
September 11, 2004 12:19 WSPC/Trim Size: 9.75in x 6.5in for Proceedings gurarie

CONFORMAL FIELD THEORY AT CENTRAL CHARGE c = 0

AND TWO-DIMENSIONAL CRITICAL SYSTEMS

WITH QUENCHED DISORDER

V. GURARIE

Department of Physics, CB390

University of Colorado

Boulder CO 80309

A. W. W. LUDWIG

Department of Physics

University of California

Santa Barbara CA 93106

We examine two-dimensional conformal field theories (CFTs) at central charge c = 0.

These arise typically in the description of critical systems with quenched disorder, but

also in other contexts including dilute self-avoiding polymers and percolation. We show

that such CFTs must in general possess, in addition to their stress energy tensor T (z),

an extra field whose holomorphic part, t(z), has conformal weight two. The singular

part of the Operator Product Expansion (OPE) between T (z) and t(z) is uniquely fixed

up to a single number b, defining a new ‘anomaly’ which is a characteristic of any c = 0

CFT, and which may be used to distinguish between different such CFTs. The extra

field t(z) is not primary (unless b = 0), and is a so-called ‘logarithmic operator’ except

in special cases which include affine (Kač–Moody) Lie-super current algebras. The num-

ber b controls the question of whether Virasoro null-vectors arising at certain conformal

weights contained in the c = 0 Kač table may be set to zero or not, in these nonunitary

theories. This has, in the familiar manner, implications on the existence of differential

equations satisfied by conformal blocks involving primary operators with Kač-table di-

mensions. It is shown that c = 0 theories where t(z) is logarithmic, contain, besides T

and t, additional fields with conformal weight two. If the latter are a fermionic pair,

the OPEs between the holomorphic parts of all these conformal weight-two operators

are automatically covariant under a global U(1|1) supersymmetry. A full extension of

the Virasoro algebra by the Laurent modes of these extra conformal weight-two fields,

including t(z), remains an interesting question for future work.
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1. Introduction

In the last four decades remarkable progress has been made in our under-

standing of second order phase transitions. Beginning with the scaling hy-

pothesis put forward in the sixties and continuing with the subsequent de-

velopment of the renormalization group methods, many questions regarding

the properties of matter in the vicinity of critical points have been thor-

oughly answered. A further milestone was set in 1984 with the development

of conformal field theory (CFT) by A. A. Belavin, A. M. Polyakov and

A. B. Zamolodchikov [1, 2]. Indeed, the methods of CFT provided access,

in a completely nonperturbative manner, to a vast variety of problems in-

volving second order phase transitions of classical statistical mechanics in

two dimensions. The various exact solutions can be classified, and in part

distinguished, by a parameter called central charge c. Physically the central

charge measures the response of a scale invariant (or critical) field theory in

two dimensions to a change of the geometry of the space on which it lives.

Equivalently, the central charge is universally related to the coefficient of

the length dependence of the ground state (or Casimir) energy of a critical

(1 + 1)-dimensional relativistic field theory living on a space of finite length

L with periodic boundary conditions, i.e. where space-time is a cylinder.

(These results are due to W. J. Blöte, J. L. Cardy and M. P. Nightingale [3]

and simultaneously I. Affleck [4].)

Once the central charge c of a given critical physical system is known,

the techniques of CFT make it possible, in many important cases, to calcu-

late exactly all its correlation functions in a quite straightforward way [1,2].

At the same time, finding the central charge of a given system may not be

entirely obvious. In some cases the central charge can be obtained by el-

ementary computation. This is the case for example for the Ising model,

whose central charge c = 1/2 can be obtained using the free Majorana

fermion representation. In other cases, the central charge of a system can be

found from symmetry analyses, as is the case e.g. for Wess-Zumino-Witten

(WZW) models [2, 5], which have found many applications in Condensed

Matter Physics, including e.g. one-dimensional Quantum Spin Chains [6],

the Kondo effect [7], topological Quantum Computation [8], and many oth-

ers. If not known analytically, the central charge of a given system can also

be determined numerically, using the finite size scaling methods mentioned

above.

However, there exists a class of problems where knowing the central

charge tells us close to nothing about the solution of the CFT. These are

problems where second order phase transitions happen (in two dimensions)
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in the presence of quenched disorder. Critical field theories describing such

problems can be shown to typically have vanishing central charge, c = 0.

It turns out, unlike in the case of their pure (i.e. disorderless) counterparts

which have c 6= 0, that the knowledge of their central charge c = 0 does not

contribute much to the solution of these theories. Indeed, there is a large

variety of CFTs with vanishing central charge, each of which corresponds to

a different critical point. And with very few exceptions little is known about

these theories.

These theories arise for example in the description of disordered electronic

systems.a Consider a quantum mechanical particle moving in a random

potential in d dimensions. The system is described by a Hamiltonian

H = H0 + V (x), H0 = −
~

2

2m
∇2, (1.1)

where x denotes d-dimensional space, and V (x) is a random, time-

independent potential. When describing universal critical properties, the

latter may often be taken, without loss of generality, to have a probability

distribution which is a short-ranged Gaussian with zero mean

〈 V 〉 = 0 , 〈V (x)V (y) 〉 = λ δ(x− y) . (1.2)

where 〈...〉 denotes the average over all configurations of the disorder poten-

tial V (x).

All relevant information concerning the motion of a quantum particle can

be extracted from its (advanced or retarded) Green’s functions b

G±(E)(x, y) =

(

x

∣

∣

∣

∣

1

E −H0 − V ± iε

∣

∣

∣

∣

y

)

, (ε > 0) . (1.3)

These can be calculated with the help of the following Gaussian functional

integral, involving a complex c scalar field φ(x), φ̄(x)

(±i)G±(E)(x, y) =
1

Z

∫

Dφ̄Dφ φ(x)φ̄(y)

× exp

[

±i

∫

ddx φ̄ (E −H0 − V ± iε)φ

]

, (1.4)

a In the absence of electron-electron interactions, or when these are irrelevant in the renormalization

group sense.
b We use round brackets for Dirac’s bra and ket symbols, to distinguish them from the averaging

symbols “〈” and “〉”.
c We use the notation φ̄(x) := φ∗(x) for the complex scalar field.
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where d is the dimensionality of space, and Z is the partition function

Z =

∫

Dφ̄Dφ exp

[

±i

∫

ddx φ̄ (E −H0 − V ± iε)φ

]

.

The plus or minus sign in the exponential is chosen to insure convergence.

Although this maps the problem of a Green’s function of a quantum particle

moving in a random potential into a correlation function of a field theory, this

field theory is intractable, as written. Indeed, the correlation function has to

be computed for any arbitrary random function V (x), and the corresponding

field theory is not even translationally invariant. If, however, we concentrate

on computing Green’s functions which are averaged over all disorder config-

urations V (x), further progress is possible. It is not practical, of course, to

average (1.4) over random V (x) directly, because of the factor 1/Z in (1.4),

where the ‘partition function’ Z is itself a random variable. Instead, one can

employ one of the following two ‘tricks’, commonly referred to as ‘replica’-

and ‘supersymmetry tricks’. In the present paper we concentrate mostly on

the supersymmetry trick, which involves rewriting the denominator of (1.4)

as a functional integral over anticommuting (Grassmann) variables ψ, ψ̄

1

Z
=

∫

Dψ̄Dψ exp

[

±i

∫

ddx ψ̄ (E −H0 − V ± iε)ψ

]

. (1.5)

This brings the Green’s function into the form

(±i) G±(E)(x, y) =

∫

Dφ̄DφDψ̄Dψ φ(x)φ̄(y) e−SV , (1.6)

where the action SV is given by

SV = ∓i

∫

ddx
{

φ̄ (E −H0 − V ± iε)φ+ ψ̄(E −H0 − V ± iε)ψ
}

. (1.7)

The total partition function is unity, because the fermionic and bosonic

contributions to it cancel. Now averaging over the random potential becomes

possible with the help of the standard Gaussian identity

〈

exp

[

i

∫

ddx V (x)J(x)

]〉

= exp

[

−
λ

2

∫

ddx J2(x)

]

valid for an arbitrary function J(x). This yields

(±i)
〈

G±(E)(x, y)
〉

=

∫

Dφ̄DφDψ̄Dψ φ(x)φ̄(y) e−S , (1.8)
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where the action S is given by

S = ∓i

∫

ddx

{

φ̄ (E−H0 ± iε)φ+ψ̄(E−H0 ± iε)ψ ± i
λ

2

(

φ̄φ+ψ̄ψ
)2
}

,

(λ > 0) . (1.9)

In summary, the problem of computing an averaged Green’s function of a

quantum mechanical particle in a random potential in d dimensional space,

has been mapped into a problem of computing a correlation function in a

d-dimensional field theory of interacting bosonic and fermionic degrees of

freedom. As we already mentioned, (1.8) is often referred to as the super-

symmetry (SUSY) approach to disordered systems.d

Theories of this kind have been extensively studied in the literature [9],

using a variety of techniques in various dimensionalities. Progress in ac-

cessing critical properties can sometimes be made if a small parameter is

available, such as for example in the d = 2 + ε expansion. The topic of this

paper is two-dimensional physics, and here a small parameter is typically

unavailable. Accordingly, one needs to rely on nonperturbative techniques,

and CFT is expected to provide such tools. To be specific, let us discuss in

a little more detail a specific disordered two-dimensional electronic system

known to possess a critical point. Consider a quantum mechanical particle

moving in a plane (coordinate x) in the presence of a perpendicular constant

magnetic field and in a random potential V (x). In order to write down an

effective field theory for this problem, we proceed as above, but now choosing

H0 to be the Hamiltonian for a free particle in d = 2 dimensions, moving in

a constant magnetic field

H0 = −
~

2

2m

∑

j

(

∂

∂xj
+
∑

k

iεjkxk
2l2

)2

,

where l is the magnetic length.

It also turns out that the disorder averaged Green’s function 〈G±(E) 〉,

as in Eq. (1.8), does not exhibit any critical behavior whatsoever, in this,

and in the other problems discussed above. It decays exponentially on dis-

tances larger than the particle’s mean free path. However, the average of

d It should be emphasized that the action S does not possess space-time SUSY (where the transla-

tion operator is a suitable square of the supercharge), the SUSY that is usually understood in high

energy physics. Rather, it has an isotopic SUSY which involves rotating bosonic and fermionic

fields φ and ψ into each other (see e.g. [9]), and is often referred to as supergroup symmetry.
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the advanced/retarded product

〈

G+ (E)G− (E)
〉

(1.10)

can be critical [10]. Such a product can also be cast into the form of a

correlation function in a field theory if only one chooses two independent

functional integral representations such as (1.6) for the two Green’s func-

tions involved in the product, subject to the same disorder potential, and

then averages over disorder V (x). The resulting field theory is similar to

(1.8) but contains two copies of each of the two basic fields φ (bosonic)

and ψ (fermionic). As the parameter E (energy) is adjusted, the resulting

field theory goes through a critical point, called the Integer Quantum Hall

plateau transition. This transition is experimentally observed e in the In-

teger Quantum Hall Effect (see e.g. [12, 13]). Even though much is known

from numerical work [14] about the critical properties f of this transition (in

the absence of interactions), and even though a theoretical description in

terms of a nonlinear sigma model with topological term [15, 16] was given a

long time ago, an analytical solution of the transition has been lacking for,

by now, about two decades. As already mentioned, this is due to the fact

that this problem lacks a small parameter, and a genuinely nonperturbative

approach is unavoidable; conformal field theory is expected to provide such

a nonperturbative tool. Nevertheless, CFT techniques have not yielded a

solution to this problem, to date. This is due to certain ‘technical’ difficul-

ties which CFTs, aimed at describing disordered critical points, present. It

is because of these ‘difficulties’ that exact, nonperturbative solutions of the

infinite number of constraints imposed by the conformal symmetry group,

have not been forthcoming as readily as was the case in pure (i.e. nonran-

dom) critical theories [1]. Some of these difficulties are the subject of this

paper.

Even though an analytical solution of the Integer Quantum Hall plateau

transition is still lacking as of today, it has been possible, fairly recently, to

find an analytical solution of the rather similar (but not identical) problem

of the so-called Spin Quantum Hall Effect (SQHE) plateau transition [17].

The resulting theory is a supersymmetric formulation of the 2D percolation

problem.g Percolation and the problem of dilute self-avoiding walks, in fact,

e Even though long-range Coulomb interactions between the electrons appear to modify the tran-

sition, unless they are screened by hand, in which case they are known to leave the non-interacting

universality class unaffected (see e.g. Ref.’s [11,12]).
f For example, the correlation length exponent is known to be numerically close to ν = 7/3.
g Another solution of the SQHE transition, not based on SUSY, was later found in Ref. [18].



September 11, 2004 12:19 WSPC/Trim Size: 9.75in x 6.5in for Proceedings gurarie

CFT at c = 0 and Two-Dimensional Critical Systems 1391

are two of the best understood disordered systems in two dimensions. In

spite of this, the nature of their CFT, including for example multi-point

correlation functions, is quite poorly understood [19]. Both systems have

central charge c = 0, and we will describe aspects of their CFT below.

Because the self-avoiding polymer problem is (in a formal sense) closely

related to our formulation of particle localization in (1.9), let us describe

this now in some detail. The statistics of self-avoiding dilute polymer chains

in d dimensions can be described by the following SUSY Landau–Ginzburg

action h due to Parisi and Sourlas [20]

S =

∫

ddx
{

φ̄ (H0 −E)φ+ ψ̄ (H0 −E)ψ +
g

2

(

φ̄φ+ ψ̄ψ
)2
}

,

(g > 0) (1.11)

with H0 as in (1.1) with ~ = m = 1. Note that, in contrast to the problem

of the motion of a quantum particle, described by the theory (1.9), the

‘convergence factors’ ±iε have disappeared, and it turns out that the analog

of the ‘single-particle Green’s function’,

〈

G±(E)(x, y)
〉

=

∫

Dφ̄DφDψ̄Dψ φ(x)φ̄(y) e−S , (1.12)

now exhibits critical behavior (has power-law decay, at E = 0) and charac-

terizes the statistics of a polymer chain with end points fixed at positions x

and y.

As was already mentioned, conformal field theories describing disordered

critical points in 2D typically have central charge c = 0. Indeed, as empha-

sized below (1.7), these theories are constructed in such a way that their

partition function is always exactly equal to unity,
∫

Dφ̄DφDψ̄Dψ e−S = 1,

as a consequence of exact cancellation of bosonic and fermionic integrals.

The free energy is therefore exactly zero. This is also true when the theory

is defined on a cylinder. Hence the central charge vanishes.

Let us end our introductory remarks by briefly mentioning the so-called

replica approach to disordered systems [21]. This involves introducing, be-

fore taking the average over disorder realizations, several copies of, say, the

commuting field φα, (α = 1, ..., n), instead of introducing the anticommuting

h Formally, one might envision this action as arising from (1.9) by analytic continuation, and a

change of sign of λ, i.e. g := (−λ) > 0, but we will not pursue this here.



September 11, 2004 12:19 WSPC/Trim Size: 9.75in x 6.5in for Proceedings gurarie

1392 V. Gurarie and A. W. W. Ludwig

field ψ, and then taking the number n of copies to zero (n → 0) (‘Bosonic

Replicas’). (An equivalent formulation can be obtained by using n copies of

the anticommuting (Grassmann) field, and no commuting fields (‘Fermionic

Replicas’).) For example, introducing Bosonic replicas in (1.4), which de-

scribes the Green’s function of a particle moving in a random potential,

and performing the average over disorder, one easily finds that the following

functional integral can be used as an alternative to (1.8),

(±i)
〈

G±(E)(x, y)
〉

= lim
n→0

∫ n
∏

α=1

[

Dφ̄αDφα
]

φ1(x)φ̄1(y) e
−Sr(n), (1.13)

where the ‘replicated action’ Sr(n) is given by

Sr(n) =∓i

∫

ddx





n
∑

α=1

φ̄α (E −H0 ± iε)φα ± i
λ

2

(

n
∑

α=1

φ̄αφα

)2


 . (1.14)

Calculating the Green’s function (1.13) now involves doing the functional

integral at arbitrary integer n and then analytically continuing the answer

to n→ 0. In fact, the same comments as those given after (1.10) in the SUSY

context apply here, and a duplication of the so-far introduced variables is

required for the quantum particle in a random potential, but we refrain here

from writing out the details. (The low energy effective theories are in fact

nonlinear sigma models [10], both in the replica and the SUSY descriptions.)

The replica method is easily used in perturbative calculations, where the

number n of copies typically appears in the form of a polynomial in n, in any

order in perturbation theory. This is easily, and unambiguously, continued

to n → 0. In the context of a nonperturbative analysis, one would, at least

naively, need a critical theory for all (large) integer values of n, each of

which would have a central charge c(n). This may (but typically will not

uniquely) determine an analytic continuation into n→ 0. Such an approach

is known not to be feasible for the 2D theory describing the Integer Quantum

Hall plateau transition discussed above. On the other hand, the dilute self-

avoiding polymer problem is known to be described (in any dimensionality

d), due to P. G. deGennes [22], as the n → 0 limit of the replica analog i

of the SUSY action (1.11). In d = 2 dimensions, a number of properties of

this replica action can be obtained exactly [23, 24] in the continuous range

−2 ≤ n ≤ +2 of the parameter n, and this model is often referred to as the

O(n) model. A similar analysis and corresponding results exist also for the

i Which bears the same relationship to (1.14), that (1.11) has with (1.9).
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2D q-state Potts model in the continuous parameter range 0 ≤ q ≤ 4. The

q → 1 limit of the q-state Potts is known [25] to describe percolation.

Although the SUSY technique is better controlled than the replica ap-

proach, it is limited to non-interacting random systems. This is because the

SUSY technique is based crucially on the ability to represent the inverse

partition function, such as (1.5), in terms of a fermionic functional integral.

This is only possible if the original problem without disorder did not contain

interactions (non-Gaussian terms). A much-studied example of a disordered

classical 2D statistical mechanics system which is interacting is provided by

the random-bond q-state Potts model. It can be analyzed [26] with the help

of the replica trick in an expansion in (q − 2) about the Ising case (q = 2).

This paper contains attempts by the authors to understand in more detail

conformal field theories at central charge c = 0. Our prime motivation arises

from the desire to understand better the structure of CFT underlying two-

dimensional disordered critical points. There is a significant number of such

critical points which are of great physical interest but which are typically

poorly understood. (Some have been mentioned above.) In particular, we

give here a pedagogical and detailed exposition of results which appeared

earlier in Ref. [27], but we also present a variety of new, so-far unpublished

results.

Specifically, we review certain unusual features, which distinguish c = 0

conformal theories from ordinary, say unitary CFTs. One of the most dra-

matic such features is the indecomposability, or ‘logarithmic’ structure which

typically (except in certain special cases, including affine current algebras)

appears in the identity representation of the Virasoro algebra at c = 0. This

manifests itself through the appearance of a so-called ‘logarithmic partner’

t(z) of the stress energy tensor. Moreover, c = 0 CFTs possess a novel

‘anomaly’ number sometimes denoted by b, which plays, in some sense, a

role similar to the central charge in c 6= 0 theories: the parameter b may be

used to distinguish different c = 0 theories. These general properties of a

c = 0 CFT are discussed in Section 2, where we also motivate and derive the

fundamental OPE between the (ordinary) stress tensor and its logarithmic

partner.

An important role is often played in CFT by so-called null-vectors (or:

singular vectors). These are Virasoro descendants which are themselves pri-

mary. They are known to occur when primary operators have conformal

weights contained in the Kač table (here at c = 0). It is important to know

if such a null-vector can be set to zero, because in that case correlation

functions involving the Kač-table operator will satisfy differential equations,
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which makes them easily computable. While in an ordinary (unitary) CFT

null-vectors are always set to zero, this is not necessarily the case in a nonuni-

tary theory, like a c = 0 CFT.

In Section 3 we make a connection between the ‘anomaly’ number b and

Kač null-vectors. Interestingly, the number b controls the question as to

whether certain Kač-table null-vectors vanish identically or not, and hence

whether certain correlation functions satisfy the corresponding differential

equations. We discuss the cases of Kač-table operators with nonvanishing

two-point functions, first those with nonvanishing, and subsequently those

with vanishing conformal weights.

In Section 4 we review aspects of critical disordered systems described by

the supersymmetry method. In these theories, a partner of the stress tensor,

of the kind that appeared in Section 2 entirely from considerations of confor-

mal symmetry, emerges naturally on grounds of supersymmetry. Moreover,

a pair of conformal weight-two fermionic operators appears together with

the stress tensor and its partner in the same supersymmetry multiplet.

In Section 5 we show that based purely on conformal symmetry consider-

ations, there must exist additional fields, besides the stress tensor T (z) and

its partner t(z), whose holomorphic parts have conformal weight two, if t(z)

is ‘logarithmic’. Under the only assumption that these additional fields form

a fermionic (anticommuting) pair, we show that the (holomorphic) OPEs be-

tween all these weight-two fields are automatically covariant under a global

U(1|1) SUSY.

We end the main part of the paper by comments and speculations about

a possible extended chiral symmetry in c = 0 CFT, based on the notions

developed here.

Three appendices provide a number of technical details. We show in

Appendix A that the anomaly number b must be unique in a given theory

(as discussed at the beginning of Subsection 3.1). Appendix B addresses

details of the computation of the OPE of descendant operators in the c = 0

CFT possessing the logarithmic features discussed in this paper. We also

demonstrate in Section B.9 the complete subtraction of logarithms to all

orders in the OPE (5.4). Appendix C addresses certain details referring to

the footnote below (3.12) in Subsection 3.1.

2. Conformal Field Theory at c = 0

2.1. c → 0 catastrophe

Conformal field theories (CFTs) with central charge c = 0 are very different

from those with c 6= 0. Consider a CFT with central charge c and a primary



September 11, 2004 12:19 WSPC/Trim Size: 9.75in x 6.5in for Proceedings gurarie

CFT at c = 0 and Two-Dimensional Critical Systems 1395

scalar operator A(z, z̄) with left/right conformal weights (h, h̄), h = h̄, and

nonvanishing j two-point function. We choose to consider operators whose

two-point functions are normalized to unity,k

〈

A(z, z̄)A†(0, 0)
〉

=
1

z2hz̄2h
. (2.1)

The operator product expansion (OPE) of this operator with its conjugate

is known [28] to be given by

A(z, z̄)A†(0, 0) =
1

z2h

(

1 +
2h

c
z2T (0) + . . .

)

1

z̄2h

(

1 +
2h

c
z̄2T̄ (0) + . . .

)

+other primaries , (2.2)

where T (z), and T̄ (z̄) are the holomorphic and antiholomorphic components

of the stress-energy tensor of the theory. Here, ‘other primaries’ denotes

possible contributions to the OPE from primary operators other than the

identity operator. From now on, in the rest of this paper, we will focus

entirely, as is customary, on the holomorphic dependence, with the under-

standing that a suitable ‘gluing’ with the antiholomorphic dependence has

to be performed at the end to obtain bulk correlation functions. With this

understanding, we write the OPE (2.2) as

A(z)A†(0) =
1

z2h

(

1 +
2h

c
z2T (0) + . . .

)

+ ... , (2.3)

where A(z) denotes in the usual way the ‘chiral (holomorphic) part’ of the

operator A(z, z̄).

This result, well known and general, cannot hold true in a CFT with

vanishing central charge. Indeed, a direct limit c→ 0 in (2.3) is not possible.

We call the 1/c divergence in (2.3) a c→ 0 catastrophe.

To understand one way l how this catastrophe can get resolved [29], let

us first consider the following example. Take a combination of two non-

j Operators with vanishing two-point function appear naturally in nonunitary CFTs as members

of a logarithmic pair (see e.g. Eq. (2.18) below), and may perhaps be best discussed within this

framework.
k We denote by A†(z, z̄) the operator which is conjugate (more generally: ‘dual’) to A(z, z̄), i.e.

the one with the property that the OPE of A with A† contains the identity operator. Our notation

is understood to include, of course, the special case where A† = A.
l There are two more ways in which the c = 0 catastrophe can be resolved [29,30]: (i) by operators

with vanishing two-point functions which may often naturally be thought of as members of a

logarithmic pair [30], or (ii) by operators with vanishing conformal weight (to be discussed in

Subsection (3.2) below).



September 11, 2004 12:19 WSPC/Trim Size: 9.75in x 6.5in for Proceedings gurarie

1396 V. Gurarie and A. W. W. Ludwig

interacting CFTs, one with central charge b, and one with central charge

−b. We call their respective stress-energy tensors Tb(z) and T−b(z) which

satisfy the well known OPEs

Tb(z)Tb(0) =
b/2

z4
+

2Tb(0)

z2
+
T ′
b(0)

z
+ ... , (and b→ −b) (2.4)

where prime denotes the derivative ∂/∂z. The total stress-energy tensor is

T (z) = Tb(z) + T−b(z) and the total central charge c = b+ (−b) = 0.

A primary operator A(z) of such a factorized theory would also be a

product of two operators, one in the theory with positive central charge,

and the other in the opposite theory. The OPE of such an operator with its

conjugate can easily be found from (2.3),

A(z)A†(0) =
1

z2h

(

1 +
h

b
z2 (Tb − T−b) + ...

)

+ ... .

The problem of c → 0 is now resolved, but the resolution did not come for

free. We now have to introduce a new field

t(z) ≡ Tb(z) − T−b(z) (2.5)

with conformal weight = 2, which is different from the stress-energy tensor

T (z) = Tb(z) + T−b(z) of the system. This field will now always appear in

such OPEs in the form

A(z)A†(0) =
1

z2h

(

1 +
h

b
z2t(z) + ...

)

+ ... . (2.6)

Continuing with our factorized theory, all OPEs between the fields T (z) and

t(z) are easily computed from those of the factors given in (2.4),

T (z)T (0) =
2T (0)

z2
+
T ′(0)

z
+ ... , (2.7)

T (z)t(0) =
b

z4
+

2t(0)

z2
+
t′(0)

z
+ ... , (2.8)

t(z)t(0) =
2T (0)

z2
+
T ′(0)

z
+ ... . (2.9)

Note that the first equation reminds us of the fact that at central charge

c = 0 the stress tensor T (z) is a primary field with vanishing two-point

function.

We would now like to generalize this analysis to theories which no longer

factorize into two non-interacting theories with equal and opposite central

charges. Based on our discussion to be given below, we suggest that in any
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c = 0 CFT a field of conformal weight two, which we also denote again by

t(z), appears and that it enters the OPEs of primary operators with nonva-

nishing two-point function as in (2.6), thus resolving the c→ 0 catastrophe.

It follows from (2.6) that L2t = b (see e.g. (B.10) and (B.56) of Appendix

B), which fixes the leading term in the OPE of T (z) with t(0) to be:

T (z) t(0) =
b

z4
+ ... . (2.10)

However, as far as the next order terms in this OPE are concerned, they

may or may not coincide with the expansion given in (2.8). This is discussed

in depth below in (2.20).

A relatively large class of nontrivial theories realizing the (‘nongener-

alized’) OPEs (2.6), (2.8), (2.9) are affine (or: Kač–Moody) current al-

gebras with supergroup (or: ‘Lie superalgebra’) symmetry, having central

charge c = 0. One can show that a pair of chiral fields t(z, z̄) = t(z) and

t̄(z, z̄) = t̄(z̄) with the properties discussed above, always appears in these

theories [29]. These can be found as expressions quadratic in (Noether) cur-

rents, and transform under the supergroup symmetry as the ‘top component’

of an indecomposable multiplet of stress-energy tensors (we will discuss such

multiplets in more detail in Section (5) below). The field t(z) appears on the

right-hand side of various OPEs such as e.g. (2.6), and obeys (2.8), (2.9).

The number ‘b’ becomes a property of the particular affine (Kač–Moody)

current algebra.

However observe that, if t(z) satisfies Eqs. (2.6), (2.8), and (2.9), the

algebra which T and t form becomes trivial, in the following sense. Indeed,

by reversing the arguments given above, we can choose

Tb = (T + t)/2, T−b = (T − t)/2 (2.11)

to re-diagonalize these equations and bring them into the form of two in-

dependent (commuting) Virasoro algebras, with central charges b and −b,

respectively. From this point of view, affine (Kač–Moody) Lie-superalgebras

with c = 0 are nothing but tensor products of two non-interacting CFTs

with equal and opposite central charges.

Quite remarkably, however, the OPEs (2.6), (2.8) and (2.9) are but a

special case of a more general set of OPEs at c = 0, to be given in (2.16),

(2.21) and (2.24) below. We will now proceed to study theories with this

more general form of OPE.
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Figure 1. Some of the first few operators of the Kač table at c = 0

2.2. Logarithmic partner t(z) of the stress tensor T (z)

A special set of primary operators, the so-called Kač-degenerate operators,

have conformal weights which lie on a two-dimensional grid, usually referred

to as the Kač table. It is well known that in conventional CFTs chiral (=holo-

morphic) correlation functions involving at least one such ‘Kač-degenerate’

operator satisfy m certain differential equations [1]. Solving such differential

equations for the (chiral) four-point functions (conformal blocks), provides a

way to find the OPEs of primary operators. For further reference we provide

in Fig. 1 a list of the first few operators of the Kač table at c = 0.

Moreover, it is well known [1] that, due to global conformal invariance,

the (chiral) four-point function of a primary operator n can be expressed in

terms of a single function F (x),

〈A(z1)A(z2)A(z3)A(z4) 〉 =
1

(z1 − z2)2h(z3 − z4)2h
F (x) , (2.12)

where x denotes a cross-ratio

x =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
. (2.13)

Consider the ordinary differential equation for the function F (x), associ-

m Even though this is certainly the case in ‘conventional’ CFTs (as opposed, e.g., to c = 0 theories),

as discussed in Ref. [1], this issue is, as we will see, more delicate for c = 0 theories; see the

discussion following (3.10) below.
n For simplicity of presentation we have chosen here all four operators to be equal and A† = A.
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ated with an operator A belonging to the Kač table.

In conventional CFTs (which have c 6= 0), there is one solution of that

equation which is of the form

F (x) = 1 + α0 x
2 + ... , (2.14)

(with some constant α0) corresponding to the OPE (2.3). The function F (x)

with this expansion is usually referred to as the identity conformal block of

the chiral four-point function given in (2.12).

The situation at c = 0 is far more complex, however. By investigating

the corresponding differential equation, it can be directly verified that for

all the operators from the first two rows or from the first column of the Kač

table in Fig. 1 (except for those with vanishing conformal weight, discussed

separately below), the small-x behavior of the identity conformal block is

F (x) = 1 + α x2 log(x) + ... (2.15)

in contrast to (2.14). It turns out that the other operators of the Kač table,

which lie deeper in its interior (i.e. beyond the first two rows or the first

column), have even more complicated identity conformal blocks [31]. We

will not consider them in this paper, however.

The appearance of logarithms in a correlation function at a critical point,

as on the right-hand side of (2.15), is characteristic of theories with so-called

logarithmic operators [32]. In this particular case, the relevant logarithmic

operator has conformal weight two, the same weight as that of the stress

tensor T (z). Based on these considerations we are led to suggest the following

contribution to the identity operator appearing in the OPE between any two

primary operators with nonvanishing two-point function,o

A(z)A†(0) =
1

z2h

(

1 +
h

b
z2 [t(0) + log(z)T (0)] + . . .

)

+ other primaries,

(2.16)

where the ellipsis denotes higher descendants of the identity operator, and

‘other primaries’ denotes contributions to this OPE from operators other

than the identity. This OPE generalizes Eq. (2.6). (For more details about

the structure of this OPE see Sections (B.1) and (B.6) of Appendix B.)

In order to understand why an OPE of this kind would give rise to the

logarithms in the conformal block (2.15), first recall [32,33] that, in general,

o We do not suggest that (2.16) is necessarily an appropriate OPE for Kač-table operators. Indeed,

arguments given in Ref. [30] would indicate that bulk Kač-table operators for percolation and for

self-avoiding polymers have vanishing two-point functions, and this would not lead to the OPE

(2.16).
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two (quasiprimary [1]) operators C(z) and D(z) of conformal weight h are

said to form a logarithmic pair, if the dilation operator L0 does not act

diagonally, but in ‘Jordan block’ form, i.e.

L0C = hC , L0D = hD + C . (2.17)

Global conformal invariance then enforces the following form of the two-point

functions:

〈C(z)C(0) 〉 = 0 ,

〈C(z)D(0) 〉 =
a1

z2h
,

〈D(z)D(0) 〉 =
−2a1 ln z + a0

z2h
. (2.18)

Once the normalization of the operator C is given, the normalization of

the operator D has been fixed by requiring the appearance of the same

coefficient a1 in the second and in the third equation. The arbitrary constant

a0 arises from the freedom to redefine the operator D by addition of C with

an arbitrary coefficient, without changing the OPE’s above.

The (quasiprimary) operators T (z) and t(z) appearing in (2.16) form

precisely such a logarithmic pair, as we will see in (2.22) below. One now

verifies immediately, upon identifying C → T,D → t, h → 2, a1 → b, that

the OPE (2.16) leads to the logarithm in the small-x expansion (2.15) of the

identity conformal block of the chiral four-point function upon using (2.18)

(here we consider A† = A for simplicity). Furthermore, the coefficient α in

(2.15) is then fixed to be

α =
h2

b
. (2.19)

The operator t(z) we introduced in this manner in (2.16) fulfills the same

role as the operator t(z) in (2.6) of the previous section. It makes sure the

limit c → 0 in (2.3) makes sense. However at the same time, it is also

responsible for the logarithms in (2.15), and therefore it is a logarithmic

operator. An OPE between the c = 0 stress tensor T (z) and the new opera-

tor t(z), which generalizes (2.8), and which causes (T (z), t(z)) to become a

‘logarithmic pair’, is (as we will see shortly)

T (z)t(0) =
b

z4
+

2t(0) + λT (0)

z2
+
t′(0)

z
+ . . . , (2.20)

where the parameter λ is arbitrary. λ = 0 corresponds to the previous, ‘non-

logarithmic OPE’ (2.8), which implies (2.9), and this can be re-diagonalized
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as in the previous Section. On the other hand, nonzero λ corresponds to

a new, ‘logarithmic OPE’, as we now explain. First, when λ 6= 0, we can

redefine t(z) and b by dividing by λ and arrive at p

T (z)t(0) =
b

z4
+

2t(0) + T (0)

z2
+
t′(0)

z
+ ... . (2.21)

This OPE generalizes the OPE (2.8) derived for the special (factorized)

situation considered in the previous Section.

The OPE (2.21) fixes the following set of (holomorphic) two-point cor-

relation functions (compare with (2.18), recalling that the normalization of

the stress-tensor T (z) is fixed),

〈 T (z)T (0) 〉 = 0 ,

〈T (z)t(0) 〉 =
b

z4
,

〈 t(z)t(0) 〉 =
−2b ln z + θ

z4
, (θ is a constant) . (2.22)

The first of these equations comes from the OPE (2.7) which remains un-

changed, independent of whether t(z) satisfies the previously discussed ‘non-

logarithmic’ OPE Eq. (2.8), or its ‘logarithmic’ generalization (2.21) which

we are currently considering. The second equation follows directly from

the OPE (2.21), while the third equation can be computed by imposing

global conformal invariance on 〈 t(z)t(0) 〉 (see Appendix A for more de-

tails). Hence, the ‘logarithmic OPE’ in (2.21) is directly responsible for the

logarithm appearing in the third of (2.22), and thereby, for the logarithm in

the conformal block (2.15).

As mentioned above, the constant θ remains undetermined. The occur-

rence of such undetermined constants is common in the theory of logarithmic

operators [32, 33], and is related to the fact that t(z) can be redefined as in

t(z) → t(z) + γT (z) (2.23)

with an arbitrary coefficient γ. This redefinition does not affect any of the

OPEs discussed in this Section.

With a logarithmic operator t(z) satisfying (2.21) the theory is no longer

equivalent to two commuting Virasoro algebras at c 6= 0 (the last of (2.22)

p The various terms are easy to understand. The leading term is fixed by the considerations

of (2.10), recalling that both OPEs, (2.6) and (2.16), imply L2t = b (Appendix B, (B.10) and

(B.56)). There is no 1/z3 term because t is quasiprimary. The next order, 1/z2-term is fixed by

the ‘logarithmic’ condition (2.17), and by the conformal weight h = 2 of t(z).
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is an obstruction to the diagonalization performed in (2.11)). On the

other hand, (2.21) is the most general OPE which a conformal weight-two

(quasiprimary) operator t(z) with L2t = b can satisfy (recall the footnote

preceeding Eq. (2.21)). Therefore, we postulate that (2.21) is realized in all

CFTs with central charge c = 0, except for those which simply factorize as

in Subsection (2.1).

Finally, once the OPE (2.21) between t and T is known, it is possible

to construct (the contribution of the identity operator to) the OPE of t

with itself, which generalizes (2.9). We can do this by taking the most

singular term of this OPE from the correlation function 〈 t(z)t(0) 〉 computed

in (2.22). This function contains an ambiguity related to the possibility to

redefine t(z) according to (2.23). In what follows, we fix this ambiguity by

setting θ = 0 in (2.22). The most singular term entails all other terms of the

OPE, which becomes

t(z)t(0) = −
2b log(z)

z4
+
t(0) [1 − 4 log(z)] − T (0)

[

log(z) + 2log2(z)
]

z2

+
t′(0) [1 − 4 log(z)] − T ′(0)

[

log(z) + 2log2(z)
]

2z
+ ... , (2.24)

where the ellipsis denotes higher order terms, as well as contributions from

primary operators other than the identity operator. The technique for re-

constructing entire OPEs such as (2.24) from their most singular terms is

well known and is described in Ref. [1], although its application to the the-

ory with logarithms has not often been discussed in the literature. Briefly,

it consists of the following steps (more details can be found in Appendix B,

especially Sections B.4 and B.8). First we have to derive the commutation

relations between the Virasoro generators Ln and t, from (2.21). This yields

[Ln, t(z)] =
(

zn+1 d

dz
+ 2(n+ 1)zn

)

t(z) + (n+ 1)znT (z) +
b

3!
(n3 − n)zn−2 .

(2.25)

Then we apply Ln with n ≥ 0 to (2.24). On one hand, Ln can be applied to

the right-hand side of (2.24) directly. On the other hand, we can use

[Ln, t(z)t(0)] = [Ln, t(z)]t(0) + t(z)[Ln, t(0)]

on the left-hand side, substitute (2.25) into this expression, and use the

OPEs t(z)t(0) and T (z)t(0) to find relationships between various terms in

(2.24). Ultimately, this allows us to deduce, order by order in z, all the

terms in (2.24) from its most singular term.
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Equation (2.24) fixes the OPE t(z)t(0) up to contributions of other pri-

mary operators. T (z) is a primary operator at c = 0 and, since it already

appears in Eq. (2.24), we can expect on general grounds that there could be

a ‘stand alone’ contribution of the conformal block of the stress tensor to

this OPE. This amounts to

2a T (0)

z2
+
a T ′(0)

z
+ ... (2.26)

being added to the right-hand side of Eq. (2.24) where a is an arbitrary

coefficient. This was recently stressed by I. Kogan and A. Nichols [34].

Additionally, one could imagine that in specific c = 0 CFTs which realize the

logarithmic operator t(z), there could be contributions from other primary

operators on the right-hand side of Eq. (2.24) (as already mentioned). These,

however, will play no further role in this paper, until we arrive at Subsection

(5.2).

As we saw in the Introduction, in certain cases it is possible to think

of a c = 0 CFT as a limit of a continuous set of CFTs parametrized by

a parameter n, defined in an interval containing n = 0, where the central

charge c(n) 6= 0 if n 6= 0, and c(0) = 0. In that case, we could ask how a

partner t(z) of the stress tensor can appear in the limit n → 0, while it is

definitely not present in the theory at n 6= 0. The answer to that question

was given by J. L. Cardy in Ref. [30, 35].

We summarize by saying that the OPEs (2.21) and (2.24), together with

the OPE of the stress tensor T (z) with itself (which is unmodified, and as

in (2.7)) constitute the fundamental equations of a CFT at central charge

c = 0, which does not factorize as in Subsection (2.1).

3. Implications of the logarithmic t(z) and corresponding b

on c = 0 Kač-table operators with nonvanishing two-point

functions

In this section we study the implications of the ‘anomaly’ number b for null-

vectors, associated with primary operators which have conformal weights

listed in the c = 0 Kač table, and nonvanishing two-point functions.q For

ordinary (e.g. unitary) CFTs there is no issue, because the null-vectors are

known to vanish when inserted into any (chiral) correlation function with

other operators [1]. This step is no longer guaranteed to be valid for the

nonunitary theories discussed here. In the first part, Subsection 3.1, we

q As already mentioned, operators with vanishing two-point function may often naturally be viewed

as members of a logarithmic pair (see e.g. Eq. (2.18) above).
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demonstrate how the ‘anomaly’ number b controls this issue, for primary

operators with certain nonvanishing Kač-table weights (and non-vanishing

two-point functions). In the second part, Subsection 3.2, we discuss similar

statements for Kač-table operators with vanishing conformal weight (and

nonvanishing two-point functions). A convenient tool used in both subsec-

tions to address these questions in a purely algebraic way, is a (partial)

extension of the Virasoro algebra by suitably defined Laurent modes of the

logarithmic partner t(z) of the stress tensor.

3.1. Operators with nonvanishing dimensions

In view of the relation (2.19)

α =
h2

b

it may appear, at first sight, that a separate, and possibly different value of

the parameter b could be associated with different c = 0 primary operators

A(z). This would mean, that a given theory would contain two (or more)

different values of b, say b 6= b′. But this would imply that there would exist

two (or more) different operators t(z), say tb(z) and tb′(z), each obeying the

OPE (2.21) with the coefficient of the corresponding 1/z4 term equal to b and

b′, respectively. Then it is not difficult to see that the correlator 〈 tb(z)tb′(0) 〉

violates global conformal invariance. (Details are given in Appendix A.) This

means that different values of b cannot coexist in the same theory, and that

b is a characteristic of any c = 0 CFT. Therefore, the question arises what

value the number b takes in a given theory, and what conditions b imposes

on the properties of the c = 0 CFT. This is the question we address in this

Section.

We begin by considering a c = 0 theory containing in its operator content

one or more primary operators whose conformal weight appears in the Kač

table. If we were to assume that the corresponding null-vector, implied by

the Kač-table conformal weight, can be set itself to zero,r then any (chiral)

four-point function (conformal block) involving this operator would satisfy

a differential equation. For any primary operator with Kač-table conformal

weight (and nonvanishing two-point function) it would hence be possible

to extract the coefficient α appearing in (2.15) from the solution of the

corresponding differential equations for F (x) (see (2.12)). Therefore, in view

of (2.19), this associates a value of b with any such Kač-table operator.

r See (3.10) below for an example, and a more in-depth discussion of this issue.
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In the following, we will obtain a purely algebraic way of associating a

number b with operators in the c = 0 Kač table which have nonvanishing two-

point function, without explicitly referring to the corresponding differential

equation, or its solutions. Interestingly, we find that different values of b

appear in the c = 0 Kač table. For example, operators in the first two rows

of the Kač table have b = +5/6, whereas operators in the first column have

b = −5/8 (see (3.15) below).

Since the value of the number b is unique in a given theory (as per our

discussion at the beginning of this section), this implies that only those Kač-

table operators which have a given fixed value of b can give rise to differential

equations in a given theory.

In order to arrive at our algebraic determination of b for operators with

conformal weights contained in the c = 0 Kač table, we will first establish the

OPE between t(z), and an arbitrary primary operator Ah(z) of conformal

weight h 6= 0 and nonvanishing two-point function.

We start by determining the three-point correlation functions involving

these operators. It is well known that the three-point correlation functions

are completely determined by global conformal invariance. By imposing

global conformal invariance on 〈 t(z)Ah(w1)Ah(w2) 〉 one readily finds

〈 t(z)Ah(w1)Ah(w2) 〉 =
h log

(

w1−w2

(z−w1)(z−w2)

)

+ ∆

(z − w1)2(z − w2)2(w1 − w2)2h−2
. (3.1)

The coefficient ∆ is arbitrary and is not fixed by conformal invariance. In

what follows we set ∆ = 0, which amounts to redefining t(z) as in (2.23) in a

suitable way. (Notice that this would not be possible for operators Ah with

vanishing conformal weight, h = 0. Therefore we consider for now only oper-

ators Ah with nonvanishing conformal weight.) Now consider expanding the

three-point function (3.1) for small (z1−w1). One immediately sees that the

term multiplying log(z1 −w1) is precisely equal to < T (z)Ah(w1)Ah(w2) >.

Moreover, an additional power series in (z − w1) appears which does not

multiply log(z1 − w1). All this is consistent with the following OPE,

t(z)Ah(0) = −T (z)Ah(0) log(z) +
+∞
∑

n=0

`−nAh(0)z
n−2 + <(z) , (3.2)

where potential noninteger powers of the variable z (but no logarithms) are

collected in a ‘remainder’ denoted by <(z). This can be viewed as a definition

of the operators `−nAh(0). Furthermore, if the operator Ah is replaced by

a more general (e.g. nonprimary) operator, negative powers of the index n

may appear in the OPE (3.2).
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Alternatively, the action of the operators `n on the operator Ah(0) can

be computed as usual by contour integration from (3.2),

`n = P̂h

[
∮

dz

2πi

(

t(z) + log(z)T (z)

)

zn+1

]

P̂h, (n ∈ Z), (3.3)

where P̂h is the projection operator on all states of the Hilbert space of the

CFT whose conformal weights differ from the weight h of the operator Ah(0)

by an integer (this projection operator commutes with the operator T (z);

see e.g. (B.39)).

Formula (3.3), together with the definition of the conventional Virasoro

generators

Ln =

∮

dz

2πi
T (z)zn+1, (3.4)

allows us to find the commutation relation [`n, Lm] in the familiar manner

from the OPE (2.21). The result is

[`n, Lm] = +(n−m)`n+m −mLn+m +
b

6
n(n2 − 1)δn+m,0 . (3.5)

It constitutes a (partial) generalization of the commutation relations of the

Virasoro algebra, which are given at c = 0 by

[Ln, Lm] = (n−m)Ln+m . (3.6)

We now claim that

`nAh(0) = 0 , for all n ≥ 0 (3.7)

for primary operators Ah with nonvanishing two-point function. First, it

clearly follows from the OPE (3.2) that this is true for n > 0. Moreover,

we can choose a definition of the operator t(z) so that `0Ah(0) = 0; indeed,

since t(z) is defined up to addition of T (z) as in (2.23), `n is also defined up

to addition of Ln, as in (2.23). By adding L0 to `0 with a suitable coefficient,

we can always s make `0Ah(0) vanish as long as h = L0Ah(0) 6= 0. From

now on we assume that we have chosen t(z) in this way, while we consider

the operator Ah(z).

s A different such ‘subtraction’ will typically have to be performed for each operator Ah(z) sepa-

rately. This will not affect the arguments given below.
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Using the newly derived commutators (3.5), the ordinary Virasoro algebra

(3.6), as well as (3.7), one finds that

L1

(

`−1 −
1

2
L−1

)

Ah(0) = 0. (3.8)

Therefore, (`−1 −
1
2L−1)|Ah

〉

can be called a null-vector, following Ref. [1].

Indeed, from now on we will set this null-vector to zero, i.e.

`−1Ah(0) =
1

2
L−1Ah(0), (3.9)

which is easily seen to be consistent with the correlation function (3.1).

Moreover, this is also consistent with the general constraints of conformal

symmetry imposed on the OPE (3.2) (see e.g. Section B.7 of Appendix B).

Any primary operator whose conformal weight appears in the Kač table

has descendants which are themselves null-vectors. Specifically, this means

that there exist states |ξ〉, constructed by applying Virasoro lowering oper-

ators L−m (m > 0), to the primary state Ah|0〉, so that Ln|ξ〉 = 0, for all

n > 0. However, now we have a (partial) extension of the Virasoro algebra in

hand, generated by Ln and `n. Hence it is natural to ask if the null-vectors

are annihilated by `n as well as by Ln. Consider for example the primary

operator with conformal weight h(2,1) = 5
8 which is contained in the c = 0

Kač table. We assume it has nonvanishing two-point function. Its (Virasoro)

null-vector is
(

L−2 −
2

3
L−1L−1

)

A 5
8
(0) (3.10)

which means that this expression is annihilated by Ln with n > 0. We

are interested in knowing if we are allowed to set the operator appearing in

(3.10) itself to zero, when it occurs in any correlation function with other

operators. This is important to know, because if true it would give rise [1]

to a differential equation satisfied by any conformal block involving the Kač-

table operator A5/8. In view of the nonunitarity of the present theory, it is

not obvious that (3.10) itself can be set to zero. (See the paragraph below,

containing (3.13), for a related example.) Now we observe that by applying

the operator `2 to (3.10) and by using (3.5) one finds

`+2

(

L−2 −
2

3
L−1L−1

)

A5/8(0) =
(

b− 5/6
)

A5/8(0) (3.11)

which vanishes only if b = 5
6 . Furthermore, when applying the operator `1
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to (3.10) we arrive, irrespective of the value of “b”, at
(

`−1 −
1

2
L−1

)

A 5
8
(0), (3.12)

which, as we have already established in (3.9), vanishes for all primary op-

erators A(z) with nonvanishing conformal weight. (Applying `n with n ≥ 3

is easily seen to always annihilate (3.10).)

Hence we arrive at the important conclusion that if the descendant (3.10)

of a Kač-table operator may be set to zero in any correlation function with

other operators (which, we emphasize again, implies [1] the validity of the

corresponding differential equation involving this operator), then `2 and `1
applied to it must also vanish,t and this does not happen unless b = 5

6 . This

is a necessary condition determining the value of b by simple algebra, without

solving the differential equations ensuing from the null-vector condition. On

the other hand, if we took the route described at the beginning of this sub-

section, i.e. if we solved the differential equation for the four-point function

of the operator A 5
8
(z) (assuming it had a nonvanishing two-point function),

found the coefficient α defined in (2.15), and determined b via (2.19), it

would also be 5
6 . Therefore, the above steps establish a purely algebraic

way to determine for each Kač-table operator with nonvanishing two-point

function a value of b, for which the null-vector (such as e.g. (3.10)) may be

set to zero. This, in turn, gives rise to the ensuing differential equation.

The notion of a nonvanishing null-vector may be unfamiliar. To illustrate

it, let us give a related, but simpler example: at c = 0 the stress tensor, which

is a descendant of the identity operator (e.g. (B.39)), is itself primary,

L+2L−21(0) = 0 , L+1L−21(0) = 0 . (3.13)

The stress tensor hence represents a null-vector of the identity operator at

level two. But clearly, the stress tensor does not vanish, even though its

two-point function does. And indeed, in analogy with (3.11), we obtain

from (3.5)

`+2L−21(0) = b 1(0) (3.14)

which does not vanish (unless b = 0 in this case).

While we lack a general result for b based on the above method for all

operators in the c = 0 Kač table, we have repeated this procedure for many

t Consider e.g. a correlation function involving t(z), which is known to appear in OPEs between

primary operators, such as (2.16); see Appendix C for further elaboration.
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of the operators of the Kač table and found the following pattern [36]:

for A(k,1) & A(k,2), k > 1 (first two rows) : b = +
5

6
,

for A(1,k), k > 2 (first column) : b = −
5

8
. (3.15)

Here A(m,n) denotes the operator located in position (m,n) of the Kač table

of Fig. 1.

In view of the uniqueness of the number b in any given theory, the ap-

pearance of different values for b in (3.15) has important consequences. It

means that, in a given c = 0 theory, only certain subsets of primary opera-

tors with conformal weights given by the Kač-table have null-vectors which

vanish identically (implying that the corresponding conformal blocks satisfy

differential equations). To be entirely clear, but at the risk of being repeti-

tive, let us spell this out once more in detail (all Kac-table operators men-

tioned below are assumed to have nonvanishing two-point function). Take

for example the operator A(2,1) of conformal weight 5
8 , which we previously

denoted as A 5
8
. Conformal blocks involving this operator satisfy the (second

order) differential equation associated with the null-vector of A(2,1) at the

second level only if b = 5
6 . On the other hand, take the operator A(1,3) with

conformal weight 1
3 . Conformal blocks involving this operator satisfy the

(third order) differential equation associated with the null-vector of A(1,3)

on the third level only if b = − 5
8 . Therefore, these two operators cannot give

rise to the corresponding differential equations simultaneously in the same

theory. That does not mean that primary operators with ‘wrong’ conformal

weights are necessarily forbidden in the same theory. But it means that for

‘wrong’ operators the null-vectors cannot be set to zero, which implies that

their correlation functions would not satisfy the differential equations which

would otherwise follow from these null-vectors (such as (3.10)) according to

the rules of Ref. [1]. For example, if b = 5
6 , only the (second order) differ-

ential equation associated with the null-vector of A(2,1) at the second level

can be valid. But the (third order) differential equation associated with the

null-vector of A(1,3) on the third level would not be valid. In other words, a

conformal block involving A(1,3) would not satisfy this differential equation.

Conversely, if b = − 5
8 , only the (third order) differential equation associated

with the null-vector of A(1,3) on the third level can be valid. But the (second

order) differential equation associated with the null-vector of A(2,1) at the

second level would not be valid. In other words, a conformal block involv-

ing A(2,1) would not satisfy this differential equation. Finally, if b is not

equal to either of these numbers, neither of these differential equations will
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be satisfied by the conformal blocks involving these operators. (An explicit

example illustrating these issues for the Kač-table operators A3,1 and A1,5

of conformal weight two can be found in (5.7) below.)

This concludes our discussion of the operators with nonvanishing confor-

mal weights.

3.2. Operators with vanishing dimension

Let us concentrate now on the operator A(1,2), appearing in position (1, 2)

of the Kač table in Fig. 1. A remarkable feature of this operator is that its

conformal weight vanishes at central charge c = 0, even though the operator

itself is different from the identity operator. It is well known that this can

happen in nonunitary theories, and the operator A(1,2) plays a prominent

role in the theory of percolation [42].

Consider first the correlation function on the left-hand side of (3.1) where

A(z) is now the zero-dimensional operator with h = 0. In what follows, we

denote this operator by O(z), and we assume that it has nonvanishing two-

point function. The right-hand side of (3.1) has been obtained from global

conformal invariance alone, and is therefore certainly also valid when the

conformal weight h = 0. In this case it reduces to

〈 t(z)O(w1)O(w2) 〉 =
∆(w1 − w2)

2

(z − w1)2(z − z2)2
. (3.16)

A difference between (3.16) and (3.1) for the operator with nonvanishing

conformal weight is the absence of the logarithms. Also, it is no longer

possible to set ∆ to zero by employing (2.23).

Now consider how the OPE (2.16) changes when h = 0. It becomes

O(z)O(0) = 1 + Cz2
(

T (z) + ...
)

+ ... (3.17)

(as one might have expected from (2.3)). Notice the logarithms no longer ap-

pear, and a contribution of the stress-energy tensor conformal block appears,

with an arbitrary coefficient C. The associativity of the correlation function

〈O(z1)O(z2)Ah(z3)Ah(z4) 〉, where Ah is an arbitrary primary operator with

conformal weight h, requires C = ∆
b .

Finally, consider how the OPE (3.2) changes. It becomes

t(z)O(0) = −(1 − ε)T (z)O(0) log(z) +
∑

n

`nO(0)z−n−2 + ... , (3.18)

where ε is a new constant which cannot be determined from conformal in-

variance alone.
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It follows from (3.16) that `0O(0) = ∆O(0), in contrast to the case of op-

erators with nonvanishing conformal weight A(z), for which we can arrange

for `0A(0) = 0 by a redefinition as in (2.23). From (3.18) something even

more drastic follows: the commutation relations of `n and Lm, when they

act on the zero-dimensional operator O, change from (3.5) to u

[Ln, `m] =
b

6
(n3 − n)δn+m,0 + (n−m)`n+m + (n+ ε)Ln+m . (3.19)

Let us try to use the commutators (3.19) to determine if the vanishing of

the null-vector of A(1,2) at the second level imposes any constraints on the pa-

rameters b, ∆ and ε. In this case the null-vector is
[

L−2 −
3
2L−1L−1

]

A(1,2).

By applying `2 and `1 (as before), we find that the following conditions need

to be satisfied, if the null-vector itself can be set to zero,

b = 5∆ ,

∆ =
−5 + 7ε

12
. (3.20)

Assuming various values of ε yields the following values of b:

ε = 0 → b = −
25

12
,

ε =
1

2
→ b = −

5

8
,

ε = 1 → b =
5

6
. (3.21)

Quite independently, the differential equation associated which the op-

erator A(1,2) allows us to determine ∆. Indeed, let us calculate the (chiral)

four-point correlation function
〈

A(1,2)(z1)A(1,2)(z2)Ah(z3)Ah(z4)
〉

where Ah
is an arbitrary primary operator with conformal weight h. Writing the sec-

ond order differential equation which follows from setting to zero the null-

vector of A(1,2) at the second level, we find an identity conformal block of

the following form,

〈

A(1,2)(z1)A(1,2)(z2)Ah(z3)Ah(z4)
〉

=
1

(z3 − z4)2h

(

1 +
h

5
x2 + ...

)

, (3.22)

where, as before,

x =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
.

u A situation, where the commutation relations depend on the operators on which they act is

encountered in other CFTs. An example of this is the parafermion CFT [43].
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Figure 2. The multiplet of fields of conformal weight-two for the supergroup U(1|1). η and η†

are two fermionic generators of this group. (In the figure, η† is denoted by η̄, and ξ† is denoted

by ξ̄.)

Matching the coefficient 1
5 with the OPEs (2.16) and (3.17) we find C = 1

5

and consequently ∆ = b
5 . This is consistent with the purely algebraic results

obtained above. The value of b cannot be determined in this way, however.

This ends our discussion of operators with vanishing conformal weight.

4. Critical Disordered Systems

Consider a generic disordered system where the disorder average can be per-

formed using the supersymmetry (SUSY) method, resulting in an action such

as that given in (1.9). A theory of this kind is always invariant with respect

to isotopic supersymmetry (‘supergroup’) transformations. For example, the

action given in (1.9) is invariant under superunitary rotations

(

φ′

ψ′

)

= U

(

φ

ψ

)

, (4.1)

where U is a superunitary matrix. According to Ref. [29] the stress tensor of

such systems is always a member of a certain indecomposable SUSY multi-

plet. The number of fields in this multiplet depends on the symmetry group

of the system. Any such theory must, however, at least be invariant under a

minimal U(1|1) SUSY, giving rise to a 4-dimensional (indecomposable) mul-

tiplet of stress tensors denoted by T (z), t(z, z̄), ξ(z, z̄), ξ†(z, z̄) in Ref. [29].

All four fields must have conformal weights (h, h̄) = (2, 0). This multiplet,

together with the action of the U(1|1) generators denoted (as in [29]) by

η, η†, j, J , satisfying the relations

[j, η] = −2η,
[

j, η†
]

= +2η†, {η, η†} = J, (4.2)

is depicted in Fig. 2. (The operators (t, ξ†, ξ, T ) transform in the same way

as (j, η†, η, J).) If the SUSY is larger than this minimal U(1|1), then this

multiplet will in general contain more fields, but the above four will always

be contained therein.
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A special role is played by the ‘top’ field t(z, z̄) of the multiplet, displayed

in Fig. 2, whose OPE with the stress tensor T was argued in Ref. [29] to

satisfy (cf. Eq. (2.10))

〈T (z)t(w, w̄)〉 =
b

(z − w)4
, (4.3)

where the parameter b counted v the number of effective degrees of freedom

of the disordered system. Different disordered systems, all having central

charge c = 0, can be distinguished by different values of b. It was further

suggested in Ref. [29] that the field t(z, z̄) together with the stress-tensor

T (z) should generate a certain extension of the Virasoro algebra, via their

OPE. However, the most general form of this OPE was not established.

At a critical point a disordered system will typically have, as mentioned,

vanishing central charge c = 0. According to the analysis in Section 2.1, this

implies the existence of an operator with holomorphic part t(z), designed

to avoid the ‘c → 0 catastrophe’. At this stage, upon comparing (4.3) with

(2.10), we are forced to identify the holomorphic part of t(z, z̄) obtained in

Ref. [29] by supersymmetry methods, with t(z) considered in Section 2.1 of

this paper. Thus, at supersymmetric disordered critical points, a partner of

the stress tensor is known to appear simply on grounds of (super-) symmetry.

An important remark has to be made at this point. We know from the

analysis of Ref. [29] that in general, the operator t(z, z̄) does not have to

be holomorphic, as indicated by the notation. Although there exist theories

such as Kač–Moody super current algebras, where it is certainly holomorphic

(but not logarithmic, as discussed in Section 2.1), t(z, z̄) will in general also

have a nontrivial dependence on z̄. Quite analogously, the corresponding

operator t̄(z, z̄), which is related to T̄ (z̄) in the same way as t(z, z̄) is related

to T (z), can depend on z.

From the point of view of its z̄ dependence, t(z, z̄) must have dimension

zero. Therefore, only two options are allowed for t. One is given by L̄0t = 0.

This means that either t does not depend on z̄, or, that its z̄-dependence

arises from a weight-zero operator, different from the identity. The other

option is given by

L̄0t = T. (4.4)

This was first suggested in Ref. [44]. See also Ref. [30].

v In a replica theory, the number b basically corresponds [27, 30, 34, 44] to the so-called ‘effective

central charge’ ∂/∂n|n=0 c(n), where c(n) is the central charge of n coupled replicas, if only one

uses a slightly different normalization of the operator t(z) such as in (2.20).
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In this note we focus entirely on the z-dependence. The dependence of

t on z̄ would have to treated separately, and finally the holomorphic and

antiholomorhpic parts will have to be put together. However, we do not

address the issues of the z̄-dependence of t(z, z̄) here. This is an important

problem which has not been properly investigated up until now, and should

be a subject of future work.

5. Extended Stress Tensor Multiplet

In this section we first focus entirely on consequences of conformal symme-

try, without regard to SUSY. In particular, we will simply consider a general

CFT at c = 0 which, as discussed in Subsection 2.2 above, possesses a stress

energy tensor T as well as a logarithmic partner t, satisfying the OPEs de-

scribed in Eqs. (2.21) and (2.24). Such a theory may for example appear as

the n→ 0 limit of a replicated theory of n interacting copies of fields, as dis-

cussed in the Introduction. We are going to show that the requirement that

t(z) is logarithmic automatically ensures the existence of extra primary con-

formal weight-two fields with nonvanishing two-point function. Moreover, if

there are two such extra fields, ξ(z) and ξ†(z), which are anticommuting,

then the OPEs between all four holomorphic weight-two fields T, t, ξ, ξ† au-

tomatically transform covariantly under a global U(1|1) supersymmetry. In

other words, we are going to show that the requirements of conformal in-

variance, c = 0, and the OPE (2.21), together then imply invariance under a

global supersymmetry acting on the holomorphic parts of these fields. (We

emphasize that there was no mention of SUSY at the outset.) Whether or

not this will in fact translate into an actual global SUSY of the full c = 0

theory will depend on the specific gluing of holomorphic and antiholomor-

phic sectors, an aspect that remains to be explored and which we are not

addressing here.

5.1. The multiplet of two dimensional operators, and SUSY

So far, the operators with conformal weight two are t(z), which is not primary

according to the OPE (2.21), and T (z), which is primary at c = 0, but has

a vanishing two-point correlation function. It turns out, however, as we

will now see, that these two fields do not exhaust all conformal weight-two

operators we need to introduce for consistency of our theory. We also need to

add conformal weight-two primary operators with nonvanishing correlation

functions.

Consider, a (chiral) correlation function with insertions of several oper-

ators t(z). Such a correlation function will not be single-valued. In order
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to see how the additional weight-two operators appear, it is instructive to

examine the OPE between two operators t(z), given in Eq. (2.24). Due to

the presence of the logarithm, this OPE is clearly not single-valued as z goes

around zero. A correlation function with a t(z)t(0) insertion will change

under such a transformation. A piece will be added to it whose small z

behavior can be found by shifting all the logarithms in (2.24) by 2πi.

It is possible to establish that this piece will contain a full OPE between

two primary operators A with conformal weight two, and nonzero two-point

correlation function. To be specific let us introduce the conformal weight-

two primary field A2(z). Its OPE with itself has the following contribution

from the identity operator

A2(z)A2(0) = αT (z)T (0) +
b

2z4
+
t(0) + T (0) log(z)

z2
+ ... , (5.1)

in agreement with (2.16). Here we fixed the normalization of A2 in a cer-

tain way which will become useful later. We also introduced a piece in the

OPE proportional to the arbitrary coefficient α. It is allowed by conformal

invariance and its utility will become obvious as we go along. In the previ-

ous sections we routinely set coefficients such as α to zero by employing the

redefinition (2.23), as well as the OPE (2.7) of the stress tensor. However,

at this stage we have already used this redefinition once, to fix the OPE

Eq. (2.24), so we cannot use it again. Notice that the three-point function

(3.1) is now fixed to

〈 t(z)A2(w1)A2(w2) 〉 = b
log
(

w1−w2

(z−w1)(z−w2)

)

+ 2α

(z − w1)2(z − z2)2(w1 − w2)2
. (5.2)

It follows that the OPE t(z)A2(w) is fixed to be

t(z)A2(0) = 2αT (z)A2(0) − T (z)A2(0) log(z) +
A′

2(0)

2z
+ ... , (5.3)

similar to the OPE (3.2), but again with the extra term proportional to α.

So far α remains arbitrary.

Now it can be checked, by using (2.24) and (5.1), that the contribution

of (the Virasoro representation of) the identity operator in the following

combination of OPEs

t(z)t(0) + 4A2(z)A2(0) log(z) − T (z)T (0) ln2(z) +
(1

2
− 4α

)

T (z)T (0) ln(z)

(5.4)

no longer contains any logarithms, to all orders in z. (A proof is presented

in Subsection B.9 of Appendix B.) It therefore remains single-valued as a
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function of z, when inserted into any correlation function. This shows that

indeed, an insertion of t(z)t(0) into any (chiral) correlation function with

other operators, will analytically continue to a linear combination of t(z)t(0)

and A2(z)A2(0) (and T (z)T (0)). This is how the conformal weight-two pri-

mary fields A2(z) will appear in any theory at c = 0 which contains the

logarithmic field t(z).

We already established in the Section 3.1 that (chiral) correlation func-

tions containing the conformal weight-two primary operator A2(z) (with

nonvanishing two-point function) would satisfy the corresponding differen-

tial equation, if b is either 5
6 or −5

8 . In the first case, this would be the

third order equation for the operator A(3,1), and in the second the fifth order

equation for the operator A(1,5). In fact, the solutions to these equations

for the identity conformal block of the four-point function 〈A2A2A2A2 〉 can

be obtained in closed form. An important feature of these solutions is that

the identity conformal block F (x) defined as in (2.12), (2.13), if normalized

to 1 as x → 0, goes to (−x4) as x → ∞, and vanishes altogether when

x→ 1 (or the opposite way around). This is only possible if there exist two

conformal weight-two operators which are in fact anticommuting operators.

Of course we could also consider commuting operators as far as the consid-

erations leading to Eq. (5.4) are concerned, but their correlation functions

would not satisfy the appropriate differential equations at the appropriate

values of b.

Motivated by these considerations let us consider, from now on, the case

of two conjugate fermionic conformal weight-two operators ξ(z) and ξ †(z),

but we no longer require that they be Kač-operators; in particular, the

parameter b can now take on arbitrary values. (Besides the fermionic nature

of ξ and ξ† we make no other assumptions but conformal symmetry.) Their

OPE can be copied from (5.1),

ξ(z)ξ†(0) = αT (z)T (0) +
b

2z4
+
t(0) + T (0) log(z)

z2
+ ... . (5.5)

It is remarkable that the identity conformal block of the four-point function

of these operators,

G =
〈

ξ(z1)ξ
†(z2)ξ

†(z3)ξ(z4)
〉

, (5.6)

can be obtained in closed form for arbitrary values of the parameter b by

a generalization of the conformal Ward identity. (Note that unless b = 5/6

or b = −5/8, this function no longer satisfies a corresponding differential
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equation.) In order to see this, consider the linear combination

〈

ξ(z1)ξ
†(z2)ξ

†(z3)ξ(z4)
〉

−
1

2

〈

T (z1)T (z2)ξ
†(z3)ξ(z4)

〉

log
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
.

This combination is a rational function of the coordinates, as can be checked

by employing the OPEs. Therefore, it can be reconstructed from its poles,

as in the standard conformal Ward identity [1]. This allows us to find the

correlation function G for arbitrary values of b. This correlation function

must of course vanish as z1 approaches z4, due to the fermionic nature of

the operators ξ. It turns out that it vanishes only if the parameter α in (5.5)

is chosen to be α = 1
8 . This explains why the parameter α was introduced

in (5.5) in the first place. Setting α = 1/8, we obtain the explicit result,

G =
b

(z1 − z2)4(z3 − z4)4

[

(x+ 1)(2x2 + b(x− 1)2(1 + x2))

4(x− 1)

−
x2(1 − x+ x2) log(x)

(x− 1)2

]

. (5.7)

We can check by direct substitution that (the function of the cross-ratio x,

associated as in (2.12) with the function) G satisfies the third order equation

for the operator A(3,1) if b = 5
6 , and that it satisfies the fifth order equation

for the operator A(1,5) if b = −5
8 . It is not completely obvious from (5.7) that

G → 0 when z1 → z4 (which implies x → 1), but it can be easily checked

with the help of straightforward algebra.

Let us summarize briefly. We have established that c = 0 conformal

theories with a logarithmic operator t(z) must contain, in addition to the

stress tensor T (z) and t(z), extra operators with conformal weight two but

nonvanishing two-point function. For b = 5
6 or b = −5

8 , two anticommuting

operators ξ and ξ† are required, if the latter are to satisfy the corresponding

Kač-table null-vector conditions (implying that the identity conformal block

of (5.6) satisfies the 3rd-, or the 5th-order differential equation, correspond-

ing to their respective Kač-table positions). In general, as long as these

two conformal weight-two operator ξ and ξ† are fermionic, the full identity

conformal block of the function (5.6) can be obtained in closed form for any

value of the ‘anomaly’ number b, with the result given in (5.7) above.

These operators will then have the following OPEs

ξ(z)ξ†(0) =
1

8
T (z)T (0) +

b

2z4
+
t(0) + T (0) log(z)

z2
+ ... , (5.8)
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and

t(z)ξ(0) =
1

4
T (z)ξ(0) − T (z)ξ(0) log(z) +

ξ′(0)

2z
+ ... , (5.9)

and similarly for ξ†.

Consider now the OPEs given by Eqs. (2.7), (2.21), (2.24), (5.8) and (5.9).

They were derived using CFT techniques alone, and the only assumption was

the existence of the OPE (2.21), and the fermionic nature of the operators

ξ and ξ†. Nevertheless, it can easily be verified that these OPEs are in fact

covariant under the application of a global SUSY transformation according to

Fig. 2, acting only on the chiral operators appearing in them. (Interestingly,

these OPEs would not have been covariant if α 6= 1
8 .) Thus we arrive at a

remarkable conclusion: if a partner of stress energy tensor t (which always

exists at c = 0 to avoid the c → 0 catastrophe) is logarithmic, these chiral

OPEs are automatically supersymmetric. This would have to be true even

when the field theory was constructed in terms of replicas as opposed to

supersymmetry, as long as there are two weight-two primary operators ξ, ξ †

with nonvanishing two-point function which are fermionic. (We know from

(5.4) that there exists at least one such weight-two operator.)

5.2. Comments on an ‘Extended Algebra’

In Section 3 we used the logarithmic ‘algebra’ formed w by the coefficients of

the mode expansion of T and t, which we called Ln and `m. Specifically, we

derived the commutation relation [Ln, `m], given by (3.5). It was enough to

consider only this commutation relation, besides the Virasoro algebra (3.6),

to arrive at the results obtained in that Section.

It may be natural to ask if there could exist a suitable consistent (full)

extension of the Virasoro algebra, involving the modes `m. For example, one

could consider, in addition to Virasoro descendants L−n|A〉, also ‘extended

Virasoro descendants’ such as e.g. `−n|A〉. One may also ask about a possible

generalization of null states, degenerate with respect to a suitably extended

Virasoro algebra, involving now also the modes `+n.

Unfortunately, proposals along these lines have been difficult to imple-

ment. In order to have a closed algebra, one would also need the commuta-

tion relations [`n, `m], which would have to be obtained from the OPE (2.24).

Similarly, since we now see that the full set of weight-two fields involves not

only the fields T and t, but also additional fields such as e.g. the fermionic

w ‘Algebra’ appears here in quotes because the commutator [`n, `m] required by closure was not

discussed; for an elaboration, see the paragraphs below.
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fields ξ and ξ†, it seems natural at this point to try to establish the anti-

commutation relations {ξn, ξ
†
m} as well. One of the difficulties with these

commutators is the nonholomorphic aspect of these fields. Furthermore, re-

garding the second commutator (but in view of (5.4) this is also relevant

for the first), the operator ξ, when acting primary operators, may generate

other primary operators with different conformal weights. For example, for

the specific values of b when the Kač null-vector of ξ vanishes, its OPE with

other primary fields can be read off from the Kač table, and it obviously gen-

erates primaries with weights not related by integers. For arbitrary values

of b when the Kač table is not available, it is not even clear how to find such

an OPE. In any case, it would be interesting if a suitable extension of the

Virasoro algebra, based on the additional structures presented in this paper

could be developed, in one way or the other. This, however, would certainly

have to be reserved for future work.

6. Conclusions

In this paper we examined the structure of conformal field theories (CFTs)

with central charge c = 0. We focussed entirely on the holomorphic sector,

leaving the gluing of holomorphic and antiholomorphic sectors for future

work. One of the main features distinguishing these CFTs from those with

c 6= 0 is the appearance of a logarithmic ‘partner of the stress tensor’ which is

in general not holomorphic. It has a holomorphic part of conformal weight

two, which we denoted by t(z) (Section 2). The latter leads to a novel

anomaly number b, distinguishing different CFTs with central charge c = 0.

The number b is a unique characteristic of any given c = 0 CFT. (Basically,

b plays the role of the ‘effective central charge’ (∂c(n)/∂n)|n=0 of replica

theories [27, 30]; recall the footnote below (4.3).) Interestingly, we saw in

Section 3 that in theories with ‘logarithmic’ t(z) the number b controls the

question of whether certain Kač-table null-vectors do indeed vanish iden-

tically or whether they represent nonvanishing states with zero norm (like

the c = 0 stress tensor). We found that the null-vectors indeed vanish for

primary operators with nonvanishing two-point function (i) in the first two

rows of the Kač table when b = +5/6, or (ii) in the first column of the Kač

table with nonzero weight when b = −5/8. Only those (chiral) four-point

functions which contain a Kač-table operator with vanishing null-vector will

satisfy the familiar [1] differential equations. These results were obtained

by considering suitably defined Laurent modes `n of the logarithmic part-

ner t(z) of the stress tensor, and by considering their commutation relations

(3.5) with the ordinary Virasoro generators Ln. (This represents a ‘partial

extension’ of the Virasoro algebra.) We showed in Section 5 that on grounds
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of consistency there must exist, besides the stress tensor and its partner t(z),

additional fields whose holomorphic parts have weight two, and nonvanishing

two-point functions, when t(z) is logarithmic. Remarkably, the simple as-

sumption of a fermionic pair of such additional fields implies that the full set

of chiral OPEs between all these weight-two fields is automatically covariant

under the action of a global U(1|1) supersymmetry. No SUSY was required

at the outset. (Then, also, the full identity conformal block of these fermionic

weight-two fields can be computed exactly for any value of b, with the result

given in (5.7).) Indeed, a U(1|1) multiplet of ‘stress tensors’ transforming in

the same indecomposable representation occurs in any CFT which is known

to possess a global U(1|1) SUSY, the actual stress tensor being the singlet

(see Section 4). Our results show that, at least at the purely holomorphic

level, such a global SUSY is already a hidden symmetry in any c = 0 CFT

possessing a logarithmic partner of the stress tensor t(z), given there are two

fermionic weight-two fields ξ, ξ† with nonvanishing two-point function. We

close by saying that it is tempting to speculate about a possible extension of

the Virasoro algebra by the Laurent modes `n of the logarithmic partner t(z)

of the stress tensor, and by the corresponding modes of the other members

of the ‘stress tensor multiplet’ mentioned above. Future work will have to

show if such an extension can be constructed (Section 5.2).

Appendix A: Uniqueness of the ‘anomaly’ number b

In this appendix we will show that the OPE (2.21), which expresses the

action of (infinitesimal) conformal transformations on the operator t, does

not allow for two different operators t1(z) and t2(z), characterized by two

different values of their respective ‘anomaly’ numbers b1 6= b2, to coexist in

a given theory.

The proof is simple. If both, t1(z) and t2(z), were present in the same

theory, then we would be able to construct the (holomorphic) two-point func-

tion 〈t1(z1)t2(z2)〉. As in any CFT, this function must satisfy the constraints

of global conformal invariance (there are no others for a two-point function).

We will show that these constraints (ordinary differential equations) do not

possess a solution, unless b1 = b2.

We start x by recalling that the OPE (2.21) yields the change of the

operators ti(z), (i = 1, 2) under an infinitesimal conformal transformation

x We note in passing that the transformation law under a finite conformal transformation w = w(z)

is t(w) = ( dz

dw
)2t(z) + [ln( dz

dw
)] T (z).
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w(z) = z + ε(z),

δε(z) ti(z) =

∫

C(z)

dζ

2πi
ε(ζ) T (ζ)ti(z)

=
( d

dz
ε(z)

)

[2t(z) + T (z)] + ε(z)
d

dz
t(z) +

bi
3!

d3ε(z)

dz3
, (A.1)

where i = 1, 2. The action of the global conformal group (Sl(2;C)) corre-

sponds to functions ε(z) which are 2nd order polynomials in z. Now consider

the two-point function

〈t1(z1)t2(z2)〉

which is a function only of z12 = z1 − z2, due to translational invariance

(corresponding to ε(z) = constant). Choosing ε(z) = ε · z (scale invariance)

in (A.1) yields

δε(z)〈t1(z1)t2(z2)〉 = 〈
(

δε(z)t1(z1)
)

t2(z2)〉 + 〈t1(z1)
(

δε(z)t2(z2)
)

〉

=

(

[

z1
d

dz1
+ z2

d

dz2

]

+ 4

)

〈t1(z1)t2(z2)〉 +
b1 + b2
z4
12

= 0 , (A.2)

or (using translational invariance)

z12
d

dz12

[

(z12)
4〈t1(z1)t2(z2)〉

]

+ (b1 + b2) = 0 (A.3)

which has the solution

(z12)
4〈t1(z1)t2(z2)〉 = −(b1 + b2) ln(z12) + const. (A.4)

Next, choosing ε(z) = ε · z2 (special conformal transformations) in (A.1),
〈

{

2z1 [2t1(z1) + T (z1)] + z2
1

d

dz1
t1(z1)

}

t2(z2)

〉

+

〈

t2(z2)
{

2z2 [2t2(z2) + T (z2)] + z2
2

d

dz2
t2(z2)

}

〉

= 0 . (A.5)

Setting z2 = 0 yields

z1
d

dz1

[

(z1)
4〈t1(z1)t2(z2)〉

]

+ 2
[

(z1)
4〈T (z1)t2(z2)〉

]

= 0 . (A.6)

This gives, using (2.21) and (A.4)

−(b1 + b2) + 2b2 = 0, or b1 = b2 . (A.7)

This completes the proof.
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Finally, we can read off from (A.4) the two-point function of the single

operator t = t1 = t2,

〈t(z1)t(z2)〉 =
−2b ln(z12) + const

z4
12

, (A.8)

as in (2.22) of the main text.

We close Appendix A by recalling that (A.1) leads to the action of Ln in

the usual way [1], by letting ε(z) ∝ zn+1 (n = −1, 0, 1, 2, ...). This yields, in

particular, the relations in (B.10) below.

Appendix B: Computation of OPEs of Virasoro descendants

This appendix is devoted to the computation of OPEs such as for example

(2.24). More generally, consider instead of the two operators t(z) and t(0)

in that equation, two operators O1(z) and O2(0). We are interested in the

descendants of some third operator of conformal weight h′, appearing in the

OPE O1(z)O2(0).

Here we consider the OPE of the two not necessarily primary operators

O1(z) and O2(z) of conformal weights h1 and h2,

O1(z)O2(0) = ...+
1

zh1+h2−h′
X(z) + ... , (B.1)

where the ellipsis denotes contributions from other primary operators. (Ex-

amples are the OPEs in (2.3), (2.16), (B.12), (2.21), (2.24).) In general,

X(z), which denotes the contributions to this OPE from a primary operator

of conformal weight h′, has the form

X(z) = X(0)(z) + [ln(z)]X (1)(z) + [ln2(z)]X(2)(z) + ... , (B.2)

where X(i)(z), (i = 0, 1, 2, ...) are power series in z whose coefficients are

operators evaluated at the point z = 0, denoting descendants (as well as

their logarithmic ‘partners’). Explicitly, we have

X(i)(z) =

∞
∑

n=0

zn X̂(i)
n (0), (i = 0, 1, 2, ...) , (B.3)

where X̂
(i)
n (0) is an operator of conformal weight raised by +n as compared

to X̂
(i)
0 (0), or a (certain, to-be-determined) linear combination of such oper-

ators.
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Below, we will be interested in the logarithmic derivative of X(z). Ex-

panding X(z) as in (B.2) we have

(

z
d

dz

)

X(z)=

{

(

z
d

dz

)

X(0)(z)+X(1)(z)

}

+ln(z)

{

(

z
d

dz

)

X(1)(z)+2X(2)(z)

}

+ ln2(z)

{

(

z
d

dz

)

X(2)(z) + 3X(3)(z)

}

+ ... . (B.4)

Moreover, using the expansion (B.2), (B.3) one obtains

1

zn

[

L+n, X
(i)
]

=

∞
∑

m=n

zm−n
[

L+n, X̂
(i)
m (0)

]

=

∞
∑

m=0

zm
[

L+n, X̂
(i)
m+n(0)

]

.

(B.5)

Note that
[

L+n, X̂
(i)
m (0)

]

has conformal weight (m−n) and that the expres-

sion vanishes when n > m.

Our aim in this appendix is to establish a recursion relation to determine

all the coefficients of the entire power series, starting from the first few (with

lowest powers of z). The fact that this is possible means that the entire OPE

is uniquely determined by its first few terms.

We start by considering the commutator of both sides of (B.1) with the

Virasoro (raising) operator L+n, n ≥ 0 (it is actually enough to consider only

n = 0, 1, 2 because the others are generated using the Virasoro algebra),

[L+n, O1(z)O2(0)] = [L+n, X(z)] + other prim. (B.6)

The left-hand side can we written as

[L+n, O1(z)O2(0)] = ([L+n, O1(z)])O2(0) +O1(z) ([L+n, O2(0)]) . (B.7)

These commutators are given by simple expressions.

Examples of needed commutators

We give three examples of commutators which we will need:

(i) for Ah(z) a Virasoro primary of conformal weight h

n = 0, 1, 2, ... : [L+n, Ah(z)] = zn
(

z
d

dz
+ h(n+ 1)

)

Ah(z),

[L+n, Ah(0)] = h δn,0Ah(0); (B.8)
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(ii) for the stress tensor

n = 0, 1, 2, ... : [L+n, T (z)] = zn
(

z
d

dz
+ 2(n+ 1)

)

T (z)

+
c

12
n(n2 − 1)zn−2,

[L+n, T (0)] = 2δn,0 T (0) + δn,2
c

2
; (B.9)

(iii) for the ‘partner’ t(z) of the stress tensor

n = 0, 1, 2, ... : [L+n, t(z)] = zn
{(

z
d

dz
+2(n+ 1)

)

t(z)+(n+ 1)T (z)

}

+
b

6
n(n2 − 1)zn−2 ,

[L+n, t(0)] = δn,0

(

2t(0) + T (0)

)

+ δn,2 b . (B.10)

B.1. The OPE of two primary operators, Ah1
(z)Ah2

(0)

We now proceed to derive the recursion relations for the OPE of two primary

operators of conformal weights h1 and h2, respectively,

O1 = Ah1
, O1 = Ah2

. (B.11)

We are interested in the descendants of a third primary operator Ah′ of

conformal weight h′ appearing in this OPE, which we characterize by the

(operator-valued) function X(z),

Ah1
(z)Ah2

(0) = ...+
1

zh1+h2−h′
X(z) + ...

= ...+
1

zh1+h2−h′

{

Ah′(0) + a1 z L−1Ah′(0) +O(z2)
}

+ ... , (B.12)

where the ellipsis denote contributions from other primary operators. Mak-

ing use of (B.6), (B.7), (B.8) for n ≥ 1 yields

zn
[

(

z
d

dz

)

+ h1(n+ 1)

]

Ah1
(z)Ah2

(0) = ...+
1

zh1+h2−h′
[L+n, X(z)] + ...

(B.13)
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which becomes y

n ≥ 1 :

(

z
d

dz
+ nh1 − h2 + h′

)

X(z) =
1

zn
[L+n, X(z)] . (B.14)

Using (B.4) and (B.5) in (B.14) we obtain a recursion for the coefficients

n ≥ 1 : [m+ nh1 − h2 + h′]X̂(0)
m + X̂(1)

m =
[

L+n, X̂
(0)
m+n(0)

]

,

[m+ nh1 − h2 + h′]X̂(1)
m + 2X̂(2)

m =
[

L+n, X̂
(1)
m+n(0)

]

,

[m+ nh1 − h2 + h′]X̂(2)
m + 3X̂(3)

m =
[

L+n, X̂
(2)
m+n(0)

]

, (B.15)

etc.. Upon choosing n = 1, 2, these equations determine the coefficients

X̂
(0)
m (0), X̂

(1)
m (0), X̂

(2)
m (0) for higher values of the index from those with a

lower index.

For n = 0 (dilations) we have

[L0, Ah1
(z)Ah2

(0)] =

(

(

z
d

dz

)

+ (h1 + h2)

)

Ah1
(z)Ah2

(0), (B.16)

or
(

(

z
d

dz

)

+ h′
)

X(z) = [L0, X(z)] . (B.17)

This yields for the coefficients of X(z)

(m+ h′)X̂(0)
m + X̂(1)

m =
[

L0, X̂
(0)
m

]

,

(m+ h′)X̂(1)
m + 2X̂(2)

m =
[

L0, X̂
(1)
m

]

,

(m+ h′)X̂(2)
m + 3X̂(3)

m =
[

L0, X̂
(2)
m

]

, (B.18)

etc..

B.2. The OPE T (z)T (0) ∼ 1 at c = 0

In order to compute this OPE we set

O1 = O2 = T (B.19)

y We used zx

“

z d

dz

”

`

z−xX(z)
´

=
“

z d

dz
− x

”

X(z).
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and h′ = 0 in (B.1). Making use of (B.6), (B.7), (B.9) for n ≥ 1 we obtain

n ≥ 1 : zn
{(

z
d

dz
+ 2(n+ 1)

)

T (z) T (0)

}

=
1

z4
[L+n, X] . (B.20)

This has the same form as the equation (B.14) obtained above, for two

conformal weight = 2 primary operators A2 (i.e. h1 = h2 = 2). This is

of course expected, because the stress tensor T (z) is weight-two primary,

at c = 0. These two types of primary weight-two operators differ only by

the fact that one (the stress tensor) has a vanishing, and the other (A2) a

nonvanishing two-point function. The recursion relations are thus identical

to (B.15), with h1 = h2 = 2. But the terms in X(z) with small powers of z,

i.e. the initial conditions of the recursion relations, are different in the two

cases. Since for the stress tensor T (z) the initial conditions of the recursion

do not contain any logarithms, this continues to be case for all terms, and

the recursion relations (B.15) simplify further,

n ≥ 1 : [m+ 2(n− 1)]X̂(0)
m =

[

L+n, X̂
(0)
m+n(0)

]

. (B.21)

B.3. The OPE t(z)Ah(0) ∼ Ah(0)

In this section of Appendix B we determine the terms appearing in the OPE

(3.2) of Subsection 3.1. We write this OPE in the form

t(z)Ah(0) :=
1

z2
X(z) + <(z) , (B.22)

where <(z) denotes all those terms in this OPE which contain noninteger

powers of z.

(i) Applying (B.6), (B.7) to (B.22) yields

n ≥ 1 :

zn
{(

z
d

dz
+ 2(n+ 1)

)

t(z) + (n+ 1)T (z) +
b

6
n(m2 − 1)z−2

}

Ah(0)

=

[

Ln,
1

z2
X(z) + <(z)

]

. (B.23)

This becomes, abbreviating

T (z)Ah(0) :=
1

z2
Y (z), (B.24)
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n ≥ 1 :

z2

(

z
d

dz
+ 2(n+ 1)

)

z−2X(z) + (n+ 1)Y (z) +
b

6
n(n2 − 1)A(0)

=
1

zn
[Ln, X(z)] . (B.25)

Using the footnote in Subsection B.1 the above reduces to

n ≥ 1 :
(

z
d

dz
+ 2n

)

X(z) + (n+ 1)Y (z) +
b

6
n(n2 − 1)A(0)

=
1

zn
[Ln, X(z)] . (B.26)

(ii) Similarly, for n = 0 we obtain from (B.6), (B.7) and (B.22)

n = 0 :
(

z
d

dz
+ 2 + h

)

t(z)Ah(0) + T (z)Ah(0) =

[

L0,
1

z2
X(z) + <(z)

]

, (B.27)

leading to

n = 0 :

(

z
d

dz
+ h

)

X(z) + Y (z) = [L0, X(z)] . (B.28)

(iii) Finally, inserting the decomposition (B.2), using (B.4) as well as

(B.5), and recalling that the quantity Y (z) defined in (B.24) has no terms

proportional to ln(z), we obtain

∗ from (B.26),

n ≥ 1 :

{

[m+ 2n]X̂(0)
m + (n+ 1)Ŷ (0)

m +
b

6
n(n2 − 1)A(0) + X̂(1)

m

}

=
[

L+n, X̂
(0)
m+n(0)

]

,

{

[m+ 2n]X̂(1)
m + 2X̂(2)

m

}

=
[

L+n, X̂
(1)
m+n(0)

]

, (B.29)

etc.

∗ from (B.18),

n = 0 :
{

(m+ h)X̂(0)
m + Ŷ (0)

m + X̂(1)
m

}

=
[

L0, X̂
(0)
m

]

,

{

(m+ h)X̂(1)
m + 2X̂(2)

m

}

=
[

L0, X̂
(1)
m

]

,
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etc..

B.4. The OPE t(z)t(0) ∼ 1, (c = 0)

In order to compute this OPE we set

O1 = O2 = t (B.30)

and h′ = 0 in (B.1). Making use of (B.6), (B.7), (B.10) for n ≥ 1
{[

(z
d

dz
+ 2(n+ 1)

]

t(z) + (n+ 1)T (z) +
b

6
n(n2 − 1)z−2

}

t(0)

+t(z)bδn,2z
−2 =

1

z4

1

zn
[L+n, X] + ... , (n ≥ 1). (B.31)

We now use the definition

Y (z) := {b+ z2 (2t(0) + T (0)) + z3L−1t(0) + ...} (B.32)

for the term arising from the OPE T (z)t(0) = Y (z)/z4, discussed in (2.21).

Note that the so-defined function Y (z) has an analytic z-dependence, and

hence no logarithms. We denote this fact by writing (in view of the notation

used in (B.2))

Y (z) = Y (0)(z) . (B.33)

Thus, we may write this as
[

(z
d

dz
+ 2(n− 1)

]

X(z) + (n+ 1)Y (0)(z)

+z2

[

b

6
n(n2 − 1)t(0) + bδn,2t(z)

]

=
1

zn
[L+n, X(z)], (B.34)

at n ≥ 1. To simplify the notation, we also define

Z(n; z) := z2

[

b

6
n(n2 − 1)t(0) + bδn,2t(z)

]

, (B.35)

and

Z(0; z) = Z(1; z) = 0, (B.36)

Moreover,

Z(2; z) = z2b [t(0) + t(z)] , Z(n; z) := z2 b

6
n(n2 − 1)t(0), (B.37)
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for n ≥ 3, where

t(z) =

∞
∑

n=0

zn

n!

( d

dz

)n
t(0), (B.38)

in parallel to

T (z) = T (z)1(0) =

∞
∑

n=0

znL−2−n1(0) =

∞
∑

n=0

zn

n!

( d

dz

)n
T (0),

T (0) = L−21(0). (B.39)

Hence, we see that

Z(n; z) = Z(0)(n; z) (B.40)

contains no logarithms.

Now, we may write the previous equation, (B.34), in the following final

form (recalling the definitions (B.32) and (B.35))

[

(

z
d

dz

)

+ 2(n− 1)

]

X(z)+(n+1)Y (0)(z)+Z(0)(z) =
1

zn
[L+n, X], (n ≥ 1).

The recursion for the coefficients now reads

n ≥ 1 :

[m+ 2(n− 1)]X̂(0)
m + X̂(1)

m + (n+ 1)Ŷ (0)
m + Ẑ(0)

m (n) =
[

L+n, X̂
(0)
m+n(0)

]

,

[m+ 2(n− 1)]X̂(1)
m + 2X̂(2)

m =
[

L+n, X̂
(1)
m+n(0)

]

,

[m+ 2(n− 1)]X̂(2)
m =

[

L+n, X̂
(2)
m+n(0)

]

. (B.41)

(We have omitted terms containing a triple power of the logarithm, as they

will not be generated.)

For n = 0 we obtain from (B.6), (B.7), (B.10)

[L0, t(z)t(0)] =

{(

(

z
d

dz

)

+ 2

)

t(z) + T (z)

}

t(0) + t(z)
(

2t(0) + T (0)
)

(B.42)

or

(

z
d

dz

)

X(z) + Y (0)(z) + z4t(z)T (z) = [L0, X(z)] , (B.43)
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leading to

mX̂(0)
m + X̂(1)

m + Ŷ (0)
m + z4t(z)T (z) =

[

L0, X̂
(0)
m (0)

]

,

mX̂(1)
m + 2X̂(2)

m =
[

L0, X̂
(1)
m (0)

]

,

mX̂(2)
m =

[

L0, X̂
(2)
m (0)

]

. (B.44)

B.5. Summary of Recursions

Notation:

X(z) = X(0)(z) + [ln(z)]X (1)(z) + [ln2(z)]X(2)(z) + ... .

X(i)(z) =

∞
∑

n=0

zn X̂(i)
n (0), (i = 0, 1, 2, ...). (B.45)

(We omit the position (0) in the formulas below.)

• Ah(z)Ah(0) =
1

z2h
X(A)(z) + ... ,

(

identity operator, h′ = 0
)

, (B.46)

m = 0, 1, 2, ...

n ≥ 1 : [m+ h(n− 1)]X̂(A;0)
m + X̂(A;1)

m =
[

L+n, X̂
(A;0)
m+n

]

,

[m+ h(n− 1)]X̂(A;1)
m =

[

L+n, X̂
(A;1)
m+n

]

, (B.47)

n = 0 : mX̂(0)
m + X̂(1)

m =
[

L0, X̂
(0)
m

]

,

mX̂(1)
m =

[

L0, X̂
(1)
m

]

. (B.48)

• T (z)T (0) =
1

z4
X(T )(z) ,

n ≥ 1, m = 0, 1, 2, ... :

[m+ 2(n− 1)]X̂(T ;0)
m =

[

L+n, X̂
(T ;0)
m+n

]

. (B.49)
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• t(z)Ah(0) = 1
z2 X

(tA)(z) + <(z), T (z)Ah(0) = 1
z2Y (z),

m = 0, 1, 2, ...

n ≥ 1 : [m+ 2n]X̂(tA;0)
m + (n+ 1)Ŷ (0)

m

+
b

6
n(n2 − 1)A(0) + X̂(tA;1)

m =
[

L+n, X̂
(tA;0)
m+n

]

,

[m+ 2n]X̂(tA;1)
m + 2X̂(tA;2)

m =
[

L+n, X̂
(tA;1)
m+n

]

, (B.50)

etc.

n = 0 : (m+ h)X̂(tA;0)
m + Ŷ (0)

m + X̂(tA;1)
m =

[

L0, X̂
(tA;0)
m

]

,

(m+ h)X̂(tA;1)
m + 2X̂(tA;2)

m =
[

L0, X̂
(tA;1)
m

]

, (B.51)

etc. (Note that the combination Ŷ
(0)
m + X̂

(tA;1)
m appearing in the first of

these two equations must vanish, because X̂
(tA;0)
m has weight (h +m). This

determines X̂
(tA;1)
m with the same result as in Section B.7 below.)

• t(z)t(0) =
1

z4
X(t)(z)+... , T (z)t(0) =

1

z4
Y (t)(z),

n ≥ 1; m = 0, 1, 2, ... :

[m+ 2(n− 1)]X̂(t;0)
m + X̂(t;1)

m + (n+ 1)Ŷ (t;0)
m + Ẑ(t;0)

m (n) =
[

L+n, X̂
(t;0)
m+n

]

,

[m+ 2(n− 1)]X̂(t;1)
m + 2X̂(t;2)

m =
[

L+n, X̂
(t;1)
m+n

]

,

[m+ 2(n− 1)]X̂(t;2)
m =

[

L+n, X̂
(t;2)
m+n

]

, (B.52)

n = 0 : mX̂(t;0)
m + X̂(t;1)

m + Ŷ (0)
m + z4t(z)T (z) =

[

L0, X̂
(t;0)
m

]

,

mX̂(t;1)
m + 2X̂(t;2)

m =
[

L0, X̂
(t;1)
m

]

,

{

mX̂(t;2)
m

}

=
[

L0, X̂
(t;2)
m

]

. (B.53)

(Again, we have omitted terms containing a triple power of the logarithm,

as they will not be generated.)
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B.6. Details of OPE Ah(z)Ah(z) ∼ 1

The form of the descendants of the identity operator appearing in the OPE

Ah(z)Ah(z) of two primary operators, in the normalization of (2.16), corre-

sponds to the coefficients

X(A;0) = 1 + z2 h

b
t(0) +O(z3),

X(A;1) = z2 h

b
T (0) +O(z3) . (B.54)

Let us illustrate how the order O(z2) terms, and similarly all the others, are

obtained from the leading term in (B.54) by applying the recursion.

The lowest order terms of (B.54) read

X
(A;0)
0 = 1; X

(A;1)
0 = 0 . (B.55)

Using (B.47) with m = 0 and n = 2 leads to

h+ 0 =
[

L+2, X
(A;0)
2

]

, (B.56)

0 =
[

L+2, X
(A;1)
2

]

, (B.57)

which implies, using (B.9), (B.10)

X
(A;0)
2 =

h

b

(

t(0) + α T (0)
)

,

X
(A;1)
2 =

h

b
β T (0) . (B.58)

Using (B.48) with m = 2 we get

2X
(A;0)
2 +X

(A;1)
2 =

[

L+0, X
(A;0)
2

]

,

2X
(A;1)
2 =

[

L+0, X
(A;1)
2

]

, (B.59)

which yields, when setting the arbitrary constant α→ 0

2t(0) + β T (0) = 2t(0) + T (0) ,

2β T (0) = 2β T (0) . (B.60)

Hence we have found β = 1 (α = 0), in agreement with (B.54). (Note that

α is arbitrary because if corresponds (at c = 0) to the contribution of a

primary operator T (z) (the stress tensor) to the OPE Ah(z)Ah(z).)
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B.7. Details of OPE t(z)Ah(z) ∼ Ah(z)

We begin by writing down the leading terms in the OPEs (B.2), (B.22),

(B.24),

X(tA;0) = 0 +O(z) ,

X(tA;1) = −hA(0) +O(z) ,

Y (z) = hA(0) + zL−1A(0) +O(z2) . (B.61)

Recall that in the notation of (3.2)

X(tA;0) = z `−1A(0) + z2 `−2A(0) + ... . (B.62)

a) We start with (B.50) for m = 0 and n = 1, which reads

2X̂
(tA;0)
0 + 2Ŷ

(0)
0 + X̂

(tA;1)
0 =

[

L+1, X̂
(tA;0)
1 (0)

]

,

2X̂
(tA;1)
0 + 2X̂

(tA;2)
0 =

[

L+1, X̂
(tA;1)
1 (0)

]

. (B.63)

Using the information contained in the lowest order terms of (B.61) this

becomes

hA(0) =
[

L+1, X̂
(tA;0)
1 (0)

]

,

−2hA(0) =
[

L+1, X̂
(tA;1)
1 (0)

]

. (B.64)

The solutions of these equations are

X̂
(tA;0)
1 (0) = −

1

2
X̂

(tA;1)
1 (0) =

1

2
L−1A(0) + γ1 Ãh+1(0) ,

X̂
(tA;1)
1 (0) = −L−1A(0) − δ1 B̃h+1(0) , (B.65)

where γ1, δ1 are so-far arbitrary coefficients, and Ãh+1(0), B̃h+1(0), could be

any primary operators of conformal weight (h + 1) (if those exist). Making

use of (B.51) with m=1 shows however that δ1 = 0, whereas γ1 remains

arbitrary. Ãh+1(0) represents the null-vector mentioned above Eq. (3.9);

using the notation (B.62),

`−1A(0) −
1

2
L−1A(0) = γ1 Ãh+1(0) . (B.66)

If the particular theory under consideration does not have a weight-(h + 1)

primary operator, then the extra primary in the first equation of (B.65) is

also absent.
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b) We continue with (B.50) for m = 0 and n = 2, which reads

4X̂
(tA;0)
0 + 3Ŷ

(0)
0 + bA(0) + X̂

(tA;1)
0 =

[

L+2, X̂
(tA;0)
2 (0)

]

,

4X̂
(tA;1)
0 + 2X̂

(tA;2)
0 =

[

L+2, X̂
(tA;1)
2 (0)

]

. (B.67)

Using again the information contained in the lowest-order terms of (B.61)

we arrive at

(2h + b)A(0) =
[

L+2, X̂
(tA;0)
2 (0)

]

,

−4hA(0) =
[

L+2, X̂
(tA;1)
2 (0)

]

. (B.68)

c) Furthermore, continuing with (B.50) for m = 1 and n = 1, we get

3X̂
(tA;0)
1 + 2Ŷ

(0)
1 + X̂

(tA;1)
1 =

[

L+1, X̂
(tA;0)
2 (0)

]

,

3X̂
(tA;1)
1 + 2X̂

(tA;2)
1 =

[

L+1, X̂
(tA;1)
2 (0)

]

. (B.69)

Using the solution (B.65), this becomes (upon setting α = 0)

3

(

1

2

)

L−1A(0) + L−1A(0) =
5

2
L−1A(0) =

[

L+1, X̂
(tA;0)
2 (0)

]

,

−3L−1A(0) =
[

L+1, X̂
(tA;1)
2 (0)

]

. (B.70)

Let us summarize parts b) and c): the equations (B.68) and (B.70),

(2h+ b)A(0) =
[

L+2, X̂
(tA;0)
2 (0)

]

,

−4hA(0) =
[

L+2, X̂
(tA;1)
2 (0)

]

,

(5/2)L−1A(0) =
[

L+1, X̂
(tA;0)
2 (0)

]

,

−3L−1A(0) =
[

L+1, X̂
(tA;1)
2 (0)

]

, (B.71)

represent four equations for the four unknowns α(0), β(0) and α(1), β(1), which

determine the coefficients X̂
(tA;0)
2 (0) and X̂

(tA;1)
2 (0), respectively, through

X̂
(tA;0)
2 (0) =

(

α(0)L−2 + β(0)(L−1)
2
)

A(0) + γ2 Ãh+2(0) ,

X̂
(tA;1)
2 (0) =

(

α(1)L−2 + β(1)(L−1)
2
)

A(0) . (B.72)
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Here the coefficient γ2 remains undetermined, and Ãh+2(0) is any primary

of weight (h+ 2). In the notation of (B.62)

`−2A(0) −
(

α(0)L−2 + β(0)(L−1)
2
)

A(0) = γ2 Ãh+2(0) . (B.73)

(As before, a similar contribution to X̂
(tA;1)
2 (0) vanishes by (B.51).)

B.8. Details of the OPE t(z)t(z) ∼ 1

The form of the OPE t(z)t(z) in (2.24) corresponds to the following coeffi-

cients

X(t;0) = z2t(0) +
1

2
z3L−1t(0) +O(z4) ,

X(t;1) = −2b+ z2[−4t(0) − T (0)] +
1

2
z3L−1[−4t(0) − T (0)] +O(z4) ,

X(t;2) = z2(−2)T (0) +
1

2
z3(−2)L−1T (0) +O(z4) . (B.74)

Let us derive this OPE from the most singular term,

X
(t;0)
0 = 0, X

(t;1)
0 = −2b, X

(t;2)
0 = 0 , (B.75)

by applying the recursion (B.52).

To this end, we first make use of (B.9) and (B.10) with n = 0, 1, 2 to

obtain

[L0, T (0)] = 2T (0), [L0, t(0)] = 2t(0) + T (0) , (B.76)

[L+1, T (0)] = 0, [L+1, t(0)] = 0 , (B.77)

[L+2, T (0)] = 0, [L+2, t(0)] = b , (B.78)

[L+2, L−1T (0)] = 0, [L+2, L−1t(0)] = 0 . (B.79)

The three equations (B.52) read for the special case m = 0, n = 2

0 =
[

L+1, X̂
(t;0)
1

]

, {0 − 2b+ 3b} =
[

L+2, X̂
(t;0)
2

]

,

0 =
[

L+1, X̂
(t;1)
1

]

, {2(−2b) + 0} =
[

L+2, X̂
(t;1)
2

]

,

0 =
[

L+1, X̂
(t;2)
1

]

, 0 =
[

L+2, X̂
(t;2)
2

]

, (B.80)
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which determines the right-hand side up to primary operators (i.e. T (0) in

this case, which we added below with undetermined coefficients α, β, γ),

X̂
(t;0)
1 = 0 , X̂

(t;0)
2 = t(0) + αT (0) ,

X̂
(t;1)
1 = 0 , X̂

(t;1)
2 = −4t(0) + βT (0) ,

X̂
(t;2)
1 = 0 , X̂

(t;2)
2 = γ T (0) . (B.81)

The remaining terms are determined by using scale invariance, i.e. by

(B.44) in the special case m = 2,

2(t+ αT ) + (−4t+ βT ) + 2(2t + T ) =
[

L0, X̂
(0)
2 (0)

]

= 2t+ T ,

2(−4t+ βT ) + 2γT =
[

L0, X̂
(1)
m (0)

]

= (−4)(2t + T ) + 2βT ,

2γT =
[

L0, X̂
(2)
m (0)

]

= 2γT , (B.82)

or

2α+ β = −1, γ = −2 . (B.83)

In the first of (B.81) we can always change α by redefinitions as in (2.23),

and here we choose α = 0. This yields β = −1, γ = −2 in agreement with

(B.74).

B.9. Subtraction of log and log-squared terms from t(z)t(0)

OPE

In this subsection we consider the contribution of (the Virasoro representa-

tion, or ‘conformal family’ [1] of) the identity operator to the linear combi-

nation of OPEs discussed in (5.4) of Section (5.1),

t(z)t(0) + 4A2(z)A2(0) ln(z) − T (z)T (0) ln2(z) +
1

2
T (z)T (0) ln(z) . (B.84)

We have set α = 0 for convenience (but it can easily be reinstated). Our

aim is to demonstrate that both single and double powers of ln(z) are absent

from this expression to all orders in z.

• Log-squared terms:

It is clear that the term proportional to ln2(z) cancels; the expansion

coefficients for this linear combination are

X̂2;total
m := X̂(t;2)

m + 4X̂(A;1)
m − X̂(T ;0)

m . (B.85)
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The recursion is the same for all three summands, so that we obtain the

combined recursion

[m+ 2(n− 1)]X̂2;total
m =

[

L+n, X̂
2; total
m+n

]

. (B.86)

Now, since the expression X̂2;total
m vanishes for small values of m, it in fact

vanishes for all values of m as a consequence of this recursion relation.

• Terms with a single power of log:

Next consider the terms proportional to a single power of ln(z); the ex-

pansion coefficients are

X̂1;total
m := X̂(t;1)

m + 4X̂(A;0)
m +

1

2
X̂(T ;0)
m . (B.87)

The relevant recursion relations are

[m+ 2(n− 1)]X̂(t;1)
m + 2X̂(t;2)

m =
[

L+n, X̂
(t;1)
m+n

]

,

[m+ 2(n− 1)]4X̂(A;0)
m + 4X̂(A;1)

m =
[

L+n, 4X̂
(A;0)
m+n

]

,

[m+ 2(n− 1)]
1

2
X̂(T ;0)
m =

[

L+n,
1

2
X̂

(T ;0)
m+n

]

.

This can be combined into the key equation

[m+ 2(n− 1)]X̂1;total
m + 2

{

X̂(t;2)
m + 2X̂(A;1)

m

}

=
[

L+n, X̂
1;total
m+n

]

. (B.88)

Note that the expression

2
{

X̂(t;2)
m + 2X̂(A;1)

m

}

(B.89)

is an inhomogeneity, which feeds into the recursion ‘externally’.

We see from the third of (B.74) and the second of (B.54) that

2
{

X̂(t;2)
m + 2X̂(A;1)

m

}

= z2{−2T (0) + 2T (0)} +O(z3) = 0 +O(z3). (B.90)

Furthermore, from the second of (B.47) and the third of (B.52) we see

that the quantity
{

X̂
(t;2)
m + 2X̂

(A;1)
m

}

satisfies the recursion in the second

of (B.47). Since the m = 0, 1, 2 coefficients of the recursion vanish, all coef-

ficients vanish. Hence,

2
{

X̂(t;2)
m + 2X̂(A;1)

m

}

= 0 . (B.91)
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In conclusion, the recursion in (B.88) now reduces to

[m+ 2(n− 1)]X̂1;total
m =

[

L+n, X̂
1;total
m+n

]

. (B.92)

One finds by inspection that X̂1;total
m , as defined in (B.87), vanishes for small

values of the index m. Due to (B.92) this expression then vanishes identi-

cally for all values of the index m.

Appendix C

In this appendix we elaborate on the arguments given below (3.10). Let φ(z)

be a Kač-degenerate primary field, such as e.g. A5/8(z) in (3.10). Let Λ be

a polynomial in Virasoro lowering operators L−m (m ≥ 1), so that
(

Λφ
)

(0) is Virasoro primary, i.e L+n

(

Λφ
)

(0) = 0, (n ≥ 1) . (C.1)

An example is Λ =
(

L−2 −
2
3L−1L−1

)

in Eq. (3.10).

Assume that
(

Λφ
)

can be set to zero when inserted into any correlation

function with other operators. This implies in particular that

〈
(

Λφ
)

(0) φ1(z1) φ2(z2) φ3(z3)...φN (zN )〉 = 0 (C.2)

for all primary operators φ1, ...φN . We will show that

`+n
(

Λφ
)

(0) 6= 0 (C.3)

for some n ≥ 1 leads to a contradiction with (C.2). To see this, con-

sider the special case where φ2 = φ†1 has non-vanishing two-point function

< φ1(z)φ
†
1(0) > 6= 0. Thus, we know from (2.16) and (C.2) that

〈Λφ(0) t(z2) φ3(z3)...φN (zN )〉 = 0 (C.4)

since the insertion of T (z), appearing also in the OPE φ1(z1)φ
†
1(z2), vanishes

due to (C.2) because T is primary at central charge c = 0. Hence we conclude

from the representation (3.3) of `n, where the integration contour surrounds

the origin, that

〈`n
(

Λφ
)

(0) φ3(z3)...φN (zN )〉 = 0, (for all n ≥ 1) (C.5)

for all primary operators φ3, ...φN (again, due to (C.2) and because T (z) is

primary). This completes the proof.
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