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We discuss the stringy properties of high-energy QCD using its hidden integrability

in the Regge limit and on the light-cone. It is shown that multi-color QCD in the

Regge limit belongs to the same universality class as superconformal N=2 SUSY YM

with Nf = 2Nc at the strong coupling orbifold point. The analogy with the integrable

structure governing the low energy sector of N=2 SUSY gauge theories is used to develop

the brane picture for the Regge limit. In this picture the scattering process is described

by a single M2 brane wrapped around the spectral curve of the integrable spin chain

and unifying hadrons and reggeized gluons involved in the process. New quasiclassical

quantization conditions for the complex higher integrals of motion are suggested which

are consistent with the S-duality of the multi-reggeon spectrum. The derivation of the

anomalous dimensions of the lowest twist operators is formulated in terms of the Riemann

surfaces.
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1. Introduction

Recently it has been recognized that there is hidden integrability behind

the evolution equations in asymptotically free Yang-Mills theories [1, 2]. It

was found that high-energy asymptotics of scattering amplitudes in QCD in

the Regge limit are described by evolution equations which are ultimately

related to the SL(2,C) XXX Heisenberg integrable spin chains. More re-

cently, a similar connection was observed for another physically interesting

limit, QCD dynamics on the light-cone. There, the logarithmic evolution of

the composite light-cone operators is connected with the real SL(2,R) XXX

Heisenberg spin chain and the spectrum of anomalous dimensions of those

operators was identified with the spectrum of this magnet [3–6]. For the time

being it seems that the phenomenon is quite general and that the effective

dynamics of QCD in different kinematical limits is indeed integrable.
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On the other hand, there is another class of (supersymmetric) Yang-

Mills theories in which integrability emerges. In the N =2 SUSY YM theory

which can be solved exactly in the low-energy limit [7] the relevant integrable

system was identified as the complexified periodic Toda chain. The low-

energy effective action and the BPS spectrum in the theory can be described

in terms of the classical Toda system [8]. When one adds fundamental matter

with Nf < 2Nc, which does not change the asymptotically free nature of the

theory, the universality class of the integrable model is changed. Instead

of the classical Toda system one gets the classical XXX spin chain [9]. In

the case of the superconformal Nf = 2Nc theory, the solution leads to the

periodic XXX chain in a magnetic field [10]. Because these magnets are

classical, the spins are not quantized and their values are determined by the

matter masses. In the special case when the matter is massless one obtains

the classical XXX magnet of spin zero.

At first glance neither the high-energy (Regge) limit of QCD and low-

energy limit of SUSY YM, nor the corresponding integrable models have

anything in common. In this paper we shall demonstrate the opposite and

show that there is a deep relation between the Regge limit of QCD and some

particular limit of superconformal N =2 SUSY YM at Nf = 2Nc. This rela-

tion is based on the fact that in the both cases we are dealing with the same

class of integrable models – the SL(2,C) homogeneous spin zero Heisenberg

magnets. However, there is a key difference between the two theories. The

integrable model in the SUSY YM is a classical Heisenberg magnet, whereas

the Regge limit of QCD is described by a quantum Heisenberg magnet. To

bring the two pictures together, it is natural to develop the quasiclassical de-

scription in the QCD case and to quantize the classical picture in SUSY YM.

The first issue was considered in [11–13] while some arguments concerning

the quantization of the integrable system related to SUSY YM theories can

be found in [14].

A central role in our approach will be played by Riemann surfaces which

appear naturally as spectral curves in the description of classical spin chains.

To some extent the Riemann surface fixes the universality class of the clas-

sical integrable model and it defines the general solution to the classical

equations of motion. This solution is a finite-gap soliton expressed in terms

of θ functions on the Riemann surface. This surface has a natural complex

structure whose moduli are parameterized by the integrals of motion. The

classical dynamics is linearized on the Jacobian of this Riemann surface. In

the case of the SUSY YM these Riemann surfaces encode the expression for

the low energy effective actions [9,10]. The moduli of the complex structure
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are fixed by the vacuum expectation values of the scalar in N =2 theory. One

gets Riemann surfaces in the quasiclassical limit of the Schrödinger equation

for the quantum spin chain related to QCD in the Regge limit [12, 13]. The

main goal of this paper is to use these Riemann surfaces to develop the

stringy representation for the effective dynamics of QCD in the Regge limit

exploring the known stringy realization of the low-energy regime of SUSY

YM.

Our starting point is the observation that the Seiberg—Witten curve for

the superconformal N =2 SUSY YM theory with gauge group SU(Nc) and

number of flavors Nf = 2Nc coincides with the spectral curve for the Heisen-

berg spin magnet describing multi-color QCD in the Regge limit. On the

SUSY YM side, we still have several unidentified parameters. The first one

is the rank of the gauge group SU(Nc). On the QCD side, in the multi-

color limit, we also have one additional parameter, namely the number of

reggeized gluons N = 2, 3, ... exchanged in the t-channel [15–17]. It will be

shown later that the correspondence between these two theories implies that

the number of reggeized gluons N = Nc. However the superconformal the-

ory has additional freedom due to the arbitrary value of the bare coupling

constant τ0 = i
g2 + 2πθ and the Seiberg–Witten curves are bundled over

the complex τ0 plane. On the complex τ0 plane there are singular points at

which the discriminant of the curve vanishes, i.e. the spectral curve becomes

degenerate. It turns out that the Regge limit of the multi-color QCD is re-

lated to one of these singular points, the so-called strong coupling orbifold

point [18,19] which is S-dual to another singular point corresponding to the

weak coupling e2πiτ0 → 0 regime. Let us emphasize that in the superconfor-

mal theory the effective coupling constant does not coincide with the bare

one, because there are finite perturbative one-loop and non-perturbative in-

stanton corrections to the low-energy effective action. In the strong coupling

regime under consideration one has to take into account contributions from

all numbers of instantons.

After identification of the universality class one can investigate the rele-

vant S-duality properties of both theories, which can be read off from the

spectral curve. In the SUSY case, the S-duality is the famous electric-

magnetic duality. The Seiberg–Witten solution follows from the compatibil-

ity of the duality with the renormalization group (RG) flow of the effective

action on the moduli space of the theory. In the QCD case the situation is

more subtle since contrary to the SUSY case we have to deal with the quan-

tum dynamics of the same integrable system and one has to formulate the

precise meaning of the duality at the quantum level. It turns out that the
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duality manifests itself in the spectrum of the integrals of motion [13]. We

formulate new WKB quantization conditions obeying the duality property

and demonstrate that their solutions are in a good agreement with the nu-

merical calculations of the spectrum of the three reggeon system [20]. This

strongly supports the conjecture that the notion of duality survives at the

quantum level. We predict that the quantum spectrum of the N -reggeon

system in the multi-color QCD is parameterized by two (N −2) dimensional

vectors ~n and ~m, which have the meaning of “electric” and “magnetic” quan-

tum numbers.

We reformulate the above mentioned WKB quantization conditions in

stringy terms using the brane realization of the BPS spectrum in supercon-

formal N = 2 SUSY YM theory [21, 22]. Formally it is a simple task to

identify the corresponding geometrical objects whereas the proper meaning

of the “magnetic” quantum number in the Regge limit is a subtle point.

The duality combined with RG behavior gives rise to a brane realization

of the ground state in the SUSY YM theories. There are two apparently

different IIA/M and IIB/F pictures. In the IIA/M picture the ground state

is described by the M5 brane with the world-volume R4 × Σ where Σ is the

spectral curve of the corresponding integrable system [21, 23]. The stable

BPS states correspond to the M2 branes ending on this M5 brane. In the

IIB/F picture [22] one has to consider a D3 brain in the orientifold back-

ground and BPS states are described by dyonic strings stretched between

the D3 brane and the orientifold.

In this paper we shall start to develop a similar brane picture for the

Regge limit of multi-color QCD. We shall argue that the dynamics of the

multi-reggeon compound states in multi-color QCD is described in this pic-

ture by a single M2 brane wrapped around the spectral curve of the Heisen-

berg magnet. The fact that we are dealing with the quantum magnet im-

plies that the moduli of the complex structure of the spectral curve can

take only quantized values. We shall present several arguments supporting

this picture. Let us note that in the Regge limit there is a natural split-

ting of the four-momenta of reggeized gluons into two transverse and two

longitudinal components, which is unambiguously determined by the kine-

matics of the scattering process. One can make a Fourier transform with

respect to the transverse momenta and define a mixed representation: a

two-dimensional longitudinal momentum space and a two-dimensional im-

pact parameter space for which it is natural to use complex coordinates

z and z̄ = z∗. The Riemann surface which the brane is wrapped around

lives in this “mixed” coordinate-momenta space. Different projections of
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the wrapped brane represent hadrons and reggeons. The genus of this sur-

face is fixed by the number of reggeons. Let us note that multi-reggeon

states appear from the summation of only planar diagrams in QCD and

from the point of view of topological expansion they all correspond to the

cylinder-like diagram in a color space. Their contribution to the scattering

amplitude is given by the sum of N -reggeon exchanges in the t-channel with

N = 2, 3.... It is amusing that in consequence we get a picture where we

sum over Riemann surfaces of arbitrary genus g = N − 2.

Finally, we make some comments on a dual (super)gravity realization

of the Regge limit of multi-color QCD. Our approach is different from the

recent studies [24–26] of high-energy scattering in QCD based on the AdS5

geometry within the AdS/CFT correspondence [27]. We speculate that a

reggeized gluon in QCD can be identified as a singleton in the AdS3 space.

This paper is organized as follows. In section 2 we recall how the inte-

grable spin chains appear in the Regge limit of QCD. In section 3 we review

the main features of the finite-gap solutions to the classical equations of

the motion in the periodic spin chains which are relevant for our consid-

eration. We also discuss their quantization using the method of Separated

Variables [28]. In section 4 we identify the universality class of the Regge

limit of multi-color QCD by comparing the Riemann surfaces in QCD and

N = 2 SUSY YM. Based on this identification, we make a conjecture about

the brane realization of QCD in the Regge limit. In section 5 we investigate

the duality properties of the multi-reggeon states and provide a WKB-like

description of their spectrum in terms of Riemann surfaces. In section 6

we propose a stringy/brane picture for the description of the anomalous

dimensions of the lowest twist operators in QCD. In section 7 several com-

ments concerning the supergravity dual description of the Regge limit are

presented. Our results are discussed in the Conclusion.

2. Regge asymptotics in QCD and Heisenberg magnets

It is well known from the old days of Regge theory that the scattering ampli-

tudes of hadrons grow at high-energy. A useful framework for understanding

this phenomenon in QCD comes from studies of the asymptotic behavior of

the scattering amplitude of two hadronic states consisting of a pair of heavy

quarks [29], the so-called onia system. The advantage of such a system is

that it captures all the essential features of the Regge phenomenon in QCD

and, at the same time, the scattering amplitudes can be calculated perturba-

tively order-by-order in the QCD coupling expansion. Denoting the invariant

mass of the scattering onia by Q2 and their center-of-mass energy by s, we



September 11, 2004 12:22 WSPC/Trim Size: 9.75in x 6.5in for Proceedings gkk

2292 A. Gorsky, I.I. Kogan and G. Korchemsky

introduce the dimensionless Bjorken scaling variable x = Q2/s. The Regge

limit corresponds to the asymptotics at large s = Q2/x with fixed Q2, or

equivalently to small x.

One expects that the calculation of the high-energy asymptotics of the

onium-onium cross-section should eventually match the Regge model predic-

tion. The Regge model interprets the growth of the scattering amplitudes

at high energy s, or equivalently at small x, by introducing the notion of the

pomeron as the Regge pole with the quantum numbers of the QCD vacuum.

Its contribution to the onium-onium cross-section at small x takes the form

σtot(x,Q
2) = x−(αP−1) βP

A(Q2)βP

B(Q2) , (1)

with αP the pomeron intercept and βP

A,B(Q2) the residue factors correspond-

ing to the onia A and B, respectively. Despite the fact that the Regge model

provides a successful phenomenological description of the experimental data

in terms of “hard” (perturbative) and “soft” (non-perturbative) pomerons

its status within QCD remains unclear.

The first attempts to understand the “hard” pomeron within perturbative

QCD were made more than 20 years ago and led to the discovery of the

BFKL pomeron [30]. In the BFKL approach, two onia scatter each other

by exchanging soft gluons in the t-channel. Calculating the corresponding

Feynman diagrams in powers of αs one obtains the following general form of

the perturbative expansion for the cross-section at small x and fixed Q2, [15–

17]

σtot(x,Q
2) = σBorn

∞∑

m=0

m∑

n=0

(αsNc)
m−n(αsNc lnx)nfm,n(Q2) , (2)

with σBorn being the cross-section at the Born level. Here, the double sum

involves two parameters of the expansion – the QCD coupling constant,

αs � 1, and the energy dependent parameter αs ln 1/x that becomes large

at small x. The coefficient functions fm,n(Q2) depend on the invariant mass

of the onia, Q2, as well as on the number of colors, 1/N 2
c . They can be

calculated perturbatively for large invariant mass Q2 � Λ2
QCD by making

use of the wave functions of the onia states. The number of different terms

in (2) rapidly increases at higher orders in αs and in order to find σtot(x,Q
2)

at small x one has to develop a meaningful approximation which, firstly,

correctly describes the small x asymptotics of the infinite series (2) and,

secondly, preserves the unitarity constraint

σtot(x,Q
2) < const.× ln2(1/x) (3)
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as x → 0. To satisfy the first condition, one can neglect in (2) the terms

containing fm,n with n < m as suppressed by powers of αs with respect to

the leading term fm,m. The resulting series defines the onium-onium cross-

section in the leading logarithmic approximation (LLA). It can be resummed

to all orders in αs leading to the BFKL pomeron [30]

σLLA
tot (x,Q2) = σBorn

∞∑

m=0

(αsNc lnx)mfm,m(Q2) ∼ x−αsNc4 ln 2/π

√

αsNc ln 1/x
. (4)

The BFKL pomeron leads to unrestricted rise of the cross-section and vio-

lates the unitary bound (3). In order to preserve the unitarity of the S-matrix

of QCD and fulfill (3), one has to take into account an infinite number of

non-leading terms in (2). This means that with the unitarity condition taken

into account the series (2) does not have small expansion parameter such as

αs. Instead of searching for this parameter one may start with the LLA

result (4) and try to identify the non-leading terms in (2), which should

be added to (4) in order to restore unitarity. In this way, one arrives at

the generalized leading logarithmic approximation [15–17]. One should keep

in mind, however, that in this approximation unitarity is preserved only in

the direct channels of the process but not in sub-channels corresponding to

different groups of particles in the final state.

2.1. Generalized LLA

In the generalized LLA, one uses the remarkable property of gluon reggeiza-

tion [30] in order to formulate a new diagram technique for calculation of

the onium-onium scattering amplitudes [15–17]. An infinite set of standard

Feynman diagrams involving “bare” gluons can be replaced by a few reggeon

diagrams describing propagation of reggeized gluons, or reggeons, and their

interaction with each other. Each reggeon diagram appears as a result of re-

summation of an infinite number of Feynman diagrams with “bare” gluons.

In this way, one defines an effective theory in which the reggeized gluons

play the role of new elementary fields. In this theory, the scattering am-

plitudes describe the effects of the propagation of the reggeized gluons in

the t-channel and their interaction with each other. As usual, each diagram

in the effective theory is equivalent to an infinite sum of the original QCD

Feynman diagrams.

The resulting set of reggeon diagrams defining the onium-onium cross-

section in the generalized LLA is shown in Figure 1. According to the optical

theorem, the cross-section is given by an imaginary part of their contribution.

The vertical curly lines represent the reggeons propagating in the t-channel
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and the triple gluon vertices describe the effective BFKL interaction between

the reggeons and the gluons propagating in the s-channel. Upper and lower

ellipses denote the coupling of the reggeons to two onia states A and B.

A

N....31 2
B

Figure 1. The Feynman diagrams contributing to the onium-onium scattering amplitude in the

generalized LLA and describing the N reggeon exchange in the t-channel.

One of the peculiar features of the reggeon scattering in the generalized

LLA is that it is elastic and pair-wise. The number of reggeons exchanged

in the t-channel is not changed. This allows us to interpret the diagrams

shown in Figure 1 as describing the propagation of a conserved number N =

2, 3, ... of pair-wise interacting reggeons. At N = 2 the diagram in Figure

1 determines the leading logarithmic result for the scattering amplitude,

Eq.(4), and it contributes to the coefficient functions fm,m(Q2) in (4) to all

orders of perturbation theory. The contribution of the diagram with N = 3 is

suppressed by a power of αs with respect to that for N = 2 and it determines

the first non-leading coefficient fm,m−1 in (2).

The calculation of the N -reggeon diagrams can be performed using the

Bartels–Kwiecinski–Praszalowicz approach [15, 16]. The diagrams shown in

Figure 1 have a generalized ladder form and for fixed number of reggeons, N ,

their contribution satisfies Bethe–Salpeter like equations for the scattering

of N particles. The solutions to these equations define the color-singlet

compound states |ΨN 〉 built from N reggeons. These states propagate in

the t-channel between two scattered onia states and give rise to the following

(Regge like) high energy asymptotics of the the onium-onium cross-section

σtot(s) ∼
∑

N=2 ,3,...

(αsNc)
N x−αsNcεN/π

√

αsNc ln 1/x
β

(N)
A (Q2)β

(N)
B (Q2) (5)

with the exponents εN defined below. Here, each term in the sum is associ-
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ated with the contribution of the N -reggeon compound states. At N = 2,

the corresponding state defines the BFKL pomeron (4) with ε2 = 4 ln 2.

The N -reggeon states are defined in QCD as solutions to the Schrödinger

equation

HNΨ(~z1, ~z2, ..., ~zN ) =
αs

π
NcεNΨ(~z1, ~z2, ..., ~zN ) (6)

with the effective QCD Hamiltonian HN acting on two-dimensional trans-

verse coordinates of reggeons, ~zk (k = 1, ..., N) and their color SU(Nc)

charges

HN = −αs

2π

∑

1≤i<j≤N

Hij t
a
i t

a
j . (7)

Here, the sum goes over all pairs of reggeons. Each term in this sum is

factorized into the product of two operators acting on the color indices and

the two-dimensional coordinates. The former is given by the direct product

of the gauge group generators in the adjoint representation of the SU(Nc)

group, acting in the color space of i-th and j-th reggeons,

tai = I ⊗ ...⊗ ta
︸ ︷︷ ︸

i

⊗...⊗ I , (ta)bc = −ifabc ,

with fabc the structure constants of the SU(Nc). The operator Hij acts only

on the transverse coordinates of reggeons, ~zi and ~zj . The Hamiltonian HN

commutes with the total color charge of the system of N -reggeons. Solving

(6), we are looking for the color-singlet states, that is the eigenstates with

the total color charge equal to zero,
∑

N

i=1 t
a
i |ΨN 〉 = 0. The residue factors

in (5) measure the overlap of Ψ(~z1, ~z2, ..., ~zN ) with the wave functions of two

scattered particles, β(N)

A (Q2) = 〈A|ΨN 〉 and similar for β(N)

B .

To get some insight into the properties of the N -reggeon states, it proves

convenient to interpret the Feynman diagrams shown in Figure 1 as de-

scribing a quantum-mechanical evolution of a system of N particles in the

t-channel between two onia states |A〉 and |B〉

σtot(s) =
∑

N≥2

(αsNc)
N 〈A| eln(1/x)·HN |B〉 , (8)

with the rapidity lnx = lnQ2/s serving as Euclidean evolution time. To

find the high energy asymptotics of (8), one has to solve the Schrödinger

equation (6) for arbitrary number of reggeized gluonsN , expand the operator

(1/x)HN over the complete set of the eigenstates of HN and, then, resum

their contribution for arbitrary N . In this way, one arrives at (5).
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It follows from (8) that for fixed number of reggeons, N , and large evolu-

tion time, ln 1/x � 1, the dominant contribution to σtot(s) comes from the

eigenstates of HN with the maximal energy. This allows us to identify the

exponent (−εN ) in (5) as the energy of the ground state of the Hamiltonian

(−HN ). It turns out that the energy spectrum of the reggeon Hamiltonian

is gapless and the contribution of the eigenstates close to the ground state

amounts to the appearance of the additional factor ∼ (αs ln 1/x)−1/2 in the

r.h.s. of (5). The contribution of the N -reggeon state to σtot(s) (5) depends

crucially on the sign of the energy – for εN > 0 (or εN < 0) it increases (or

decreases) as s→ ∞.

Finding the spectrum of the compound states (6) for arbitrary number

of reggeized gluons N and the eventual resummation of their contribution

to get the scattering amplitude (5) is the outstanding theoretical problem in

high-energy QCD. At N = 2, the solution to (6) was found a long time ago

– the well-known BFKL pomeron [30], ε2 = 4 ln 2. At N = 3 the solution

to (6) – the odderon state in QCD [31], was formulated only a few years

ago [32], ε3 = −0.2472.., by making use of the remarkable properties of

integrability of the effective QCD Hamiltonian [1, 2]. Recently, significant

progress has been achieved in solving (6) for an arbitrary number of reggeons

in the multi-color limit [20, 33, 34].

2.2. Large Nc limit

At large Nc one can expand the matrix elements in the r.h.s. of (8) in powers

of 1/N2
c and obtain a topological expansion of σtot(s) [35]. The leading term

of this expansion corresponds to the planar cylinder diagram in which the

top and the bottom disks correspond to two onia states and the walls are

formed by N reggeons. In this diagram, in order to preserve the planarity,

each reggeon is allowed to interact only with two neighboring reggeons. Go-

ing back from the planar diagrams to the Hamiltonian HN , this leads to

simplification of the reggeon interaction in the multi-color limit. Namely,

for αsNc = fixed and Nc → ∞, the Hamiltonian (7) can be written as

HN =
αsNc

4π

∑

1≤i≤N

Hi,i+1 + O(N−2
c ) (9)

with HN,N+1 ≡ HN,1. Thus, the pair-wise interaction between reggeons in

(7) is reduced in the multi-color limit to a nearest-neighbor interaction (9)

and, in addition, the color operator is replaced by a c-valued factor tai t
a
j →

−Nc/2. As was already mentioned, the two-particle reggeon Hamiltonian

Hi,i+1 acts on the two-dimensional (transverse) reggeon coordinates ~z =



September 11, 2004 12:22 WSPC/Trim Size: 9.75in x 6.5in for Proceedings gkk

High energy QCD: stringy picture from hidden integrability 2297

(x, y) and it coincides with the BFKL kernel [30]. It becomes convenient to

introduce the complex valued (anti)holomorphic coordinates, z = x+ iy and

z̄ = x− iy, and parameterize the position of the kth reggeon as ~zk = (zk, z̄k).

One of the remarkable features of the BFKL kernel is that it is given by the

sum of two mutually commuting operators acting separately on the z and

z̄ coordinates of the reggeons. Making use of this property, one can rewrite

the N reggeon Hamiltonian (9) as [30]

HN =
αsNc

4π

(
HN + H̄N

)
+ O(N−2

c ) . (10)

Here the Hamiltonians HN and H̄N act on the (anti)holomorphic coordinates

and describe the nearest-neighbor interaction between N reggeons

HN =

N∑

m=1

H(zm, zm+1) , H̄N =

N∑

m=1

H(z̄m, z̄m+1) ,

with the periodic boundary conditions zk+1 = z1 and z̄k+1 = z̄1. The inter-

action Hamiltonian between two reggeons with the coordinates (z1, z̄1) and

(z2, z̄2) in the impact parameter space, is given by the BFKL kernel

H(z1, z2) = −ψ(J12) − ψ(1 − J12) + 2ψ(1) , (11)

where ψ(x) = d ln Γ(x)/dx and the operator J12 is defined as a solution to

the equation

J12(J12 − 1) = −(z1 − z2)
2∂1∂2 (12)

with ∂m = ∂/∂zm. The expression for H(z̄1, z̄2) is obtained from (11) by

substituting zk → z̄k.

Since the Hamiltonians HN and H̄N act along two different directions on

the two-dimensional plane, they commute with each other, [HN , H̄N ] = 0.

This allows us to reduce the original Schrödinger equation (6) to a system

of two one-dimensional Schrödinger equations for the Hamiltonians HN and

H̄N . For fixed number of reggeons, N , the operator HN describes a system

of N particles on a complex z line interacting with their neighbors through

the two-particle Hamiltonian (11). This quantum-mechanical system can be

solved exactly for the system with N = 2 particles leading to the BFKL

pomeron. It is not obvious, however, whether the exact solution can be

found for an arbitrary number of reggeons. For this to occur, the system of

N reggeons should possess an additional symmetry. It turns out that such

a hidden symmetry indeed exists [1,2]. The Schrödinger equation for the N
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reggeon system in the multi-color limit contains a set of mutually commuting

integrals of motion qk and q̄k (k = 2, ..., N) defined by

qk = ik
∑

1≤j1<j2<...<jk≤N

zj1j2 ...zjk−1,jk
zjk,j1∂zj1

...∂zjk−1
∂zjk

(13)

with zjk ≡ zj − zk. The charges q̄k are given by similar expressions in the z̄

sector. The eigenstates Ψ(~z1, ~z2, ..., ~zN ) have to diagonalize these operators

and the corresponding eigenvalues q ≡ {qk, q̄k = q∗k}, with k = 2, ..., N , form

the complete set of quantum numbers parameterizing the spectrum of the

Schrödinger equation (6), εN = εN (q). This implies that the Schrödinger

equation (6) for the N -reggeon states is completely integrable in the multi-

color limit and it can be solved by applying the powerful Quantum Inverse

Scattering Method well-known in the theory of integrable models.

A famous example of the exactly solvable many-body quantum mechan-

ical systems is the one-dimensional XXX Heisenberg chain of N interacting

spins described by the Hamiltonian

H
s=1/2
N = −

N∑

m=1

~Sm · ~Sm+1 ,

where ~Sm are the SU(2) generators of the spin s = 1/2 acting in them-th site

and ~SN+1 ≡ ~S1. It turns out [2,33] that this simple model admits nontrivial

generalizations for an arbitrary complex value of the spin s. In the latter

case, the spin operators ~Sm are the generators of an infinite-dimensional

representation of SL(2,C) in the principal series. Remarkably enough, in the

special case of the SL(2,C) spin s = 0, the Hamiltonian of such a completely

integrable non-compact XXX Heisenberg magnet becomes identical to the

QCD Hamiltonian (10), describing the interaction between N reggeons in

the multi-color limit.

To explain this correspondence let us consider the one-dimensional lattice

with periodic boundary conditions and with the number of sites, N , equal to

the number of reggeons. Each site is parameterized by the two-dimensional

vector ~zm = (zm, z̄m) with zm and z̄m being holomorphic and antiholomor-

phic coordinates, respectively, and m = 1, .., N . In addition, one assigns to

each site the spin operators S±,0
k and S̄±,0

k , which are the six generators of

the principal series of the SL(2,C) group. They are realized on the quantum

space of the model as the differential operators

S0
k = zk∂zk

+ s , S−
k = −∂zk

, S+
k = z2

k∂zk
+ 2szk . (14)

The operators S̄±,0
k are given by similar expressions with zk, s replaced by z̄k,
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s̄ = 1 − s∗, respectively. The pair of complex parameters (s, s̄) specifies the

SL(2,C) representation. The principal series of SL(2,C) is parameterized

by an integer ns and real number νs with s = (1+ns)/2+ iνs and s̄ = 1−s∗.
To match the reggeon Hamiltonian (6) the spins have to be equal to s = 0

and s̄ = 1. In this representation, the BFKL kernel defining the interaction

between two reggeons describes the interaction between the nearest spins.

The Hamiltonian of the exactly solvable non-compact SL(2,C) Heisenberg

magnet of spin (s, s̄) is defined as [2, 33]

H
(s)
N =

N∑

m=1

Hm,m+1 , Hm,m+1 = −i d
du

lnRm,m+1(u, u)

∣
∣
∣
∣
u=0

(15)

where the operator Rm,m+1, the so-called fundamental R-matrix for the

SL(2,C) group, satisfies the Yang-Baxter equation and is given by [33]

R12(u, ū) =
Γ(iū)Γ(1 + iū)

Γ(−iu)Γ(1 − iu)
× Γ(1 − J̄12 − iū) Γ(J̄12 − iū)

Γ(1 − J12 + iu) Γ(J12 + iu)
, (16)

and similarly for general m, where Jm,m+1 is defined by

Jm,m+1(Jm,m+1 − 1) = (S(m) + S(m+1))2 (17)

with S
(N+1)
α = S

(1)
α , and J̄m,m+1 is defined in the same way. The operator

R12(u, ū) acts on the tensor product V ⊗ V with V ≡ V (s,s̄) being the

representation space of the principal series of the SL(2,C).

Substituting (16) into (15), we verify that the Hamiltonian of the non-

compact Heisenberg magnet for the SL(2,C) spin s = 0 and s̄ = 1 coincides

with the Hamiltonian of reggeon interaction (11). This leads to the following

identity between the two Hamiltonians

HN ≡ αsNc

4π
H

(s=0)
N + O(1/N 2

c ) . (18)

Thus, the problem of finding the spectrum of the N reggeon states in multi-

color QCD is reduced to solving the Schrödinger equation for a peculiar

completely integrable model – the non-compact Heisenberg magnet with

spin operators being the generators for spin s = 0 of the principal series of

SL(2,C). This model has a number of remarkable properties, which make it

different from conventional Heisenberg spin magnets studied so far. Firstly,

the SL(2,C) representation of the principal series does not have a highest

weight and, as a consequence, the Algebraic Bethe Ansatz is not applicable

to the construction of the eigenstates of the model. Secondly, despite the

fact that the Hamiltonian (10) can be split into the sum of holomorphic

and antiholomorphic mutually Hamiltonians acting on z and z̄ coordinates
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respectively, the two sectors are not independent. The interaction between

two sectors occurs through the condition for the wave function to be a single

valued function on the ~z = (z, z̄) plane. This requirement plays a crucial

role in establishing the quantization conditions on the integrals of motion

and in finding the energy spectrum of the model [20].

3. Finite gap solutions and their quantization

To get some insight into the properties of the Schrödinger equation (6), it is

convenient to consider a classical analog of the non-compact Heisenberg spin

magnet. As was shown in [11, 12], the corresponding classical Hamiltonian

model naturally appears in the WKB solutions of the Schrödinger equation

(6). From the point of view of classical dynamics, the system describes two

copies of one-dimensional spin chains “living” on the complex z and z̄ lines.

Each of these spin chains can be analyzed separately and, for simplicity, we

shall concentrate in this section on the holomorphic system.

3.1. Classical dynamics

Following the Quantum Inverse Scattering Method, the classical homoge-

neous spin s = 0 chain of length N is defined in the holomorphic sector by

the 2 × 2 Lax matrices

Lk(x) = x · 1 +

3∑

a=1

Sa
k · σa =

(
x− izkpk ipk

−iz2
kpk x+ izkpk

)

(19)

where σa are the Pauli matrices and x is the spectral parameter. Here, Sa
i

stand for classical spins. They are obtained from the spin operators in the

holomorphic sector (14) by substituting the derivatives with respect to z

coordinates by the corresponding classical momenta i∂zk
→ pk

qk

∣
∣
∣
∣
classical

=
∑

1≤j1<j2<...<jk≤N

zj1j2 ...zjk−1,jk
zjk,j1pj1 ...pjk−1

pjk
(20)

In this way, one can define Poisson brackets on the phase space of the model

{zk, pj} = δjk, (21)

and verify that the Poisson brackets of the dynamical variables Sa, a = 1, 2, 3

(taking values in the algebra of functions) look like

{Sa
k , S

b
j} = −iεabcS

c
k δjk , (22)
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so that {Sa} plays the role of angular momentum (“classical spin”) giving

the name “spin-chains” to the whole class of systems. The algebra (22) has

an obvious Casimir function S2 =
∑3

a=1 S
a
j S

a
j , which does not depend on

the number of the site, j = 1, ..., N for the homogeneous spin chain. In a

similar manner, one can define the classical analogs of the operators qk and

the Hamiltonian HN .

The equations of motion of the classical spin magnet defined in this way

are

∂zn
∂t

= {zn,HN} =
∂HN

∂pn
,

∂pn

∂t
= {pn,HN} = −∂HN

∂zn
. (23)

They possess a set of N − 1 conserved charges qn

∂tqn = {qn,HN} = 0 . (24)

with n = 2, ..., N and their solutions define the reggeon trajectories zk =

zk(t) subject to the periodicity condition zk+N (t) = zk(t) and pk+N (t) =

pk(t).

To demonstrate complete integrability of the evolution equations, one

observes that the system (23) is equivalent to the matrix Lax pair relation

∂tLk(x) = {Lk(x),HN} = Ak+1(x)Lk(x) − Lk(x)Ak(x) , (25)

where Ak(x) is a 2×2 matrix depending on the momenta and the coordinates

of the particles. Let us introduce the Baker–Akhiezer function Ψk(x; t) as a

solution of the following system of matrix relations

Lk(x)Ψk(x, t) = Ψk+1(x, t) , ∂tΨk(x, t) = Ak(x)Ψk(x, t) . (26)

The two-component Baker–Akhiezer function defined in this way depends

on the site number k. The Lax operator Lk(x) shifts it into the neighboring

site. One can introduce the monodromy operator producing the shift of Ψk

along the whole chain as

Ψk+N(x; t) = TN (x)Ψk(x; t) , TN (x) ≡ LN (x) . . . L1(x) (27)

The periodic boundary conditions on the solutions to (23) can be easily

formulated in terms of the Baker–Akhiezer function as

Ψk+N(x; t) = wΨk(x; t) (28)

where w is the Bloch–Floquet factor. According to (27) and (28), w is the

eigenvalue of the monodromy operator TN (x), and therefore it satisfies the
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characteristic equation

det(TN (x) − w · 1) = 0 (29)

From Eqs. (25) and (27), the time dependence of the monodromy operator

is given by ∂tTN (x) = A1(x)TN (x) − TN (x)A1(x), and, as a consequence,

its eigenvalues w are conserved quantities generating a complete set of inte-

grals of motion. Evaluating the l.h.s. of (29), one obtains the spectral curve

equation

w2 − w · TrTN (x) + detT (x) = 0 . (30)

Using the definitions (26) and (19) one gets

tN (u) ≡ TrTN (x) = 2xN + q2x
N−2 + ...+ qN−1x+ qN (31)

with qk being the integrals of motion, Eq. (20), and

det T (x) =
N∏

k=1

detLk(x) = x2N . (32)

Introducing the complex function y(x) = w−x2N/w one obtains the equation

of the spectral curve in the form

ΓN : y2 = t2N (x)−4x2N = (4xN +q2x
N−2 + ...+qN )(q2x

N−2 + ...+qN ) .

(33)

For any complex x in general position the equation (30) has two solutions

for w, or equivalently y(x) in (33).

Under appropriate boundary conditions on Ψk(x) these solutions define

two branches of the Baker–Akhiezer function, Ψ±
k (x). Then, being a double-

valued function on the complex x-plane, Ψk(x) becomes a single-valued func-

tion on the Riemann surface corresponding to the complex curve ΓN . This

surface is constructed by gluing together two copies of the complex x-plane

along the cuts [e2, e3], ..., [e2N−2, e1] running between the branching points

ej of the curve (33). The latter are defined as simple roots of the equation

t2N (ej) = 4e2N
j , j = 1, ..., 2N − 2 (34)

and their position on the complex plane depends on the values of the integrals

of motion q2, q3, ..., qN . In general, the Riemann surface defined in this way

has genus g = N − 2 which depends on the number of reggeons, N . For

instance, it is a sphere at N = 2 and a torus at N = 3.

Applying the standard methods of the finite-gap theory, it becomes pos-

sible to construct the explicit expression for the Baker–Akhiezer function in
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terms of theta-functions defined on the Riemann surface (33) and, finally,

obtain the solutions to the classical equations of motion (23). The explicit

expressions can be found in [12]. So far we have restricted our consideration

to the classical dynamics in the z sector. Obviously, similar relations hold in

the z̄ sector. Since the integrals of motion, qk and q̄k, and the Hamiltonians

in two sectors, HN and H̄N , are conjugate to each other, the solutions of the

classical equations of motion in the two sectors can be obtained one from

another.

Combining together the classical motion along the z and z̄ directions, we

find that the resulting expressions describe a finite-gap soliton wave prop-

agating in the system of N particles located on the two-dimensional plane.

In terms of the spectral curve (33), the same classical dynamics corresponds

to the motion of particles on the Riemann surface (33). The motion on the

Riemann surface is not confined to the kinematically allowed bands corre-

sponding to the α-cycles and the classical trajectories wrap along both the

α- and β-cycles. This is one manifestation of the fact that we are dealing

with a two-dimensional system. As we see below, it will play an important

rôle in our analysis.

3.2. Quantum case

Let us now consider the quantum evolution of the system with the Hamilto-

nian defined in (15). As was explained in section 2.1, the eigenstates of the

non-compact SL(2,C) Heisenberg chain of length N and spin (s = 0, s̄ = 1)

play the role of the wave functions of the colorless compound states of N

reggeized gluons. In addition, the ground state of the system controls the

high-energy asymptotics of the scattering amplitudes, Eq. (5).

Due to the complete integrability of the system, the N -reggeon states

have to diagonalize simultaneously all the integrals of motion qk and q̄k with

k = 2, ..., N . Their corresponding eigenvalues provide the set of quantum

numbers of the N -reggeon states, (q, q̄). In particular, the “lowest” integrals

of motion, q2 and q̄2, coincide with the quadratic Casimir operators for the

total SL(2,C) spin of the system and their eigenvalues are related to the

conformal SL(2,C) spin of the N -reggeon state by

q2 = −h(h− 1) , q̄2 = −h̄(h̄− 1) , q̄2 = q∗2 , (35)

where all possible values of h and h̄ = 1−h∗ can be parameterized by integer

n and real ν

h =
1 + n

2
+ iν , n = Z , ν = R . (36)
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As for the remaining charges, q3, ..., qN and q̄k = q∗k, their possible values

are also quantized. The explicit form of the corresponding quantization

conditions is more complicated and was obtained in [20].

According to (13), the integrals of motion qk are given by differential

operators of order k (with k = 2, ..., N) acting on the holomorphic and an-

tiholomorphic reggeon coordinates. Therefore, the spectral problem for q2,

..., qN leads to a complicated system of coupled differential equations on the

wave functions of the N -reggeon states Ψq,q̄(~z1, ..., ~zN ). The solution to this

system can be found by applying the method of separated variables devel-

oped by Sklyanin [28] who showed that there exists a unitary transformation

U~p,~x(~z)

U~p,~x1,...,~xN−1
(~z1, ..., ~zN ) = 〈~z1, ..., ~zN |~p, ~x1, ..., ~xN−1〉 , (37)

that allows us to transform the wave function from the original ~z representa-

tion defined by the N coordinates of reggeons on the two-dimensional plane

to the representation of the separated coordinates ~x = (~x1, ..., ~xN−1) and ~p

being the total momentum of the system. The eigenstate of the Hamiltonian

in this representation is given by

Φ{q,q̄}(~x1, ..., ~xN−1)δ(~p− ~p ′) = 〈Ψ~p,{q,q̄}|~p ′, ~x1, ..., ~xN−1〉

=

∫

d2z U~p ′,~x1,...,~xN−1
(~z)Ψ~p,{q,q̄}(~z) , (38)

where d2z = d2z1...d
2zN . The remarkable feature of the unitary transforma-

tion U~p,~x(~z) is that it transforms the wave function Ψ~p,{q,q̄}(~z) satisfying the

original Schrödinger equation (6) into the wave function in the separated co-

ordinates, Φ{q,q̄}(~x), which is factorized into a product of Q-functions each

depending on a single separated coordinate ~xk and satisfying the Baxter

equation (see Eqs. (41) and (42) below)

Φ{q,q̄}(~x1, ..., ~xN−1) = Q(x1, x̄1) . . . Q(xN−1, x̄N−1) . (39)

Here, the notation was introduced for the holomorphic and antiholomorphic

components of the separated coordinates ~xk = (xk, x̄k). The explicit con-

struction of the transformation to the separated coordinates, Eq. (38), can

be found in [33]. Requiring U~p ′,~x1,...,~xN−1
(~z) to be a single-valued function on

the ~z plane, one finds that the possible values of the separated coordinates

~xk have the following form

xk = νk − ink

2
, x̄k = νk +

ink

2
(40)

with νk real and nk integer.
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The functions Q(x, x̄) entering (39) have to satisfy the functional Baxter

equations in the x sector

xNQ(x+ i, x̄) + xNQ(x− i, x̄) = tN (x)Q(x, x̄) (41)

and similar relation holds in the x̄ sector

(x̄+ i)NQ(x+ i, x̄) + (x̄− i)NQ(x− i, x̄) = t̄N (x̄)Q(x, x̄) . (42)

Here, tN (x) is a polynomial of degree N in x with the coefficients given

by the eigenvalues of the integrals of motion, Eq. (31). t̄N (x̄) is given by

similar expression with qk replaced by q̄k = q∗k. To make the correspondence

with classical mechanics, one introduces the shift operator on the space of

functions Q(x, x̄)

e±pQ(x, x̄) = Q(x± i, x̄) , e±p̄Q(x, x̄) = Q(x, x̄± i) . (43)

Then, the Baxter equations can be rewritten as
[
xN
(
ep +e−p

)
− tN (x)

]
Q(x, x̄) =

[
x̄N
(
ep̄ +e−p̄

)
− t̄N (x̄)

]
x̄NQ(x, x̄) = 0 .

(44)

Based on the Baxter equations, it is now possible to establish the correspon-

dence between the quantum and the classical systems. Let us forget for a

moment that p and x are operators in (44) and treat them as c-numbers. If

one identifies the Bloch–Floquet factor in (30) as w(x) = xN exp(p), then it

is easy to see that the l.h.s. of (44) coincides with the equation of the spectral

curve (30). Going back from the classical to quantum system, one concludes

that the Baxter equation (44) arises as a result of the “quantization” of the

spectral curve (30) on the space of the function Q(x, x̄). In other words, the

constraint imposed by the spectral curve on the phase space of the classi-

cal system becomes an operator equation on the wave function of the same

system after quantization. Thus the Riemann surface naturally enters into

the quantum spectral problem. The important difference with respect to the

classical case is that now the integrals of motion defining the moduli of the

complex structure on (30) must be quantized.

The Baxter equations do not fix the function Q(x, x̄) uniquely as their

solutions are defined up to multiplication by an arbitrary periodic function

f(x+i, x̄) = f(x, x̄+i) = f(x, x̄). To avoid this ambiguity one has to impose

additional conditions on the solutions to (41) and (42). As was demonstrated

in [20,33], these conditions follow from the explicit expression for the kernel

of the unitary transformation (38) and they can be formulated as the re-

quirement for Q(x, x̄) to have correct analytical properties and asymptotic

behavior at infinity. Namely, choosing x = λ − in/2 and x̄ = λ + in/2 in
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accordance with (40), and extending the values of λ from the real axis to

the complex plane, one requires that Qq,q̄(λ − in/2, λ + in/2) should be a

meromorphic function of λ for fixed integer n with an infinite set of poles of

order not higher than N situated at the points

{x±m = ∓im , x̄±m̄ = ∓i(m̄− 1)} , m, m̄ = 1, 2, ... (45)

with m and m̄ being positive integer. In addition, the asymptotic behavior

of the solutions to the Baxter equation at infinity is given by

Q(λ− in/2, λ + in/2)
λ→∞∼ eiΘ λh+h̄−N + e−iΘ λ1−h+1−h̄−N (46)

with the phase Θ = Θh(q, q̄) depending on the quantum numbers of the

state and the total SL(2,C) spins h and h̄ = 1 − h∗ defined in (35). Up to

an overall normalization, the above two conditions fix uniquely the solutions

to the Baxter equation, and, in addition, they allow us to determine the

spectrum of quantized integrals of motion qk and q̄k.

Using the solution to the Baxter equations, we construct the wave func-

tion of the N -reggeon states in the separated coordinates (39). To find the

corresponding value of the energy one has to apply the resulting expression

for the wave function to the Hamiltonian HN transformed to the separated

coordinates. This leads to the following remarkably simple expression for

the energy of the N -reggeon state

HN = i
d

dx
ln
(
x2N [Q(x− i, x)]∗Q(x+ i, x)

)
∣
∣
∣
∣
x=0

. (47)

The relations (41), (42), (45), (46) and (47) provide the basis for calculating

the spectrum of the N -reggeon states.

The Baxter equations can be solved exactly at N = 2 and their solution

is expressed in terms of the 3F2-hypergeometric series. Going though the

calculation of the energy we arrive at

E2(h) =
αsNc

π
ε2 = −2

αsNc

π
Re

[

ψ

(
1 + |n|

2
+ iν

)

− ψ(1)

]

. (48)

This relation coincides with the well-known expression [36] for the energy of

the N = 2 reggeon compound state. The maximum value of the energy

Emax
2 =

αsNc

π
4 ln 2 (49)

defines the intercept of the BFKL pomeron. For N = 3 the solution to the

Schrödinger equation was first found in [32] by direct diagonalization of the

integral of motion q3 in the original ~z coordinates. Recently, the same result
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was obtained within the Baxter equation approach in [20, 34]. The ground

state of the N = 3 system defines the odderon state in QCD [31] and its

energy is given by

Emax
3 =

αsNc

π
ε3 = −αsNc

π
· 0.247170... (50)

Contrary to (49), the energy of the N = 3 state is negative. This implies

that its contribution to the scattering amplitude (5) decreases at high-energy

as s→ ∞, or x→ 0. Therefore, it is of great interest to find the solution of

the Baxter equations, Eqs. (41) and (42), for higher N ≥ 4 reggeon states

and calculate the spectrum of the energies εN governing the high-energy

asymptotics in (5). This problem has been recently solved in [20, 33] and

the results for εN are shown in the Figure 2. The detailed description of the

spectrum can be found in [20].
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Figure 2. The dependence of the energy of the N-reggeon states, Emax
N = αsNcεN /π, on the

number of particles N . The exact values of the energy are denoted by crosses. The upper and

the lower dashed curves stand for the functions 1.8402/(N − 1.3143) and −2.0594/(N − 1.0877),

respectively.

It was found in [20] that the N -reggeon states have different properties

for even and odd N . For odd N the states with the charge parity C = 1

and C = −1 belong to the pomeron and the odderon sector, respectively.

For even N , the reggeon states have charge parity C = 1. For odd N the

ground state energy, εN , is negative and it increases with N approaching the

value ε2∞+1 = 0 from below. For even N , the ground state energy is positive

and it decreases with N approaching the same value ε2∞ = 0 from above.

We recall that for εN > 0 (εN < 0) the contribution of the N -reggeon state
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to the cross-section (5) increases (decreases) at high energy s. Thus, the

contribution of the N -reggeon states to the cross-section ceases to depend

on the energy s as N → ∞. It is interesting to notice that this result was

anticipated a long time ago within the bootstrap approach [35].

As we have seen in the previous section, the classical analogs of the N -

reggeon states are described by the finite-gap soliton waves propagating in

the system of N particles on the plane. The solitons are uniquely specified

by the Riemann surface (33) whose moduli are defined by the conserved

charges qk. The solution to the Schrödinger equation for the N -reggeon

states leads to the quantization of these charges. This allows us to interpret

the whole quantization procedure described in this section as quantization

of the moduli space of the Riemann surface (33).

4. Universality class of the Regge limit

In the previous section the Riemann surfaces appeared within the context

of high-energy QCD as auxiliary objects which were introduced to solve the

equations of motion of the classical system of N reggeized gluons and the

Baxter equations for the corresponding quantum system. In this section we

shall argue that these surfaces have a definite physical meaning. Actually

the situation is parallel to the SUSY YM case where the auxiliary Riemann

surface later on was identified as a part of the six-dimensional world volume

of the M5 brane. The remaining four dimensions provide the world volume

of the theory under consideration.

Here we shall develop a similar brane picture for the Regge limit of multi-

color QCD. To do this we explore the analogy with the N=2 SUSY YM

where the stringy/brane picture naturally emerges from the hidden integra-

bility governing the low-energy effective actions. We shall argue that in the

Regge limit the Riemann surface which has been considered earlier plays

a similar role providing the world volume to the M2 brane describing the

scattering process. In this way this Riemann surface fixes the universality

class of the multi-color QCD in the Regge limit.

4.1. Riemann surfaces and QCD versus SUSY YM

Let us recall the main features of the low-energy effective action in the N=2

SUSY YM theories relevant for our purposes [7, 37]. The key point is that

the theory has the nontrivial vacuum manifold since the potential involves

the term

V (φ) = Tr [φ, φ+]2 . (51)
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Here φ is the complex scalar field which generically develops the vacuum

expectation value

φ = diag(φ1, ...., φNc) , (52)

with Trφ = 0. The gauge invariant order parameters uk = 〈0|Trφk|0〉
parameterize the Coulomb branch of the vacuum manifold. They define a

scale in the theory with respect to which one can discuss the issue of a low

energy effective action. This action takes into account one-loop perturbative

corrections as well as the whole instanton series and it is governed for SU(Nc)

gauge group by a Riemann surface of genus Nc − 1. The same Riemann

surface appears as the spectral curve of a classical integrable many-body

system (see [38] for a review) which turns out to be a Calogero type systems

or a spin chain. The period matrix τij(uk) of this Riemann surface yields

the effective coupling constants of the gauge theory.

For example, in the SU(2) case one has

τeff(u2) = i
4π

g2(u2)
+
θ(u2)

2π
(53)

where g2(u2) and θ(u2) are the effective coupling and θ-term respectively.

The spectrum of the BPS states in this theory is given by

Mnm = |na(u2) +maD(u2)| (54)

where a and aD are the periods of some meromorphic differential λ
SW

on the

spectral curve Σ

a =

∮

A
λ

SW
, aD =

∮

B
λ

SW
, (55)

which in this case is a torus

ΣSU(2) : y2 = (x2 − Λ4)(x− u2) . (56)

The prepotential F defining the low energy effective action is determined by

the relations

τeff(u2) =
∂aD

∂a
=
∂2F
∂2a

, aD =
∂F
∂a

(57)

with τeff(u2) given by (53).

The connection with integrable system emerges when one studies the

dependence of the prepotential on the fundamental scale Λ

∂F(u2)

∂ lnΛ
= βu2 ≡ βH , (58)
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where β is the one-loop beta-function of the gauge theory. This equation has

another interpretation as evolution equation of an integrable system where

H coincides with the Hamiltonian of this system and lnΛ is the evolution

time variable. The integrable system provides the natural explanation for the

appearance of the meromorphic differential λSW, which turns out to be the

action differential in the separated variables λ
SW

= p dx. Let us emphasize

that for SUSY YM case the classical integrable system is relevant and the

meaning of the quantum system and the corresponding spectrum for SUSY

YM remains an open question. It should involve the quantization of the

vacuum moduli space since the Hamiltonian in the dynamical system is

nothing but H = u2 = 〈TrΦ2〉. Simultaneously, this parameter serves as the

coordinate on the moduli space of the complex structures of the Riemann

surfaces which means that the quantization of the integrable system is related

with the quantization of the effective d = 2 gravity.

The Riemann surface Σ becomes degenerate at some points on the

Coulomb branch of the moduli space. After the soft breaking of N=2 SUSY

down to N=1 SUSY these points correspond to the vacuum states of the

N=1 gauge theory. Some massless states condense at these points leading

to the formation of a mass gap and to confinement. In the SU(2) case,

Eq. (56), the N=1 vacua correspond to the points u2 = ±Λ2 at which the

monopoles or dyons become massless and condense.

Let us now consider a particular theory, namely the superconformal N=2

SUSY YM with Nf = 2Nc massless fundamental hypermultiplets [37,39,40].

The corresponding integrable system is described by the spectral curve ΣNc

y2 = P 2
Nc

(x) − 4x2Nc(1 − ρ2(τcl)) , (59)

where ρ2(τcl) is some function of a coupling constant of the theory (see

Eq. (65) below) and the polynomial PNc depends on the coordinates on the

moduli space ~u = (u2, ..., uNc)

PNc(x) =

Nc∑

k=0

qk(~u)x
Nc−k = 2xNc + q2 x

Nc−2 + ...+ qNc , (60)

where q0 = 2, q1 = 0 and the other qk are some known functions of ~u.

Their explicit form is not important for our purposes. The Seiberg–Witten

meromorphic differential on the curve (59) is given by

λSW = p dx = ln(ω/xNc) dx , (61)

where ω is defined through y = ω − x2Nc/ω.



September 11, 2004 12:22 WSPC/Trim Size: 9.75in x 6.5in for Proceedings gkk

High energy QCD: stringy picture from hidden integrability 2311

From the point of view of integrable models the spectral curve (59) cor-

responds to a classical XXX Heisenberg spin chain of length Nc with the

spin zero at all sites (due to q1 = 0) and parameter ρ related to the external

magnetic field, or equivalently, to the twisted boundary conditions [10].

Let us compare the spectral curve (59) for the superconformal N=2 SUSY

YM with Nf = 2Nc with the spectral curve (33) for N -reggeon compound

states in multi-color QCD. It is amusing to observe that these two curves

coincide if we make the following identifications

• The number of reggeons N = Nc;

• The integrals of motion of the multi-reggeon system are identified

as the above mentioned functions qk(~u) on the moduli space of the

superconformal theory;

• The coupling constant of the gauge theory should be such that

ρ(τcl) = 0.

Under these three conditions both theories fall into the same universality

class.

Let us clarify the meaning of the last condition. Since the superconformal

theory has a vanishing β-function one can assign a definite value to the bare

coupling constant τcl. The function ρ(τ) entering (59) at τ = τcl is given

by some combination of the modular forms [18,19] which can be determined

from the duality properties of the superconformal SU(Nc) gauge theory. It

turns out that the duality groups are different for odd and even Nc. The

group for even Nc is generated by

T : τ → τ + 1, S : τ → −1/τ . (62)

The group for odd Nc has the same T -transformation and

S : τ → − 1

(2 cos(π/2Nc))2τ
(63)

subject to the constraints

S2 = 1 (ST−1)2Nc = 1 (64)

The explicit formulae for ρ(τ) can be expressed in terms of weight four

automorphic forms [19] for the duality group

ρ(τ) =
G4(τ) +H4(τ)

G4(τ) −H4(τ)
, (65)
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where G4(τ) is the Poincare series

G4(τ) =
∑

c,d

(cτ + d)−4 , H4(τ) =
1

α2τ4
G4

(

− 1

ατ

)

, (66)

with α = 1 for even Nc and α = 4 cos2(π/(2Nc)) for odd Nc. Here the sum-

mation goes over all pairs of integers (c, d) which occur in modular transfor-

mations τ → (aτ + b)/(cτ + d) generated by T and STS−1. Finally, using

(65) one finds that the condition ρ(τcl) = 0 is satisfied for

τcl =
1

2
+
i

2
tan

π

2Nc
. (67)

The moduli of this superconformal theory are defined by the vector of

scalar condensates ~u and the bare coupling constant τcl. The spectral curve

(59) becomes degenerate when ρ→ ∞ or when the discriminant of the curve

is zero. Let us consider simplest nontrivial case Nc = 3 which on the QCD

side corresponds to the odderon (N = 3) state. In this case the discriminant

is given by

(1 − f)f 3

[

f −
(

1 +
2q32
27q2

3

)2
]

q103 = 0 (68)

where f = 1 − ρ2. The curve is degenerate at four values of ρ2 among

which three – ρ2 = ∞, 0 and 1 – are universal and the last one depends

on the moduli q2 and q3 on the Coulomb branch. The first one is a strong

coupling point corresponding to τcl = 0. The second one is the so-called

strong coupling orbifold point in which τcl is given by (67). It is this point

on the moduli space which corresponds to the Regge limit of multi-color

QCD. Finally, the third one is a weak coupling point τcl → ∞. For Nc = 3

the explicit expression for the function ρ(τ), Eq. (65), is given in terms of

the Dedekind η function by [19]

ρ(τ) =
f+(τ)

f−(τ)
, f±(τ) =

(
η3(τ)

η(3τ)

)3

±
(

3
η3(3τ)

η(τ)

)3

. (69)

The strong coupling orbifold point ρ(τcl) = 0 describing the odderon state

in QCD occurs at

τcl =
1

2
+

i

2
√

3
. (70)

Let us note this point becomes the Argyres–Douglas point when the moduli

dependent singularity of the spectral curve ρ2(τ) = 1 −
[
1 + 2q3

2/(27q
2
3)
]2
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collides with the strong coupling orbifold point (70). This happens when

either q2/q3 = 0, or

q3 = ±(−q2)3/2

√
27

. (71)

Going over to the general case of the SU(Nc) gauge theory one finds

[18, 19] that independently of ~u, the spectral curve (59) has three universal

singularities at ρ2(τcl) = ∞, 0 and 1 which have the same interpretation as

in the case Nc = 3.

Finally we would like to note the following intriguing fact. In the case

of Nc = 2 which corresponds on the QCD side to the BFKL pomeron state,

the effective coupling constant is given in the weak coupling regime by the

expression

τeff = τcl + i
4 ln 2

π
+
∑

k

ck · e2iπkτcl , (72)

where the second term is due to a finite one-loop correction [41] and the

rest is the sum of instanton contributions. It is amusing that this one-loop

correction to the coupling constant

1

g2
eff

=
1

g2
cl

[

1 +
g2
cl

4π2
4 ln 2

]

+ ... (73)

coincides with the expression for the intercept of the BFKL pomeron (49)

after one identifies the bare coupling constant in the superconformal theory

with the ’t Hooft coupling constant in QCD.

It would be very interesting to find a proper QCD interpretation of the

nonzero values of ρ in (59). From the point of view of spin chains they corre-

spond to an external magnetic field, or equivalently to the twisted boundary

conditions [10]. The natural conjecture for the QCD equivalent to occur is to

consider compound states in multi-color QCD in which one of the reggeized

gluons is replaced by a pair of reggeized quark and antiquark [42]. A similar

picture occurs in the evolution equations for three-quark baryonic light-cone

operators which will be discussed in section 6. In that case we shall deal with

a real SL(2,R) spin chain whose spectrum contains special eigenstates (with

q = 0 in Eq. (109) below) for which a pair of quarks effectively behaves as

one spin site [4]. For generic values of ρ we can have a genus one curve even

for a two particle system and the whole power of the duality group can be

used. For example, the behavior of the system near the strong coupling orb-

ifold point ρ = 0 can be related to the dual system near the weak coupling
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point ρ = 1. Certainly this possibility of having ρ 6= 0 in QCD deserves

further investigation.

4.2. Brane picture for the Regge limit

Let us turn now to a stringy/brane picture for the Regge limit in multi-color

QCD.

To warm up we would like to recall the brane description of the low-

energy dynamics of the N = 2 SUSY YM. In the IIA framework the pure

gauge theory is defined on the world volume of Nc D4 branes with the

coordinates (x0, x1, x2, x3, x6) stretched between two NS5 branes with the

coordinates (x0, x1, x2, x3, x4, x5) and displaced along the coordinate x6 by

an amount inversely proportional to the coupling constant, δx6 = 1/g2 [23].

The coordinates at which the D4 branes intersect with the (x4, x5) complex

plane define the vacuum expectation value of the scalar fields. This picture

agrees perfectly with the RG behavior of the coupling constant and yields the

correct beta function in the gauge theory. The Riemann surface Σ discussed

above describes the vacuum state of the theory and the spectrum of the stable

BPS states. The lifting to the M theory picture leads to the emergence of a

single M5 brane with the world volume R4 × Σ.

In our case, we also need to incorporate into this picture branes corre-

sponding to fundamental matter with Nf = 2Nc. There are two ways to

do this: either using semi-infinite D4 branes lifted into the M5 brane in the

M theory, or using D6 branes which induce the nontrivial KK monopole

background for the M2 brane wrapped on the Riemann surface [23]. As was

shown in [10] in the latter case the resulting brane picture remains consistent

with the integrable spin chain dynamics and we shall stick to this case.

The explicit metric of the KK background in the M theory involving

(x4, x5, x6, x10) coordinates has the multi-Taub-NUT form

ds2 =
V

4
d~r2 +

V −1

4
(dτ + ~Ad~r)2 (74)

where ~r = (x4, x5, x6), τ = x10 and ~A is the Dirac monopole potential. The

magnetic charge comes from the nontrivial twisting of the S1 bundle over

R3. The function V behaves as

V = 1 +

i=Nf∑

i=1

1

|~r − ~ri|
(75)

where ~ri = (xi
4, x

i
5, x

i
6) are the positions of six-branes. For the superconfor-

mal case one must have xi
4 = xi

5 = 0 and the positions of the six-branes in
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the x6 direction are irrelevant.

Finally let us recall the brane interpretation of the BPS spectrum in

N = 2 SUSY YM. One way to realize these states is to consider the self-

dual noncritical strings (which come from M2 branes ending on the surface)

wrapped around the Riemann surface [21]. Since one has to keep some

amount of SUSY the wrapping of the string should be along geodesics in

some metric. This is equivalent to looking for the geodesics on the ω plane

(in IIB approach), where ω is the same as in Eq.(30) and is related to y =

exp(−x6 + ix5) and x = x4 + ix5 as y = ω − x2Nc/ω. The metric on the ω

plane is defined in terms of the Seiberg–Witten differential

ds2 = λ
SW
λ̄

SW
(76)

where λ̄SW = p̄ dx̄ = (λSW)∗. Closed geodesics in the ω-plane can be immedi-

ately lifted to closed curves on the Riemann surface. Hence the existence of

the BPS state is related to the existence of closed geodesics in the (n,m) co-

homology class. Another important realization of BPS states arises from the

IIB/F theory picture. The (n,m) BPS states come from the (n,m) strings

which are stretched between the origin (which is generically split nonper-

turbatively into two strong coupling singularities) and the position of the

D3 brane we are living on [22]. Now the nontrivial metric on the Coulomb

branch of the moduli space is involved. It has the form of the cosmic string

metric with a conical singularity which can be brought into the flat form

on the covering space. In this picture SL(2,Z) invariance of the spectrum

follows from the invariance of the IIB string theory.

Let us turn now to our proposal for the brane realization of the Regge

limit. We shall explore the brane representations for the Nf = 2Nc theory

known in the IIA/M theory [23] and IIB/F theory [22]. However unlike the

SUSY case where the spectral curve is embedded in the internal “momen-

tum” space the spectral curve of the noncompact spin chain is placed in the

phase space involving both the impact parameter plane and the momenta.

We shall first consider the IIA/M type picture which is reminiscent of

the realization of SYM theory via two NS5 and Nc D4 branes. We suggest

that the coordinates involved in the “IIA” picture are the transverse impact

parameter coordinates x1, x2 and rapidity λ = ln(k+/k−). Transverse coor-

dinates are analogs of (x4, x5) coordinates in the SUSY case while rapidity

for substitutes the x6 coordinate.

Now let us make the next step and suggest that, as in the SUSY case,

the single brane is wrapped around the spectral curve of the XXX magnet

and the two “hadronic planes” together with N “reggeonic strings” are just
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different projections of the single M2 brane with world volume R× Σ. The

coordinates involved in these configurations are x1 + ix2 and y = e−(λ+ix10)

where x10 is the “M-theory” coordinate. More precisely y can be identified

with the Bloch–Floquet factor ω in the definition of the Baker–Akhiezer func-

tion (28). The correspondence between the “IIA” and “M-theory” pictures

is shown in Fig.3.

PSfrag replacements

εN

N

Figure 3. Spectral curve

Let us emphasize once again that the brane configuration for the Regge

limit, contrary to the SYM case, partially involves the coordinate space.

More precisely the geometry of Nf = 2Nc theory is determined by the pa-

rameter [23]

ξ = − 4λ+λ−
(λ+ − λ−)2

. (77)

Here λ+ and λ− are asymptotic positions of five-branes defined by the large

x behavior of the curve

ω ∝ λ±x
Nc . (78)

λ± can be found as roots of the equation

λ2
± + λ± +

1

4
(1 − ρ2) = 0 (79)

Since the Regge limit corresponds to the strong coupling orbifold point,

ρ = 0, the value of ξ is fixed as ξ = ∞. This corresponds to the branes

coinciding at infinity.

Finally, the M theory brane picture for the Regge limit involves an M5

brane corresponding to the vacuum state of the QCD. We cannot say how it

is placed precisely as the minimal surface in the internal seven dimensional
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space since the corresponding geometry is as yet unknown. The new ingredi-

ent – an M2 brane sharing the time direction with the M5 brane and wrap-

ping around the Riemann surface which is embedded into two-dimensional

complex “phase space” with the multi-Taub-NUT metric determined by KK

monopoles of magnetic charge 2N , which is double the number of reggeized

gluons participating in the scattering process.

5. Quantum spectrum and S-duality

S-duality is a powerful symmetry in the SUSY YM theory which allows us

to connect the weak and strong coupling regimes. The effective coupling in

this theory coincides with the modular parameter of the spectral curve of the

underlying classical integrable model. As a consequence, the S-duality trans-

formations in the gauge theory are translated into modular transformations

of the spectral curve describing the complexified integrable system. Formu-

lation of S-duality in the latter system naturally leads to the introduction

of the notion of the dual action [43].

S-duality is well understood only for classical integrable models. In the

case of multi-color QCD in the Regge limit the situation is more complicated

since the duality has to be formulated for a quantum integrable model. The

integrals of motion take quantized values and the coordinates on the moduli

space are not continuous any more. Therefore the question to be answered

is whether it is possible to formulate some duality transformations at the

quantum level.

To study this question let us propose WKB quantization conditions which

are consistent with the duality properties of the complexified dynamical

system whose classical trajectories are described by the Riemann surface.

We recall that the standard WKB quantization conditions involve the real

slices of the spectral curve
∮

Ai

p dx = 2π~(ni + 1/2) (80)

where ni are integers and the cycles Ai correspond to classically allowed

trajectories on the phase space of the system. In our case the coordinate

x is complex and an arbitrary point on the Riemann surface is classically

allowed. As a result the general classical motion involves both A- and B-

cycles on the Riemann surface. This leads to the following generalized WKB

quantization conditions (see also [20])

Re

∮

Ai

p dx = π~ni , Re

∮

Bi

p dx = π~mi , (81)
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where the “action” differential was defined in (61). Note that in the context

of SUSY YM this condition would correspond to nontrivial constraints on

the periods (55) and on the mass spectrum of the BPS particles (54). It is

clear that the WKB conditions (81) imply the duality Ai ↔ Bi and ni ↔ mi.

The conditions (81) are analogous to WKB quantization for a particle in

a multi-dimensional case. We have exactly this situation since we are deal-

ing with complexified phase space. For a particle in higher dimensions one

considers the representation of the wave function in terms of the multivalued

functions Ak and Sk on the ~x space

Ψ(~x) =
∑

k

Ak(~x) exp

(
i

~
Sk(~x)

)

. (82)

Here Ak(~x) and Sk(~x) are different branches of the multivalued functions

A(~x) and S(~x). To obtain the WKB quantization conditions one considers

the covering space on which A(~x) and S(~x) are single valued and requires

that the wave function Ψ(~x) should resume its original value after encircling

along all noncontractible cycles Ci on the covering manifold. This leads to
∮

Ci

~p · d~x+

∮

Ci

d lnA(~x) = 2π~ni . (83)

The second integral is equal to the sum of two terms related to the topological

invariants of the classical trajectory: the number of intersections of Ci with

the hypersurface of caustics and the number of intersections of Ci with the

hypersurface of turning points. In our case
∮

Ci
~p · d~x = 2Re

∮

Ci
p dx and

∮

Ci
d lnA(~x) is an even integer.

Let us consider the quantization conditions (81) in the case of the N = 3

system. The spectral curve (33) is a torus

y2 = (2x3 + q2x+ q3)
2 − 4x6 (84)

where q2 is given by (35) and (36) while q3 is the complex integral of motion

to be quantized. The quantization conditions (81) read (for ~ = 1)

Re a(q3) = πn, Re aD(q3) = πm (85)

where n and m are integer. These equations can be solved for large values

of q2
3/q

3
2 � 1, for which the expressions for the periods a(q3) and aD(q3) are

simplified considerably. The explicit evaluation of the integrals (55) in this

limit yields

a(q3) =
(2π)2q

1/3
3

Γ3(2/3)
, aD(q3) = a(q3)

(
1

2
+

i

2
√

3

)

. (86)
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Substituting these expressions into (85) one finds [20]

q
1/3
3 =

Γ3(2/3)

2π

(

`1
2

+ i

√
3

2
`2

)

. (87)

where `1 = n and `2 = n − 2m. The same quantization conditions can be

also written as

(`1 + 3`2) · a(q3) − 6`2 · aD(q3) = π(`21 + 3`22) . (88)

The WKB expressions (87) are in a good agreement with the exact expres-

sions for quantized q3 obtained from the solutions of the Baxter equations

in [20].

There is a simple relation between the modular parameter of the curve

and the periods a and aD

aD = τeff a . (89)

This follows from the fact that a and aD are the solutions to the Picard–Fuchs

equations which in the odderon (N = 3) case is a second order differential

equation. One can show that the Wronskian for this equation aa′D − aDa
′

vanishes and using τeff = a′D/a
′ one gets (89). Due to this fact half of the

quantization conditions can be formulated in terms τeff instead of aD.

Let us emphasize that the point on the moduli space corresponding to

the degeneracy of the torus for the odderon case does not appear in the

quantum spectrum. From the point of view of the gauge theory this means

that the appearance of massless states is forbidden.

In the general multi-reggeon case we have to consider the quantization

conditions (81) on the Riemann surface (33) of the genus (N − 2) which has

the same number of A- and B-cycles. In consequence the spectrum of the

integrals of motion q3, ..., qN is parameterized by two (N − 2)-component

vectors ~n and ~m. In the SUSY YM case these vectors define the electric

and magnetic charges of the BPS states. In the Regge case the physical

interpretation of ~n and ~m is much less evident. Let us first compare the

electric quantum numbers in the two cases. In the Regge case the quantum

number corresponds to rotation in the coordinate space around the ends of

the reggeons. This picture fits perfectly with the interpretation of the electric

charge in SUSY YM case. Indeed VEVs of the complex scalar take values on

the complex plane which is the counterpart of the impact parameter plane

and the rotation of the phase of the complex scalar is indeed the “electric

rotation”.
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To get some guess concerning the “magnetic” quantum numbers it is

instructive to check the geometrical picture behind them in the simplified

“IIA” picture. All states corresponding to the “electric” degrees of freedom

are related to fundamental strings encircling “reggeonic” tubes (see Fig.3)

and do not feel the hadronic planes. However the “magnetic” states, as is well

known from the SUSY YM case, are represented by the membrane stretched

between two strings and two hadronic planes. Therefore these states are

sensitive to hadronic quantum numbers. A more detailed interpretation of

the “magnetic” degrees of freedom in the Regge regime remains to be found.

Let us emphasize that due to the stringy realization of the above men-

tioned BPS spectrum we obtain a rather transparent picture of the WKB

quantization in stringy terms. Recall that, in SUSY YM the mass of a BPS

state Mn,m is given by the energy of the dyonic (n,m) string stretched be-

tween the point u2 corresponding to a given VEV of a scalar field and the

point u2 = 0 where the orientifold and all the D7 branes are placed. Hence,

the WKB quantization, at least in the odderon case, can be formulated as

the quantization of the energy of dyonic strings in the complex q3 plane and

the spectrum inherits its duality from the S-duality of the IIB string.

6. Stringy/brane picture and calculation of the anomalous

dimensions

In the previous sections we have demonstrated that integrability proper-

ties of the Schrödinger equation for the compound states of reggeized gluons

give rise to the stringy/brane picture for the Regge limit in multi-color QCD.

There is another limit in which QCD exhibit remarkable properties of in-

tegrability. This has to do with the scaling dependence of the structure

functions of deep inelastic scattering and hadronic light-cone wave functions

in QCD. In both cases, the problem can be studied using the Operator Prod-

uct Expansion and it can be reformulated as a problem of calculating the

anomalous dimensions of the composite operators of a definite twist. The

operators of the lowest twist have the following general form

O(2)
N,k(0) = (yD)kΦ1(0)(yD)N−kΦ2(0),

O(3)
N,k(0) = (yD)k1Φ1(0)(yD)k2Φ2(0)(yD)N−k1−k2Φ3(0), (90)

where k ≡ (k1, k2) denotes the set of integer indices ki, yµ is a light-cone

vector such that y2
µ = 0. Φk denotes elementary fields in the underlying

gauge theory and Dµ = ∂µ − iAµ is a covariant derivative. The operators of

a definite twist mix under renormalization with each other. In order to find
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their scaling dependence one has to diagonalize the corresponding matrix of

anomalous dimensions and construct linear combinations of operators, the

so-called conformal operators [44, 45]

Oconf
N,q (0) =

∑

k

Ck,q · ON,k(0) . (91)

A unique feature of these operators is that they have autonomous RG evo-

lution

Λ2 d

dΛ2
Oconf

N,q (0) = −γN,q · Oconf
N,q (0) . (92)

Here Λ2 is a UV cut-off and γN,q is the corresponding anomalous dimen-

sion depending on some set of quantum numbers q to be specified below.

It turns out that the problem of calculating the spectrum of the anoma-

lous dimensions γN,q to one-loop accuracy becomes equivalent to solving the

Schrödinger equation for the SL(2,R) Heisenberg spin magnet [3–6]. The

number of sites in the magnet is equal to the number of fields entering into

the operators under consideration.

To explain this correspondence it becomes convenient to introduce non-

local light-cone operators

F (z1, z2) = Φ1(z1y)Φ2(z2y) , F (z1, z2, z3) = Φ1(z1y)Φ2(z2y)Φ3(z3y) .

(93)

Here yµ is a light-like vector (y2
µ = 0) defining a certain direction on the light-

cone and the scalar variables zi serve as coordinates of the fields along this

direction. The fields Φi(ziy) are transformed under gauge transformations.

It is tacitly assumed that the gauge invariance of the nonlocal operators F (zi)

is restored by including Wilson lines between the fields in the appropriate

(fundamental or adjoint) representation. The conformal operators appear

in the OPE expansion of the nonlocal operators (93) for small z1 − z2 and

z2 − z3.

The field operators entering the definition of F (zi) are located on the

light-cone. This leads to the appearance of additional light-cone singulari-

ties. They modify the renormalization properties of the nonlocal light-cone

operators (93) and lead to nontrivial evolution equations which as we will

show below become related to integrable chain models. We note that there

is a relation between the conformal three-particle operators (91) and the

nonlocal operators (93)

Oconf
N,q (0) = ΨN,q(∂z1 , ∂z2 , ∂z3)F (z1, z2, z3)

∣
∣
∣
∣
zi=0

, (94)
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where ΨN,q(x1, x2, x3) is a homogeneous polynomial in xi of degree N

ΨN,q(x1, x2, x3) =
∑

k

Ck,q · xk1
1 x

k2
2 x

N−k1−k2
3 (95)

with the expansion coefficients Ck,q defined in (91). Similar relations hold

for the twist-2 operators. The problem of defining the conformal operators

is reduced to finding the polynomial coefficient functions ΨN,q(xi) and the

corresponding anomalous dimensions γN,q. Using the renormalization prop-

erties of the nonlocal light-cone operators (93) one can show [3–6], that to

one-loop accuracy the QCD evolution equation for the conformal operators

(93) can be rewritten in the form of a Schrödinger equation

H · ΨN,q(xi) = γN,qΨN,q(xi) , (96)

where the Hamiltonian H acts on the xi variables which are conjugate to

the derivatives ∂zi
and, therefore, have the meaning of light-cone projections

(y · pi) of the momenta pi carried by particles described by the fields Φ(ziy).

The Hamiltonian H has the following remarkable properties:

(i) H is a sum of two-particle Hamiltonians

H(2) = H12 , H(3) = H12 +H23 +H13, (97)

where Hij acts on the coordinates of particles i and j.

(ii) All two-particle HamiltoniansHij are invariant under SL(2, R) trans-

formations

[Hij , ~Si + ~Sj] = 0, (98)

where the one-particle SL(2, R) generators ~Si act on the space of functions

Ψ(xi) as

Sk,0Ψ(xk) = (xk∂k + jk) Ψ(xk) ,

Sk,+Ψ(xk) = −xkΨ(xk) ,

Sk,−Ψ(xk) =
(
xk∂

2
k + 2jk∂k

)
Ψ(xk). (99)

Here xk play the role of momenta so that the generators (99) are dual to the

generators (14) in which zk were coordinates.

The symmetry (98) of one-loop evolution kernels Hij follows from the

invariance of the classical QCD Lagrangian under the group of conformal
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transformations [44] which is reduced on the light-cone to its SL(2, R) sub-

group

z → z′ =
az + b

cz + d
, Φk(zy) → Φ′

k(z
′y) = (cz + d)−2jkΦk

(
az + b

cz + d
y

)

(100)

with ad− bc = 1 and a, b, c, d real. Here

jk =
1

2
(dk + sk), (101)

where dk is the canonical dimension of a field Φk(zy) and sk is the projection

of its spin onto the light-cone. For example, dq = 3/2 and sq = 1/2 for quarks

leading to jq = 1. Due to (98), the Hamiltonians Hij are functions of the

two-particle Casimir operators

(~S1 + ~S2)
2 = J12(J12 − 1). (102)

For example, when Φ1 and Φ2 are quark fields of the same chirality

Fαβ(z1, z2) =

Nc∑

i=1

(q̄↑i 6y)α(z1y)(6yq↑i )β(z2y) (103)

with q↑i = (1 + γ5)qi/2, the two-particle Hamiltonian is given by [45]

H12 =
αs

π
CF [Hqq(J12) + 1/4] , Hqq(J12) = ψ(J12) − ψ(2). (104)

where CF = (N2
c −1)/(2Nc). The eigenfunctions for this Hamiltonian are the

highest weights of the discrete series representation of the SL(2, R) group

Ψ
(2)
N (x1, x2) = (x1 + x2)

NC
3/2
N

(
x1 − x2

x1 + x2

)

(105)

where C
3/2
N are Gegenbauer polynomials. The corresponding eigenvalues

define the anomalous dimensions of the twist-2 mesonic operators built from

two quarks with the same helicity

γ
(2)
N =

αs

π
CF [ψ(N + 2) − ψ(2) + 1/4] =

αs

π
CF

[
N∑

k=1

1

k + 1
+

1

4

]

. (106)

At large N this expression has well-known asymptotic behavior γ
(2)
N ∼

αsCF /π lnN .

It is conformal symmetry which dictates that the two-particle Hamilto-

nian is a function of the Casimir operator of the SL(2,R) group, but it does
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not fix this function. The fact that this function turns out to be the Eu-

ler ψ-function leads to a hidden integrability of the evolution equations for

anomalous dimensions of baryonic operators in very much the same way as

emergence of the Euler ψ-functions in the BFKL kernel (11) leads to the

integrability of multi-color QCD in the Regge limit [3–6]. For a baryonic

operator built from three quark fields of the same chirality

Fαβγ(z1, z2, z3) =

Nc∑

i,j,k=1

εijk(6yq↑i )α(z1y)(6yq↑j )β(z2y)(6yq↑k)γ(z3y) (107)

the evolution kernel is given by [3, 4]

H(3) =
αs

2π
{(1 + 1/Nc) [Hqq(J12) +Hqq(J23) +Hqq(J31)] + 3CF /2} (108)

with Hqq given by (104). The Schrödinger equation (96) with the Hamilto-

nian defined in this way has a hidden integral of motion

q = i (∂x1 − ∂x2) (∂x2 − ∂x3) (∂x3 − ∂x1)x1x2x3 (109)

and, therefore, it is completely integrable. This operator is dual to the

operator q3 for the N = 3-reggeon states, Eq. (13), in the same fashion

as the SL(2) generators were related in the two cases. Similarly to the

Regge case, one can identify (108) as the Hamiltonian of a quantum XXX

Heisenberg magnet of SL(2,R) spin jq = 1. The number of sites is equal to

the number of quarks.

Based on this identification we shall argue now that the calculation of

the anomalous dimensions can be formulated entirely in terms of Riemann

surfaces which in turn leads to a stringy/brane picture. It is important to

stress here the key difference between Regge and light-cone limits of QCD. In

the first case the impact parameter space provides the complex plane for the

reggeon coordinates and we are dealing with a (2+1)-dimensional dynamical

system. In the second case the QCD evolution occurs along the light-cone

direction and is described by a (1 + 1)-dimensional dynamical system. As

a consequence, in these two cases we have two different integrable magnets:

the SL(2,C) magnet for the Regge limit and the SL(2,R) magnet for the

light-cone limit. The evolution parameters (“time” in the dynamical models)

are also different: the rapidity ln s in the Regge case and the RG scale lnµ

for the anomalous dimensions of the conformal operators in the light-cone

case.

Our approach to calculating the anomalous dimensions via Riemann sur-

faces looks as follows. For concreteness we shall concentrate on the evolution
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kernel (108). As in the Regge case, one starts with the finite-gap solution to

the classical equation of motion of the underlying (SL(2,R)) spin chain and

identifies the corresponding Riemann surface

ω − x6

ω
= 2x3 − (N + 2)(N + 3)x+ q , ω = x3 e p , (110)

where q is the above mentioned integral of motion (109) and N is the total

SL(2,R) spin of the magnet, or equivalently the number of derivatives en-

tering the definition of the conformal operator (91). In distinction from the

SL(2,C) case, Eq. (36), the total spin N takes nonnegative integer values.

Note that the Riemann surface corresponding to the three-quark operator

has genus g = 1, while g = 0 for the twist 2 operators.

At the next step we quantize the Riemann surface as follows. We set

p = i∂/∂x and impose the equation of the complex curve as the operator

annihilating the Baxter function

(

ei∂/∂x +e−i∂/∂x
)

x3Q(x) =
[
2x3 − (N + 2)(N + 3)x+ q

]
Q(x) . (111)

This leads to the Baxter equation for the Heisenberg SL(2,R) magnet of

spin j = 1

(x+ i)3Q(x+ i) + (x− i)3Q(x− i) =
[
2x3 − (N + 2)(N + 3)x+ q

]
Q(x) .

(112)

Similarly to the Baxter equation in the Regge case, this equation does not

have a unique solution. To avoid this ambiguity one has to impose the

additional condition that Q(x) should be polynomial in x. This requirement

leads to the quantization of the integral of motion. The resulting polynomial

solution Q = Qq(x) has the meaning of a one-particle wave function in the

separated variables x which in the case of the SL(2,R) magnet take arbitrary

real values.

Given the polynomial solution to the Baxter equation (112), one can de-

termine the eigenspectrum of the Hamiltonian (108) and evaluate the anoma-

lous dimensions of the corresponding baryon operators as

γ
(3)
N,q =

αs

2π
[(1 + 1/Nc)EN,q + 3CF /2] , EN,q = i

Q′
q(i)

Qq(i)
− i

Q′
q(−i)

Qq(−i)
, (113)

with the eigenvalues of the integral of motion (109) given by

q = −i Qq(i) −Qq(−i)
Qq(0)

. (114)
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The solution of the Baxter equation (112) simplifies significantly in the

quasiclassical approximation which is controlled by the total SL(2,R) spin

of the system N . For N � 1 the spectrum of the integral of motion q is

determined by the WKB quantization condition [11, 13]
∮

A
p dx = 2π(n+ 1/2) + O(1/N) (115)

where p was introduced in (111). Here integration goes over the A-cycle on

the Riemann surface defined by the spectral curve (111). This cycle encircles

the interval on the real x-axis on which | ep | > 1. Solving (115) one gets

q = ± N3

√
27

[

1 − 3

(

n+
1

2

)

N−1 + O(N−2)

]

. (116)

Comparing this expression with (71) and taking into account that in this

case q2 = −(N + 3)(N + 2) and q3 = q we conclude that for N → ∞
the system is approaching the Argyres–Douglas point. Note also that the

WKB quantization conditions (115) involve only the A-cycle on the Riemann

surface and unlike the Regge case there is no S-duality in the quantum

spectrum.

Finally, the spectrum of the anomalous dimensions in the WKB approx-

imation is given by [4, 11, 13]

EN,q = 2 ln 2 − 6 + 6γE + 2Re

3∑

k=1

ψ(1 + iδk) + O(N−6), (117)

where δk are defined as roots of the following cubic equation:

2δ3k − (N + 2)(N + 3)δk + q = 0 (118)

and q satisfies (116).

What can we learn about the stringy picture from this information about

anomalous dimensions? Let us recall that in the spirit of string/gauge field

correspondence [46] the anomalous dimensions of gauge field theory oper-

ators coincide with excitation energies of a string in some particular back-

ground. An important lesson that we have learned from the analysis of the

the two- and three-quark operators is that in the first case the anomalous

dimensions are uniquely specified by a single parameter N which defines the

total SL(2,R) spin. In the second case, a new quantum number emerges

due to the fact that the corresponding dynamical system is completely in-

tegrable. The additional symmetry can be attributed to the operator q

defined in (109). From the point of view of classical dynamics this operator
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generates the winding of a particle around the A-cycles on the spectral curve.

Within the string/gauge field correspondence one expects to reproduce these

properties using a description in terms of the same string propagating in dif-

ferent backgrounds. One is tempted to suggest that different properties of

the anomalous dimensions of the two- and three-particle operators should

be attributed to different properties of the background. In the case of the

twist-2 the anomalous dimensions depend on integer N which in the classical

system has an interpretation as the total SL(2,R) angular momentum of the

system. On the stringy side the same parameter has a natural interpretation

as a string angular momentum.

When this paper was in preparation an interesting paper concerning the

stringy derivation of the anomalous dimensions of the twist-2 operators [47]

appeared.a It was shown that the classical solution to the equation of mo-

tion in the σ-model on AdS5 × S5 provides the anomalous dimension of the

twist-2 operators with the large spin N . Since our derivation of the same

anomalous dimension is seemingly different it is very instructive to compare

two approaches. The logic behind the derivation in [47] implies that one

considers the stringy σ-model perturbed by some vertex operator represent-

ing the operator under consideration on the gauge theory side. Then the

energy evaluated for the solution to the classical equations of motion in the

σ-model involving the radial coordinate in the bulk provides the anomalous

dimension of the operator.

In our approach we have the following correspondence

operator ⇐⇒ Riemann surface

twist of the operator ⇐⇒ genus of the Riemann surface

calculation of the anomalous dimension ⇐⇒ quantization of the Riemann surface

It seems that the Riemann surfaces whose moduli (the integrals of motion

of the spin chain) define the anomalous dimensions of the corresponding

operators describe the σ-model solutions found in [47]. The precise relation

between the two approaches needs to be clarified further and will be discussed

elsewhere.

As we have seen the quantization of the Riemann surface can be per-

formed most effectively in terms of the Baxter equation. It is worth noting

that the solution to the Baxter equation can be identified as the wave func-

tion of a D0 brane [49]. Quantization conditions arise from the requirement

a Note that some attempts to develop the σ-model representation for high energy QCD were

undertaken a long time ago [48].
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that the wave function of the D0 brane probe in the background of the

Riemann surface be well defined.

In the case of the light-cone composite operators we have to incorporate

into the stringy picture a new quantum number which is parameterized by

an integer n, Eq. (116), i.e.the string excitation spectrum now has different

sectors parameterized by this integer. The natural way to interpret these

sectors is to identify n with the winding number of a closed string. The

corresponding background for such a scenario is offered by the Riemann

surface itself with the string wrapped around the A-cycle. It is an interesting

open question whether one can interpret momentum in WKB quantization

condition (115) as the momentum of a string T -dual to the string with the

winding number n.

Since the spectrum of the anomalous dimensions in QCD coincides with

the spectrum of the SL(2,R) spin chain Hamiltonian it would be interesting

to explore further the symbolic relation

Hstring ∝ Hspin (119)

where the string propagates in the background determined by the Riemann

surface of the spin chain. It is known that the Hamiltonian formulation

of the spin chains is closely related to the Chern–Simons (CS) theory with

inserted Wilson lines. The number of sites in the spin chain N corresponds

to the number of Wilson lines. The gauge group in the CS theory is the

symmetry group of the magnet. Here it is SL(2,R) and the group manifold

is an AdS3 space. Hence the spin chain describes the motion of N points in

AdS3 space.

7. On the dual bulk representation of the reggeon

Let us make some comments about a dual gravity description of multi-color

QCD in the Regge limit. We cannot present the complete solution of the

problem due to the lack of a proper (super)gravity background for non-

supersymmetric theories but can mention some features which seem to be

important for the behavior of the scattering amplitudes. First of all we want

to emphasize that in spite of the large Nc limit one has to deal with Rie-

mann surfaces whose genus is determined by the number of reggeons. In

the scattering process the relevant geometry is captured by the M2 brane

wrapped around the Riemann surface in the background Taub-NUT metric.

Two transverse coordinates and two momenta are involved in this Taub-

NUT background. It is this part of the total metric which provides the

intercepts of the multi-reggeon states. We expect that the back reaction of
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the “scattering” M2 brane on the “vacuum” M5 brane can be neglected.

The M2 brane modifies the background and it is known that its near

horizon geometry involves an AdS4 factor. One of the M2 coordinates is

the time direction. Because here we are dealing with static properties of

the system one can study them at any moment in time. As a consequence

we are interested in the fixed time near horizon geometry which gives us

AdS3 space. This could help to determine the proper CFT on the transverse

plane [50] but an exact equivalent conformal field theory is still unknown

and the CFT interpretation of reggeized gluons and their compound states

in pomeron and odderon sectors remains obscure.

Let us formulate here a conjecture that in an AdS/CFT description

reggeized gluons are described by AdS3 singletons [51]. This conjecture

is based on the observation that the correlation function of two reggeized

gluons are logarithmic in transverse space and they can be identified with

zero dimension logarithmic operators. It was shown some time ago that in

the AdS/CFT correspondence logarithmic operators on the boundary corre-

spond to singletons in the bulk [52].

To see the logarithmic correlator appear let us consider the amplitude for

the scattering of two quarks with infinite energy

W i′j′

ij ≡ 〈0|TW i′i
+ (0)W j′j

− (z)|0〉 . (120)

Here,the Wilson lines W+ and W− are evaluated along infinite lines in the

direction of the quark velocities v1 and v2, respectively:

W+(0) = P exp

(

i

∫ ∞

−∞
dα v1 · A(v1α)

)

,

W−(z) = P exp

(

i

∫ ∞

−∞
dβ v2 ·A(v2β + z)

)

, (121)

and the integration paths are separated by the impact vector z = (0+, 0−, ~z)

in the transverse direction.

To understand the z dependence, let us consider as an example the one-

loop calculation of W in the Feynman gauge. One gets

W1−loop = I ⊗ I + (ta ⊗ ta)
g2

4πD/2
Γ(D/2 − 1)λ4−D

∫ ∞

−∞
dα

∫ ∞

−∞
dβ

(v1v2)

[−(v1α− v2β)2 + ~z 2 + i0]D/2−1
. (122)

In this expression, the gluon is attached to both Wilson lines at points v1α

and v2β + z and we integrate the gluon propagator vµ
1 v

ν
2Dµν(v1α− v2β − z)
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over the positions of these points. To regularize IR divergences we introduced

the dimensional regularization with D = 4 + 2ε, (ε > 0) and λ being the

IR renormalization parameter. There is another contribution to W1−loop

corresponding to the case when both ends of the gluon line are attached the

same Wilson line. A careful treatment shows that this contribution vanishes.

Integrating over α and β we get

W1−loop(γ, λ
2~z 2) = I ⊗ I + (ta ⊗ ta)

αs

π
(−iπ coth γ)Γ(ε)(πλ2~z 2)−ε (123)

where (v1v2) = cosh γ.

The integral over α and β in (122) has an infrared divergence coming

from large α and β. In dimensional regularization, this divergence appears in

W1−loop as a pole in (D−4) with the renormalization parameter λ having the

sense of an IR cutoff. We see that in the octet channel we get a logarithmic

correlation which depends only on two transverse coordinates

(ta ⊗ ta)
αs

π
(iπ coth γ) ln(πλ2~z 2) (124)

which allows us to conjecture that the reggeized gluon is described by some

logarithmic operator with zero dimension which corresponds to a singleton

field in AdS3.

The arguments above suggest that the CFT at the transverse plane could

be logarithmic [53]. Also it is tempting to relate the SL(2,C) symmetry

of the AdS3 space with the SL(2,C) symmetry of the original XXX spin

chain but at this stage we do not have reasonable arguments in favor of this

connection. Certainly these important issues deserve further investigation.

8. Conclusions

Let us summarize our results. In this paper we proposed a stringy picture for

multi-color QCD in the Regge limit and on the light-cone in which hidden

integrability plays the central role. Our approach is similar in many respects

to the one which is known to be very successful in the description of the

low energy limit of the N=2 SUSY YM theories. In the Regge limit we

encounter a new situation in comparison with the SUSY case. One has to

develop the quantum picture involving the dynamics on a Riemann surface

as the quasiclassical limit. We argued that the whole configuration relevant

in the Regge limit follows from an M2 brane wrapped around the spectral

curve of the integrable system. Within our approach the Regge limit turns

out to be in the same universality class as N=2 superconformal SUSY YM

with Nf = 2Nc in the strong coupling regime. In both cases there is no
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natural place for the ΛQCD type parameter: in the SUSY case the theory is

conformal while in the Regge case we are dealing only with the perturbative

regime in generalized leading logarithmic approximation.

The WKB quantization conditions providing the compound multi-

reggeon spectrum and the spectrum of anomalous dimensions for composite

light-cone operators are formulated in stringy terms. They imply that the

energy of strings properly wrapped around the spectral curve has to be quan-

tized. Note that, since the quantization of the integrable system amounts

to the quantization of the moduli space of the complex structures of the

Riemann surface, quantum gravity in two dimensions is involved. The cor-

respondence operator ⇔ Riemann surface plays an important role in our ap-

proach and is a new step toward a complete formulation of the gauge/string

correspondence.

One more issue which certainly deserves further investigation is the mean-

ing of the unitary Froissart bound. Let us emphasize that to get the scatter-

ing amplitude one has to sum over all Riemann surfaces of arbitrary genus,

corresponding to the different number of reggeons N

A(s, t) =
∑

N≥2

AN (s, t) =
∑

genus=N−2

Ag(s, t) (125)

in perfect agreement with the string picture. Hence, if the picture suggested

for Froissart saturation in [26] is correct it would mean that the process of

black hole creation in the s-channel is equivalent to closed string propagation

in a nontrivial background in the t-channel.

Let us mention a few other important questions which remain open. One

of them is to find a clearer physical identification of the M-theory 10-th di-

mension involving the geometry of the spectral curve. At the moment we

can accurately introduce it only via the Bloch–Floquet factor of the Baker–

Akhiezer function but a more physical interpretation is highly desirable.

A related question concerns the interpretation of the “magnetic” quantum

numbers obtained from the spectral curves.This might enable wider appli-

cation of the dualities in the Regge limit and possibly could shed additional

light on the s− t duality in the high energy amplitudes.
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