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A LARGER THAN NAIVE CUT-OFF IN A SIMPLE MODEL*
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We find the dependence of the maximum cut-off on the fermion mass in a nonrenormal-
izable field theory of a single massive vector boson with an axial vector coupling to a
fermion with a small but non-zero mass.

The quantum field theory of a single massive vector boson with mass M
with an axial vector coupling to a fermion with mass p is a simple example
of a nonrenormalizable theory. The Lagrangian is

1 0s M?% . -
_ZF Faﬁ‘FTA Ao +([E P+ g Avys)p — pip . (1)

Because this is a nonrenormalizable theory, there is some maximum possible
cut-off, A, above which this theory does not make sense. How does A depend
on u?7 Naively, we might say that the cut-off scales with M /g, the apparent
scale of gauge symmetry breaking. However, because this gauge symmetry is
abelian, this need not be correct. Indeed, in this theory, it seems clear that
A — oo as p — 0, because in this limit, the massive gauge boson couples
to a conserved current.* We would like to find how A depends on pu for
p< Mfg.

One way to approach this issue is to try to find an explicit UV completion
of the nonrenormalizable theory. Then we can examine in detail how the
cut-off appears. In this short note, we will build such a UV completion and
explicitly see how A can grow at least as fast as

Am%,/bg%. (2)
9 gH

* This work is supported in part by the National Science Foundation under grant PHY-0244821.

2 The current in the simple model with a single fermion is anomalous, but we could eliminate this
by doubling the fermion without any essential change in the model.
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The strategy will be to produce the massive vector boson in a sponta-
neously broken gauge theory but to generate the gauge boson mass with a
field with very small charge, which can therefore have a very large VEV.
Specifically, we consider a scalar field £ with U(1) charge

g
: Q
for large n, and a VEV
(¢) =nv where v=M/g. (4)

The VEV (4) lowers the scale of symmetry breaking, but it also prevents
us from coupling £ to a fermion with charge 1, and thus we cannot directly
generate a majorana mass for the fermion. We deal with this problem by
this by adding additional fermions with the charge differences chosen to allow
Yukawa coupling of & between neighboring fermion states. Suppose we add
m ~ n additional fermions to get an m + 1 dimensional fermion field v, with
fermion charges that look like this:

=l 0o - 0 0 0
0o z=1_2 g ... 0 0 0
0 o 2=l 1. 0 0 0
Q=y :
0 0 0 apel _ amd 0 0
0 0 0 0 el _m=2
0 0 0 0 0 m—l_ 2m
2=l 9 0 0 0 0
0 =5 0 0 0
0o o 29 0 0 0
=9 : : . : : (5)
o 0 0 --2T 9 0
o 0 0 - 0 22
0 0 0 -+ 0 0 -2zt

The fermion in the first row has charge of order 1, but as we go down the
fermion multiplet, the charges decrease gradually.
This charge assignment allows Yukawa couplings of the form (for m > 5)

e (HE + LEW, (6)
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where the symmetric matrices H and L have the form

0 0 0 - 0 0 —hims
0 0 0 -+ 0 —hym O
0 0 0 - —hgma O 0
0 0 —hmig--- 0 0 0
0  —hma O 0 0 0
~hmi1n O 0 0 0 0

L=1: : : : ) (8)
0 O 0 0 0 0
0 0 Lpz---0 0 0
0lmi12 0 00 0

where hjj = hy ; and £} = {} ;. There are constraints on the size of these
Yukawa couplings from the requirement that the theory be stable under ra-
diative corrections. Anticipating that we will be interested in the case where
all the non-zero entries in (7) and (8) are of the same order of magnitude,
and that we will be interested in large n, we will assume that the Yukawa
couplings go like 1/4/n, so that the anomalous dimension of the ¢ field is not
large for any n. Then the factor of n in the VEV, (4) produces a fermion
mass matrix that scales like y/n for large n.
Thus we expect a fermion mass matrix of the form

0 0 0 e 0 0 —Q1 m+1
0 0 0 0 —a2.m bg,m_;.l
0 0 0 crr —A3m—1 b37m 0
My = dmov/n : : R : : (9)
0 0 —am-1,3 " 0 0 0
0 —Qm2 bm,g e 0 0 0
—Om41,1 bpg12 0 - 0 0 0

where the entries a;;, = ay j and b;;, = by ; are less than or of order 1.

It is very easy to analyze the consequences of (9) in the limit that the
a entries are smaller than the bs. In the limit ¢ — 0, the fermion in the
first row decouples from the rest and is massless. The b term describes a
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majorana mass matrix for the m additional fermions, which have masses
4roy/nbjs1myo—; forj=1tom. (10)

When the a terms are small but non-zero, they generate a mass for the light
fermion state

m+1 m
= Amuy/n H ajm+2—j H bjt1mt2—j - (11)
j=1 j=1

This generates the low energy theory we are interested in. The low energy
theory breaks down at the energy scale where we start to encounter the
additional fermion states. Thus the cut-off A is of the order of the smallest
of these masses. To maximize A, we then want to choose all the bs of order
1, in which case

M
A =~ dmoy/n =~ dny/n — . (12)
)

We can now begin to see where (2) comes from. For any fixed bound a;; <
ag < 1 on the a values, the light fermion mass p is suppressed exponentially
in n;

p < drvy/naf (13)

so that for large m ~ n
M
log — > nlog1/ay (14)
gu

and thus

dr M M

A< ———/log — .
log1l/ayg 9 gu

(15)

The trouble with this argument is that it is not obvious how to choose
ag. We would expect that as n increases for fixed p, a would be driven to
1. Things get complicated in this limit because we can no longer separate
the mass matrix into a mass matrix for the extra fermions plus a separate
light fermion. Instead, we have to diagonalize the full mass matrix. The
effective cut-off will then be the mass of the second lightest fermion. In
general, this would be quite difficult, but we expect from the analysis above
that we are interested in the situation in which all the bs are 1 and all the



September 11, 2004 12:18 WSPC/Trim Size: 9.75in x 6.5in for Proceedings georgi

A larger than naive cut-off in a simple model 2099

a are equal. This mass matrix can be analyzed fairly easily.” It looks like
this:

00 0 0 —al
00 0--—al 0

Mp=dmov/n [ 00 0 on 0 (16)
00 —a--- 0 0 0
0 —al--0 0 0

-1 0 --- 0 0 O

It is useful to consider the positive definite mass-squared matrix

a? —a o --- 0 0 0

—al+a®> —-a --- 0 0 0

0 —a 1+a%®--- 0 0 0
MIMp=16z%%n | ¢ ¢ o (17)

0 0 0 ---1+a® —a 0

0 0 0 -+ —a 14+a®> —a

0 0 0 - 0 —a 1+a®

We will now find (at least approximately) the eigenvectors and eigenvalues
of this matrix, and then see what the consequences are for the cut-off. We
will first find the eigenvalues purely mathematically. However, this mass-
squared matrix has an interesting mechanical analog in a system of coupled
oscillators. This may help some readers to get a feeling for the structure. It
is described on page 2103, and readers who get bored with the mathematical
derivation may wish to flip forward to this more intuitive approach.

It is straightforward to verify that the eigenvectors of (17) have the form

sin(m + 1)t
sinmt
: : (18)
sin 2t
sint
where a, and t are related by

_ sin(m + 1)t
“= sin(m + 2)t (19)

b In fact, for small n and relatively heavy fermions, one can increase the cut-off slightly by allowing
the as to be different, but this is not important for very light fermions.
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and the eigenvalue can be written as
sin? ¢

167%02 n —5—— .
sin?(m + 2)t

(20)

For the lowest state, the sines become hyperbolic functions,® with ¢ = i7,
and the eigenvector has the form

sinh(m + 1)7
sinhmr
: (21)
sinh 27
sinh 7
Everywhere in the region of interest (that is where the low energy theory

contains a light fermion with with appropriate coupling) mr is large enough
that we can approximate

_sinh(m + 1)1

= e . 22
¢ sinh(m + 2)71 ‘ (22)
for 7 > 0.
So we fix the mass of the light fermion by setting it to the lowest eigen-
value

sinh? 7

2 22
=16m"v'n ———
H sinh?(m + 2)7

~ 16m202 n (o~ —a)?a®m 2 (23)

and the corrections to the approximations in (22) and (23) are down by a
factor of about

e—2m'r ~ a2m ) (24)
Now we can find the higher eigenstates, at least approximately, for large
n. The 7 and t must satisfy

sin(m+ 1)t sinh(m + 1)7
a = = ~~
sin(m+2)t  sinh(m + 2)7

e’ (25)

and there will be m solutions for ¢, which we call ¢t;, for kK = 1 to m. We can
write the ¢;s as

km 0
_ . 2
= T 12 (26)

¢ At least we are interested in the region of parameter space in which this is true,
a < (m+1)/(m+2).
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Here we should think of k/(m+ 1) as order 1 because it can be at the top of
the tower of massive fermion states. And we expect 6 o k. But the second
term in (26) is small for large n. Then for large n we can write

sinty ~ sin + O cos hm
P T T m 12 mt 1
sin(m 4 1)ty ~ (—1) sin O
k m+ 1 )
Or + km 0 O + km
. -~ k . k k k
sin(m + 2)t ~ (—1) <sm 1 + CESE cos ~ ) (27
Then (25) implies
0 0, + k
a%sinmil/sin ;—:_f. (28)
We can now find the ;s as follows:
0y, km
Z = t i 29
PRy i Ty i (29)
1 k 0 k
~Sec — =1+ cot —*— tan —— , (30)
a m+1 m+1 m+1
tan —~ _ — : ]Zfl = m+i7r , (31)
m+1 2 sec i — " 1—acos ]
0 1 — acos 27
cot —= 1= k;nH : (32)
m + asin T
km
9 a sin 27
sin —* mil (33)
m+1 \/1 + a2 kirl
and thus
) 1 . k sin mk—j_rl
sin(m + 2)ty = —sin(m + 1)ty = (—1) —
a
\/1 +a? — 2acos ;15
i 1 — acos £z
cos —= ml : (34)

m+ 1 \/1—|—a2—2acoswlfjrrl
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The eigenvalues in this approximation are

sin? ¢,

M? = 16n°v*n ———
F sin?(m + 2)t

k
~ 167%0° n <1 + a2 — 2acos — 2 ) . (35)
m—+1

This approximation becomes exact both for large m and for small a (we will
discuss this further when we discuss the mechanical analog on page 2103
below) It is a good approximation even for rather small m, as illustrated in
figures 1 and 2.

Figure 1. The large eigenvalues of (17) and the approximate function (35) in units of 167202 n
form=10and a = .1
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Figure 2. The large eigenvalues of (17) and the approximate function (35) in units of 167202 n

form=5anda= 4

The mass-squared matrix (17) This has an amusing mechanical analog.
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We can write (17) as
—k*+K/m —K/m 0 0 0 0
~K/m  wi+2K/m —K/m - 0 0 0
0 —-K/m wi+2K/m - 0 0 0
0 0 0 s wEH2K/m —K/m 0
0 0 0 o —=K/m  wi+2K/m  —K/m
0 0 0 - 0 —K/m  wi+2K/m
(36)

where

K 2,2 2 2,2 2 2 2,2

— =167"v"na, wj=16m"v"n(l—a)*, k“=16m"v*na(l—a). (37)
m

This could be the MK matrix for a system of oscillators coupled with
spring constant K. The last coupling spring is attached to a fixed wall
(the 2K /m rather than K/m in the lower right-hand corner includes the
contribution of a spring connecting the last oscillator to the wall). All but
the first of the oscillators have uncoupled angular frequency wg, but the first
is actually in unstable equilibrium in the absence of coupling. One could
build such a thing (for example) with rigid light pendulum rods connected
to coupled masses as shown in Figure 3. The left pendulum is inverted to
give an unstable equilibrium.  Physically, we can think of this unstable

Figure 3. A mechanical system for which the frequencies of the normal modes are proportional
to the eigenvalues of the fermion mass-squared matrix (17) (for m = 4 in this case). The es
are frictionless pivots. The pendulum rods are rigid, so the pendulum on the left would be in
unstable equilibrium in the absence of the coupling springs.

equilibrium as driving one eigenvalue to be much smaller than the others. If
the coupling (proportional to a) is small, the normal mode with the small
frequency will involve primarily the inverted pendulum. That means that for
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small a, the inverted pendulum will be nearly at rest in all the other modes
(because the eigenvectors must be orthogonal). Thus all but the lowest mode
can be described approximately by a simpler system in which the inverted
pendulum is replaced by a fixed wall, as shown in Figure 4. This is the
approximation that leads to (35). Evidently, this approximation becomes
exact for small a for any n.

Figure 4. A mechanical system that gives a good approximate description of the large eigen-
values (35) when the coupling is small or the number of block is large.

The eigenvectors for the system of Figure 3 for a = 0.1 are depicted in
Figure 5.

0.75¢ \

-0.25¢

-0.5¢

Figure 5. The eigenvectors for the system of Figure 3 for a = 0.1. An additional point (labeled
6) has been added at the position of the fixed wall to guide the eye.

Now having understood the structure of the mass matrix, we can return
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to the issue of the cut-off. Let us first recall (23),

sinh? 7

~ 16 2.2 —1 _ 2 2(m+2) . 23
sinh2(m+2)7' mvin(a a)"a (23)

,u2 = 167202 n

Once we specify the precise relation of m to n, this gives p as a function of
a and n. For definiteness, we will take

m=n+1 (38)

because this will give a reasonable value of the fermion coupling to the vector
boson in the low energy theory. Then (23) becomes
sinh? 7

~ 16 2.2 —1_ 2 —2(n+3) 39
sinh?(m + 2)7 mvn(e a)”a (39)

uz = 167%v’n
or
1= 4mv/n (1 —a?) o™ (40)

The cut-off corresponds roughly to the bottom of the tower of massive
states, which from (35) is

A% =~ 167%0% n <1 +a® — 2acos 12> . (41)
n

Now for large n, the cosine is 1 and we can write
A? =~ 167202 n (1 —a)? . (42)

To get a quick sense of what is going on, we can make a scatter plot of

(2,y) = <log {1 / log 4%’”] log ﬁ) . (43)

This is shown in Figure 6, and shows clearly the dependence we anticipated
in (2).

We can find the boundary either by holding p fixed and maximizing A
or by holding A fixed and maximizing pu. The latter is somewhat simpler
because it is easy to solve (42) for n,

A2
" T 167202 (1 — a)?

(44)

and then

o= A(l + CL) a1+A2/167r21)2 (1—a)? ) (45)
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P N W A~ OO N

14 -12 -10 -8 -6 -4 -2

Figure 6. Scatter plot of (43) showing that the boundary of the allowed region has slope
—1/2, in agreement with (2). The straight line is y=-x/2.

It is easiest to look at the log,

A% logl/a

log u =log A + log(1 4 a) + loga — 167202 (1—a)?

(46)

For large A, the last term in (46) is the important one (the others are either
small or independent of a), so the maximum value of y occurs at fixed a, at
the minimum of

log1/a
— 47
(1—a)? (47)
which is for
log 1
a=ag=0.2847 for which L/“O? = 2.4554 . (48)
(1 —ap)
Thus at the maximum
1 A% log1/ag
8 4ro T T 167202 (1 — ag)? (49)
or
M M
A ~0.6382 x —4[/log — . (50)
g g

This is shown as the straight white line just below the boundary in Figure 7.
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P N W A~ OO N

14 -12 -10 -8 -6 -4 -2

Figure 7. Scatter plot of (43). The straight white line is (50).

The coupling of the fermion in the low energy theory for the maximum
cut-off can now be calculated approximately from the fermion charge matrix,
(5) and the explicit form (21) for the light eigenstate, using the fact that
now from (25),

e"=a=ag. (51)

The result for the charge is
0.324
qoﬁzg<1+7+~->. (52)

Thus we have demonstrated in a simple model how the cut-off in a non-
renormalizable theory may be parametrically larger than the obvious dimen-
sional scale in the model. This raises a number of questions that we hope to
address in a future publication.

e How does the maximum cut-off we found in this explicit UV comple-
tion compare with what we would expect from unitarity arguments?

e Is there any vestige of the large cut-off in a non-abelian theory where
the scale of gauge symmetry breaking has a physical meaning?

e Are there other classes of non-renormalizable theories in which the
maximum cut-off is parametrically larger than expected from naive
dimensional analysis?

We hope that the answers to some of these questions may shed light on
the fine-tuning issues that we seem to face in particle physics.



