). This

temperature corresponds to a continuous transition to the pure quark phase

in which the thermodynamic potential has the form T5.
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Let us calculate the temperature of the phase transition, Tph(ρ), at non-

zero baryon density ρ. The transition corresponds to the curve T2 in Fig-

ure 1b, which is defined by the equation Φ(η̄2, ρ) = Φ(η = 0, ρ), where η̄2 is

the second root of Eq. (4) as discussed above. The solution is

Tph(ρ) = T (0)
c −

5

a

(

2C ρ

3

)3/5(

B

4

)2/5

, (5)

and the second minimum of the thermodynamic potential is at η̄2 =

[4a (T (0) − Tph(ρ))/(5B)]
1/2

.

At a temperature slightly higher than Tph(ρ) the potential is minimal at

η = 0, but it has also an unstable minimum at some η > 0. The existence of

a metastable state is also a common feature of a first order phase transition

(e.g., the overheated liquid in the case of a liquid-gas system). With a further

increase of the density ρ (at a given temperature) the intersection of the two

curves in Figure 1a disappears and the two curves only touch one another

at one point η = η̄4. At this temperature a continuous transition (crossover)

takes place. The corresponding potential has the characteristic form denoted

as T4 in Figure 1a. The temperature T4 ≡ Tcont is defined by the condition

that the first (4) and the second derivatives of Eq. (3) vanish,

Tcont(ρ) = T (0)
c −

5

a

(

2C ρ

9

)3/5(

B

2

)2/5

, (6)

and the value of the chiral condensate where the second local minimum of the

potential disappears is given by η̄4 = [2a(Tcont(ρ) − T
(0)
c )/(5B)]

1/2
. At tem-

peratures T > Tcont(ρ) the potential has only one minimum and the matter

is in the state with restored chiral symmetry. Thus, in QCD with massless

quarks the type of phase transition at the restoration of chiral symmetry

strongly depends on the value of baryonic density ρ. At a fixed tempera-

ture, T < T
(0)
c , the phase transition happens at a certain critical density,

ρph. According to Eq. (5) the critical density has a kind of a “universal”

dependence on the temperature, ρph(T ) ∝ [T
(0)
c − T ]5/3, the power of which

does not depend on the parameters of the thermodynamic potential, a and

B.

The expected phase diagram is shown qualitatively in Figure 2a. This di-

agram does not contain an end-point which was found in lattice simulations

of QCD with a finite chemical potential [18,19]. We expect that this happens

because in our approach the possible influence of confinement on the order

of the chiral restoration transition was ignored. Intuitively, it seems that at
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Figure 2. The qualitative phase diagram at finite baryon density and temperature based on the

analysis a) without and b) with an indication of the approximate 2nd order transition domain.

low baryon densities such influence is indeed absent; the deconfinement phe-

nomenon refers to large quark–anti-quark separations while the restoration

of the chiral symmetry appears due to fluctuations of the gluonic fields in the

vicinity of the quark. However, the confinement phenomenon dictates the

value of the baryon size which cannot be ignored at high baryon densities,

when the baryons are overlapping. If the melting of the baryons happens

in the hadron phase depicted in Figure 2a, then at high enough density the

nature of the transition could be changed. This may give rise to the ap-

pearance of the end-point observed in Ref. [18, 19]. The domain where the

inequality |at| � Cρη2/3, ρ 6= 0 is fulfilled, has specific features. In this do-

main the phase transition looks like a smeared second order phase transition;

the specific heat has (approximately) a discontinuity at the phase transition

point, ∆Cp = a2Tc/B. The correlation length increases as (T − T
(0)
c )

−1/2

at T − T
(0)
c → 0. The latter arises if we include the derivative terms in the

effective thermodynamical potential. The phase diagram with this domain

indicated may look as shown in Figure 2b. Note that the applicability of our

considerations is limited to the region |T − T
(0)
c |/T

(0)
c � 1 and low baryon

densities.

In real QCD the massive heavy quarks (the quarks c, b, t) do not influence

this conclusion, since their concentration in the vicinity of T ≈ T
(0)
c ∼

200 MeV is small. However, the strange quarks, the mass of which ms ≈

150 MeV is just of the order of the expected T
(0)
c , may change the situation.

This problem deserves further investigation.
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