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HEISENBERG-EULER EFFECTIVE LAGRANGIANS:
BASICS AND EXTENSIONS

GERALD V. DUNNE

Department of Physics
University of Connecticut
Storrs, CT 06269-3046, USA

I present a pedagogical review of Heisenberg—Euler effective Lagrangians, beginning with
the original work of Heisenberg and Euler, and Weisskopf, for the one loop effective action
of quantum electrodynamics in a constant electromagnetic background field, and then
summarizing some of the important applications and generalizations to inhomogeneous
background fields, nonabelian backgrounds, and higher loop effective Lagrangians.
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Dedicated to the memory of lan Kogan, a great physicist and friend,
whose enthusiasm for life and science is sorely missed.

1. Introduction: the Heisenberg—Euler Effective Lagrangian
1.1. The Spinor and Scalar QED one loop results

In classical field theory the Lagrangian encapsulates the relevant classical
equations of motion and the symmetries of the system. In quantum field
theory the effective Lagrangian encodes quantum corrections to the classical
Lagrangian, corrections that are induced by quantum effects such as vac-
uum polarization. This can be used as a semi-phenomenological device, as
in effective field theory, or as a fundamental approach in which one uses
an external classical field as a direct probe of the vacuum structure of the
quantum theory. The seminal work of Heisenberg and Euler [1], and Weis-
skopf [2] produced the paradigm for the entire field of effective Lagrangians
by computing the nonperturbative, renormalized, one-loop effective action
for quantum electrodynamics (QED) in a classical electromagnetic back-
ground of constant field strength. This special soluble case of a constant
field strength leads immediately to several important insights and applica-
tions.

In spinor QED, the one-loop effective action for electrons in the presence
of a background electromagnetic field is

S = _ilndet(i)—m) = —% In det(I)* +m?), (1.1)

where the Dirac operator is [ = +" (0, +ieA, ), A, is a fixed classical gauge
potential with field strength tensor F},, = 0, A, —0,A,,, and m is the electron
mass. This one-loop effective action has a natural perturbative expansion
in powers of the external photon field A,, as illustrated diagrammatically in
Figure 1. By Furry’s theorem (charge conjugation symmetry of QED), the
expansion is in terms of even numbers of external photon lines. Heisenberg

M@M . . .

Figure 1. The diagrammatic perturbative expansion of the one loop effective action (1.1).
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and Euler, and Weisskopf, showed that in the low energy limit for the ex-
ternal photon lines, in which case the background field strength F,, could
be taken to be constant, it is possible to compute a relatively simple closed-
form expression for the effective action, which generates all the perturbative
diagrams in Figure 1. Heisenberg and Euler [1] expressed their final answer
for spinor QED in several equivalent ways:

{ (nem B 2¢(E.§)> + ]
os (ney/B2 — B2 4 20(E ) ) e

2,2
+1+ 2L (F2 - E2)},

1 [dy e, . 9 5 [cosh[
_hc/o 7736 { ictabn cosh|

1 [*dn
—e

(1) — —
. he Jo

Sp

—neke {ie2172 (Eé)

29
+1+ %(b2 — a2)},

0 2 1.2 2,2
L G ),
he Jo 7P tanh(ebn) tan(ean) 3

Here &, is the critical field strength

m2c?

Ee=—,
c eh
and a and b are related to the Lorentz invariants * characterizing the back-
ground electromagnetic field strength [1],

(1.3)

oo = 1

o> -V =E*-B?= —5 Fw " = =2F , (1.4)
L 1 -

ab:E'B:—ZijFqu—g. (15)

Thus

a:\/\/]—“2+92—.7-", b:\/\/}“2+92+7- (1.6)

aThere has been a notational reversal [3,8,62] of a < b since the original Heisenberg-Euler
paper [1]. I stick here with Heisenberg’s original notation since in a frame in which B and E are

parallel, we associate b «» B and a < E, which seems more natural. Also, modern formulations
2

have adopted Schwinger’s choice [12] of units in which the fine structure constant o = §— — £,
in which case the prefactor in (1.2) is hi -
c 87
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If G # 0, it is possible to transform to a Lorentz frame in which the elec-
tric and magnetic fields are parallel or antiparallel, depending on the sign
of G. A suitable sign choice is implicit in (1.6). The a and b parameters
are significant because b and +ia are the eigenvalues of the 4 x 4 antisym-
metric constant matrix F},,,. This explains why this constant field strength
case is exactly soluble; a constant F),,, can be represented by a gauge field
A, = —%FH,,:E” , which is linear in z. Thus, in an appropriate basis, the
Dirac operator factorizes into two independent Landau level problems, of
“cyclotron” frequencies b and ia respectively. Hence the traces in (1.1) can
be done in closed form in terms of trigonometric functions, leading directly
o (1.2). For details see [1-8].
Weisskopf [2] computed the analogous quantity for scalar QED
g

scalar

]
=3 In det (Di +m?) (1.7)

which involves the Klein—Gordon operator rather than the Dirac operator.
Weisskopf obtained (I have converted from his different units and different
definition of the critical field, which introduces various factors of 27):

P /°° e, { 2ie*n? (E.B)
scalar — 3
2 r—
he Jo  m [cos <e17\/E2 B2+ 2i(E.B) > - C.C.:|

e*n?
1-——(B
-l gy

o @{ 2ie’ abr”
2he Jo [cosh[(b — ia)en] — cosh[(b + ia)en|Big]

- a2)},

6

o0 272 2,2
L _cat g )
2he Jo 7P sinh(ebn) sin(ean) 6

(1.8)

Note that the prefactor becomes 16% in Schwinger’s units [12].

1.2. Physical Applications

The Heisenberg and Euler result (1.2) leads immediately to a number of
important physical insights and applications.
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1.2.1. Nonlinear QED Processes : Light-Light scattering

The Euler-Heisenberg effective Lagrangian (1.2) is nonlinear in the elec-
tromagnetic fields, the quartic and higher terms representing new nonlinear
interactions, which do not occur in the tree level Maxwell action. The first of
these new interactions is light-light scattering, represented diagrammatically
by the second Feynman diagram in the expansion in Figure 1. Expanding
the Euler-Heisenberg answer to quartic order we find

4
SO J . / die [(B2= B+ 7(B-BP|+...  (19)

which gives the low energy limit (since the field strength was constant) of the
amplitude for light-light scattering. As first discussed by Euler and Kockel
[9], these nonlinearities can be viewed as dielectric effects, with the quantum
vacuum behaving as a polarizable medium. In Weisskopf’s words [2]:

“When passing through electromagnetic fields, light will behave as if
the vacuum, under the action of the fields, were to acquire a dielectric
constant different from unity.”

The full light-light scattering process in QED was not solved until 1951 by
Karplus and Neuman [10].

1.2.2. Pair-production from vacuum in an electric field.

The presence of a background electric field accelerates and splits virtual
vacuum dipole pairs, leading to eTe™ particle production: see Figure 2.
This instability of the vacuum was realized already by Heisenberg and Euler
[1], motivated in part by earlier work of Sauter on the Klein paradox [11].
This pair production process was later formalized in the language of QED
by Schwinger [12,13]. Heisenberg and Euler [1] deduced the leading pair
production rate in a weak electric field to be

€2E2 2

m-m
- . 1.1
43 P [ cE } (1.10)

T~

This rate is deduced from the imaginary part of the effective Lagrangian
(1.2) when the background is purely electric

I =2ImL. (1.11)

In modern language, this imaginary part gives the rate of vacuum non-
persistence due to pair production [12,13]. The rate is extremely small for
typical electric field strengths, becoming more appreciable when the E field
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Figure 2. A static electric field can tear apart a virtual ete™ pair from the vacuum, producing
an asymptotic electron and positron, as shown on the left. On the other hand, a static magnetic
field does not break this virtual dipole apart, as shown on the right for a magnetic field directed
out of the page.

approaches a critical value E,. ~ % ~ 106 Vem ™!, where the work done
accelerating a virtual pair apart by a Compton wavelength is of the order
of the rest mass energy for the pair. Such electric field strengths are well
beyond current technological capabilities, even in the most intense lasers.
For an excellent recent review of the search for this remarkable phenomenon
of vacuum pair production, see [14]. Even though the condition of a con-
stant electric field is rather unrealistic, Heisenberg and Euler’s result (1.10)
provides the starting point for more detailed analyses which incorporate
time-dependent electric fields, as is discussed below in Section 2.

1.2.3. Charge renormalization, (8 functions and the strong-field limit.

Another remarkable thing about Heisenberg and Euler’s result (1.2) is that
they correctly anticipated charge renormalization. The first term (on each
line) on the the RHS of (1.2) is the bare result, the second term is the
subtraction of a field-free infinite term, and the third term is the subtraction
of a logarithmically divergent term which has the same form as the classical
Maxwell Lagrangian. This last subtraction corresponds precisely to what
we now call charge renormalization, as was later formalized by Schwinger
[12,13]. Indeed, the study of such logarithmically divergent terms was a
major focus of the early quantum field theory work of both Heisenberg and
Weisskopf. Weisskopf [2] noted the characteristic strong-field limit behavior
of the Heisenberg—Euler result (1.2), for example for spinor QED in a strong
magnetic background,

1
Laxwell 1272 7% \ 2

), B— 0. (1.12)

In modern language, the coefficient of the logarithmic dependence of this
ratio is known as the one-loop QED [ function, and Weisskopf anticipated
the importance of such logarithmic behavior. In later work [15] he showed
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that for n > 2 loop order in perturbation theory, the divergence was at most
log" ™!, a fact that was important for the work of Gell-Mann and Low [16] and
the development of the renormalization group. This connection between the
strong field limit of effective Lagrangians and (§ functions will be discussed
in more detail below in Section 5.

1.2.4. Low-energy effective field theory

The Heisenberg—Euler result (1.2) is the paradigm of what is now called “low
energy effective field theory” [17,18]. In this approach one describes the
physics of some light degrees of freedom (here the photon field) at energies
much lower than some energy scale above which one has integrated out the
heavy degrees of freedom (here the electron field). Generically, the effective
Lagrangian is expanded in terms of gauge and Lorentz invariant operators
O™ for the light fields, respecting the relevant remaining symmetries:

o™
=m? n— 1.1
Log =m Zn: - (1.13)

By power counting, the operators O™ are balanced by appropriate pow-
ers of the heavy mass scale m. We can see this structure directly in the
Heisenberg—Euler result (1.2), for example in the first nontrivial term, the
light-light scattering term (1.9). The full expansion is given below in (1.15)
and (1.17). The light photon field is described in terms of gauge and Lorentz
invariant operators constructed from the field strength F,,,, and having mass
dimension n. At mass dimension 8, we can have (F,,, F*)? or (F,, F*)?, as
in (1.9). At mass dimension 10, we could have terms involving derivatives
of the field strength, such as (0,F,,0"F"?)(Fa3F°?), which do not show
up in the Heisenberg—Euler result, but which can be found in a derivative
expansion about the constant field result, as discussed below in section 2.
The effective field theory interpretation of the Heisenberg—Euler Lagrangian
also makes connection with the operator-product-expansion (OPE), where
the polarization tensor is expanded as

H,uz/ = (qMQI/ - q2guu) Z Cn(Q2) <O(n)> (1'14)

n

as is discussed in detail in [19-21].

1.3. Weak-field expansions of Heisenberg—FEuler

In this section I present some results for various weak-field expansions of the
Heisenberg—Euler spinor QED effective Lagrangian (1.2), as well as for the
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corresponding scalar QED effective Lagrangian (1.8) derived by Weisskopf.

1.3.1. Spinor QED case

The weak field expansion of (1.2), expressed in terms of the Lorentz invari-
ants a and b defined in (1.5), is
4 00 n 2n—2k . 2k
o m (2n — 3)! Z By Bop ok 2eb 2iea '
spmor 82 o — (2k)!(2n — 2k)! \ m? m2
(1.15)

Here the By, are the Bernoulli numbers [22-25], which arise from the Taylor
expansions of the trigonometric functions appearing in (1.2),

OO 22k82k & -1 k22k82k
z cothz = Z k). 2 2 cotz = Z (ET)' 22 (1.16)
k=0 k=0

At any given order in m™2", the combinations of a and b can be rewritten in
terms of the more familiar Lorentz invariants (E? — B?) and E - B in (1.5).
For example, the first two orders yield

4 ( a* a2 b2 bt 6 [ a® at b2 a2 bt o
€ <m+ 7 1 360 +e 630 T 780 — 180 — 630

(1)
‘Cspinor ~ mir2 mBm2
B et [(a® = )2 + 7(ab)?] = €%(a® —b?) [2(a?® — b%)% + 13(ab)?]
N 360min2 + 1260m872 *

(1.17)

The first term in (1.17) corresponds to the light-light scattering result (1.9),
while the second gives the low energy limit of the diagram in Figure 1 with
six external photon legs, and agrees with Eqn. (43) in [1].

Several special cases of the general expansion (1.15) are of interest.

(1) Purely magnetic background: If the background is purely magnetic,
of strength B > 0, then the integral representation (1.2) reduces to

22 o0
o eB/ . <COth3_§_§> /e (118)
0

spinor - {72 52 3

which has the asymptotic expansion

RO Bon+a 2eB\™™ | 19)
spinor 872 —~ (2n + 4) (271, + 3)(2n + 2) m2
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This example illustrates clearly that the Heisenberg—Euler perturba-
tive weak field expansion (1.15) is a divergent asymptotic series, since
the Bernoulli numbers Bs,, alternate in sign and diverge factorially fast
in magnitude [22,23],

(2n)!
(27-‘-)211

Here ((n) denotes the Riemann zeta function [23]

By, = (—1)"12 ¢(2n) . (1.20)

[e.e]

¢(n) =

k=1

1
T (1.21)
which is exponentially close to 1 for large integers n. In this magnetic
field case, the perturbative series is divergent but alternating, and
is Borel summable [26]. In fact, the Borel sum of (1.19) is simply
the original Heisenberg—Euler integral representation (1.18), as can be
checked using the relation [22,23]

00 $3
coths — — — - Z 32 R (1.22)

Purely electric background: If the background is purely electric, of
strength F > 0, the integral representation (1.2) reduces formally to

2E2 o) 1
PRI / = <COts— —+ %) e (1.23)
0

spinor 87‘(’2 82

This integral representation has the asymptotic expansion

4 0 _1\n 2n+4
L oomt ()" Ban+a 22BN (120)
spinor ™ 52 2 (o 1 4) (2 + 3) (2 + 2)

If only one of E or B is nonzero, the only Lorentz invariant is E?—B B
therefore, changing from the perturbative series (1.19) to the perturba-
tive series (1.24) simply involves the replacement B? — —FE?2. There-
fore, in the electric case the perturbative series (1.24) is divergent and
nonalternating, and thus is not Borel summable [26]. This has a dra-
matic physical consequence. It means that the effective Lagrangian has
an exponentially small nonperturbative contribution which is imagi-
nary, even though it is real to all orders in perturbation theory. This is
a classic signal of instability, and corresponds precisely to the vacuum
instability of vacuum pair production first noted by Heisenberg and
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Euler. This imaginary part can also be seen to arise from the poles on
the real s axis encountered in the integral representation (1.23), which
shows that this integral representation must be defined more carefully,
with an approriate ie prescription [3,12]. From this integral represen-
tation, or from a Borel dispersion relation, it is straightforward to de-
rive the full nonperturbative imaginary part of the Heisenberg—Euler
effective Lagrangian to be

(1.25)

spinor "’ {73 ﬁ ex

Imﬁ() e?E2 SN 1 b [_mzﬂn} .
n=1

In modern language this result, first derived by Schwinger [12], gives
the higher order instanton contributions to the leading imaginary part
(1.10) found by Heisenberg and Euler.

(3) Perpendicular magnetic and electric background fields: If E.-B =0,
then G = 0, and from (1.6) we see that either a = 0 or b = 0, depending
on the sign of F. If E2 > B2, then the situation is as for the purely
electric field, with a vacuum instability. On the other hand, if B? >
EZ?, then the system behaves like the case of a purely magnetic field. If
E? = B?, then Eépznor vanishes and there are no quantum corrections
at all.

(4) Parallel magnetic and electric background fields: As mentioned previ-

ously, if E-B = 0, then it is possible to make a Lorentz transformation
to a frame in which B and E are parallel (or antiparallel). In this case
we can take a = F, and b = B [recall that we are using Heisenberg’s
original notation for a and b, as in (1.5)]. Then we can rewrite the
effective Lagrangian (1.2) as

2 —m?2nrt 2
1 EB / dt e (eBt) th E
ﬁsplnor - 473 Z n 1+ (6Bt)2 CO B nm

+% coth <§ m> } (1.26)

using a remarkable trigonometric identity due to Ramanujan and
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Sitaramachandrarao [27, 28]

e’ th ( E)
(mx cot mx)(my cothmy) =1 4 7T—2(y2 — 2?) — 2may? O
3 — n(n2 +y?)
coth (n
—9rz yz ) ()

Thus, we see that in this case of parallel electric and magnetic fields,
the imaginary part of the effective Lagrangian is
o

2 2
1) eEB—1 B _mAmn
ImL o ~ = nz: coth 7 v | exp 5 | (1.28)

n
=1

a result stated by Bunkin and Tugov [40], and obtained in a very
different manner by Nikishov [29] using a virial representation of the
imaginary part of £. Note that as B — 0 we recover the Schwinger
instanton result (1.25), and that for B > 0 we get a slight, but not
strong, enhancement to the prefactor, with the exponent being un-
changed.

1.3.2. Scalar QED case

The analysis of the previous section for the weak field expansions of the
spinor QED effective Lagrangian (1.2) can also be applied to Weisskopf’s
effective Lagrangian (1.8) for scalar QED. The weak field expansion of (1.8),
expressed in terms of the Lorentz invariants a and b defined in (1.5), is

Z zn: BaoxBon ok 2eb =2k 9iea\ 2
Lt ™ 16 1672 < (2k)!(2n — 2k)! \ m? m?2 '

(1.29)
We have defined the convenient shorthand
_ (1 _ 22k—1)
BQk‘ — 22k—1 82]{: ) (130)
in terms of which the relevant expansions are (compare with (1.16))
o _
V4 22k82k ok 2 BQk 2k
= — = . 1.31
sinh z kz—;) (2k)! 7 Sz Z_: : (131)

As in the spinor case, at any given order of (1.29), the combinations of a and
b can be rewritten in terms of the more familiar Lorentz invariants ( E? — B?)
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and E - B. For example, the first two orders yield:

4(7_&%*_@4_@) 6(—31b6 7b4a2_7b2a4+w>
(1) 360 36 ' 360 2520 360 360 T 2520
Escatar 16 mn? 16 m®m?
et [T(a® —b%)? + 4(ab)?] N e%(a? — b?) [31(a® — b?)? + T7(ab)?] N
B 5760m4m2 40320m8 72

(1.32)

The first term in (1.32) agrees with the first term listed in [2].

Several special cases of the general expansion (1.29) are of interest.

(1) Purely magnetic background: If the background is purely magnetic,

of strength B > 0, then the integral representation (1.8) reduces to

22 [e¢)
) :eB/ ds( = 1+f> ems/eB) (1.33)
0

scalar ™ 12 s2 \sinhs s 6

which has the asymptotic expansion

scalar 1672 v (2n + 4) (271 + 3)(2n + 2) m? ' .

Once again, this is a divergent but Borel summable perturbative series,
and the Borel sum gives precisely the integral representation (1.33).

(2) Purely electric background: If the background is purely electric, of

strength E > 0, then the integral representation (1.8) reduces formally

to
21,72 [e'e]
1n € E ds 1 1 S —m2s/(cE
Escalar - W/O 8_2 <— e 6 € (eh) : (135)

sin s S

This integral representation has the asymptotic expansion
r® m* i (=1)"Banta 2¢E) " (1.36)
scalar = 1672 = (2n+4)(2n +3)(2n +2) \ m? C

As in the spinor case, this is a non Borel summable perturbative series,

and correspondingly the effective Lagrangian has a nonperturbative
imaginary part given by

mzwn]

212 ©© n—1
(1) E (—1)
> 5

1 €
Im‘cscalar ~ 167’(‘3 n2

exp [_ (1.37)

n=1
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(3) Perpendicular magnetic and electric background fields: If E-B= 0,
then G = 0, and from (1.6) we see that either a = 0 or b = 0, depending
on the sign of F. If E2 > B2, then the situation is as for the purely
electric field, with a vacuum instability. On the other hand, if B? >
E2 then the system behaves like the case of a purely magnetic field. If

= B2, then oS

scalar

vanishes and there are no quantum corrections
at all.

(4) Parallel magnetic and electric background fields: If E and B are par-
allel, we can rewrite the effective Lagrangian (1.8) as

- t n 1+ (eBt)? sinh (£ nr)

scalar — 87'['3
(eEt)?  (=1)"
1 — (eFt)? sinh (E mT) } . (1.38)

) ?EB & /m@e—mzmt{ (eBt):  (~1)"
170

using another remarkable trigonometric identity due to Ramanujan
and Sitaramachandrarao [27]

2
T Y ™ 2 2
=14 —(2®—
(Sinﬂ'l‘) (Sinhﬂ'y> * 6 @ =)
1 o (D" 1
) — 2may® :
T’y Z - ac2 sinh (nw) oy zz:l n(n? +4?) ginh ( £>

(1.39)

Thus, we see that in this case of parallel electric and magnetic fields,
the imaginary part of the effective Lagrangian is

2

2EB 1 memn
Scalar 1672 z_:l smh( mr) xp ek |’

(1.40)

a result first obtained in a different manner by Popov [30]. Once again,
note that as B — 0 we recover the pure electric field result (1.37), and
that for B > 0 we get a slight, but not strong, enhancement to the
prefactor, with the exponent being unchanged.
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1.4. Strong-field expansions of Heisenberg—FEuler

In order to discuss the strong-field expansions of the Heisenberg—Euler ef-
fective Lagrangians (1.2) and (1.8), it is useful to convert the proper-time
integral representations into zeta function expressions and alternative in-
tegral representations which are more suited to the strong field limit. We
concentrate here on the case of a magnetic background field. In zeta func-
tion regularization [5,6,31,32] we define the determinant of an operator O
in terms of its ¢ function

C(s) =D _A~* (1.41)
A

where the sum is over the eigenvalues A of O. Then the determinant of O
can be defined as

det O = exp [-('(0)] . (1.42)

For the Heisenberg—Euler effective Lagrangians in a magnetic background,
these ¢ functions can be expressed in terms of the standard Hurwitz ¢ func-
tion of number theory [22,23,25],

o0

Cr(s,2) =Y (n+2)7° Re(s)>1, v#0,-1,-2,.... (143)

n=0

This Hurwitz ¢ function can be analytically continued in the s plane to define
an analytic function with a single simple pole at s = 1.

1.4.1. Spinor QED case

For spinor QED in a magnetic background, the eigenvalues of the Dirac
operator are

M=m?+k? +eB@2n+1+1) , n=0,1,... (1.44)

.

where the =+ refers to the two spin components, and k | is the transverse
2-momentum. Then the ¢ function for this Dirac operator is [5]

eB & k) (m?+ k2 +eB2n+1+£1)\ "
ot =52 [ o (MR

~ m* (eB 2<%>S 5 1 m? m2\'
—m<m> =D <H<S‘ ﬁ)‘(ﬁ)

(1.45)



September 11, 2004 12:8 WSPC/Trim Size: 9.75in x 6.5in for Proceedings dunne

Heisenberg—FEuler Effective Lagrangians 461

Here the overall factor of % is the Landau degeneracy factor, and the renor-
malization scale p has been introduced to make the eigenvalues dimension-
less. Given this form in terms of the Hurwitz zeta function, it is straightfor-
ward to obtain

, (63)2 , m2 m? m?
Csplnor(o) 472 { CH < " 92¢B 2eB n 2eB

S CON I COl S

With on-shell renormalization (@ = m), and subtracting the zero field con-

_|_

tribution, —?3’2%2, which ensures that £ vanishes when B = 0, we obtain

spinor

W (B, m oomEN, (m
Espinor_ 272 CH 17 2B +CH 17263 In 2%eB

11/ m2\?
IR UL I 14
21 <ZeB> } (1.47)

2

Here we have used the fact [22,25] that (g (—1,v) = -5 + 2 — %

We can exhibit directly the equivalence of this {-function representation
(1.47) with the proper time integral representation (1.18) by noting the fol-
lowing integral representations of the Hurwitz ¢ function [22],

1 00 e—zt 755—1
Cu(s,z) = dt , Re(s)>1 , Re(z)>0
0

I'(s) 1—et
1-s -5 —1-s s—1 0
z z 52 2 dt 5,4 1t
= — tht — — — -
-1 2 T +F(s)/0 s © «© t 3)°
(1.48)

where the second expression is valid for Re(s) > —2, as a result of the
subtractions of the integrand [34]. Thus, we can evaluate the derivative at

s = —1, as required,
1 22 1 [>®dt 1t
I - - _z _ o - = =2zt -
Cy(=1,2) 5 Cr(—1,2)Inz 4/0 12 € <cotht ; 3) .
(1.49)

Comparing with (1.47), we recover exactly the familiar proper-time integral
representation (1.18) for the one loop Heisenberg—Euler effective Lagrangian

e

spinor”
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Now to make a strong-field expansion of Eéﬁnor we use the following
relation between the Hurwitz ¢ function and the log of the I' function [22,25],

z

C(=1,2) = ¢'(=1) = S In(2m) — 3

(1—2)+ /OZ Inl(z)dx . (1.50)

This identity follows from an integration of Binet’s integral representation
[25] of InT'(z). Thus we can write

o :@{_i+gf(_1)_m_2+z<m_2>2_m_21n(27r)

spinor A2 12 4eB 2eB 4eB
2
1 m? 1/ m?\> m? 2B
S Y (e In( — InT'(z)dx ;.
YT T 2 <2eB> n<2eB> +/0 nl(z) x}
(1.51)

In the strong-field limit, the range of integration in the last term vanishes
so we can use the Taylor expansion [22,23] of InT'(x),

Inl(z) =—Inzx — vz + Z (_1)nC(n) z", (1.52)
n=2

n
where ((n) is the usual Riemann ¢ function. This leads to

B)? 1 m? 3/ m2\? m?
e B Ly w3 (N
somor = 52\ T POV gt al\sep) T 2ep BT

S om L mP N o\
12  4eB 2 \ 2eB 2eB 2 \ 2eB

+% <1 ~In <%>> * nf: (;(171):((17;) <2TZ;>”+1} |

=2

_|_

(1.53)
The leading behavior in the strong field limit is
1) (eB)? 2eB
ﬁspinor ~ W In W + ... (154)

which agrees with Weisskopf’s original observation (1.12).
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1.4.2. Scalar QED case

For scalar QED the analysis is very similar. There is no spin projection term
in the eigenvalues of the Klein—Gordon operator, so the ¢ function is

2k, (m?>+k2 +eB@2n+1)\ °
Cscalar Z/ — < = ( )>

12

- (ng <2eB> (sil) CH (s_ 3+ %) (1.55)

With on-shell renormalization (@ = m), and subtracting the zero field con-

. . 3m4
tribution §7,

2
1) __(63)2 , l m? 3
Eacatr = =g\ (b T aep ) T 2eB

[1 +in <2m;>] Ci ( L %) } (1.56)

We can exhibit directly the equivalence of this (-function representation to
the proper time integral representation (1.33) by noting the following integral
representations of the Hurwitz ¢ function,

we obtain

Cu(s 14_2) — L/OO e 2ty t e!/2 dt Re(s) > 1, Re(z) > 1
%9 TI0s) Jo I—et™ ’ 2

=8 gpmlms 28—l /°° at ., 1 1t
= - + Ll T
s—1 24 L(s) Jo tt— sinht t 6

(1.57)

where the second expression is valid for Re(s) > —2 as a result of the sub-
tractions of the integrand. Thus, we can evaluate the derivative at s = —1,
as required,

Cu(—1 1+) 1[1+1 ] Z2+21
|2 z 51 nzl— o+ oz
it .,/ 1 1 t
—= L LS 1.
4/0 2 © <sinht t+6> (1.58)

Comparing with (1.56), we recover exactly the familiar proper-time integral
representation (1.33) for the one loop Heisenberg—Euler effective Lagrangian

o

scalar*
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1

Now to make a strong-field expansion of £_/, =~ we use the following re-
lation between the Hurwitz ¢ function and the log of the I" function [22,25],

p 1 1, z In2 22 /z
~1,= =—=((=1) = 2 In(271) — — + = InT
(L5 +2) = 5D - Fmen) — 52+ 5+ [ (e g )de
(1.59)
where we have used the fact that [33,34]
2 1
/ InT(z)dx = ln2+ ln7r—|—§——C( 1) . (1.60)
0
The strong-field expansion is obtained using the Taylor expansion,
Iy 1 o~ (D)2 n
lnF(x+§)zilnw—(’y+2ln2)x+§:: - ((n)x
(1.61)

Thus, we obtain the strong-field expansion

cm (B2 [5 mINT T 1w
scalar 7 422 ) 4 \ 2¢B 24 2 ZeB

1 In2 m2 1 [/ m?
@-5(

1+ (3i5)

>2(7—|—21n2)

(-1 === 1n -
2C( ) 24 4eB 2eB

S (™)

The leading behavior in the strong field limit is

(0B <@> T (1.63)

scalar 96 7T2 m2

(1.62)

2. Inhomogeneous backgrounds: beyond the constant field
strength limit

The Heisenberg-Euler and Weisskopf results, (1.2) and (1.8) respectively,
are computed for the special case where the background field strength F),,
is constant. Clearly, it is of interest to be able to compute the effective
Lagrangian in more general cases, where F},, is inhomogeneous. The general
formalism for computing such determinants was developed by Schwinger
[12,13], Salam and Matthews [35], and Salam and Strathdee [36], among
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others. It is, unfortunately, cumbersome to do such calculations, and so
several physically relevant approximate techniques have been developed. I
briefly review these in this section.

2.1. Solvable inhomogeneous backgrounds

There exist a limited number of solvable cases in which one can compute
the effective Lagrangian in a more-or-less closed-form, analogous to the
Heisenberg-Euler result (1.2). These solvable cases reveal some interest-
ing new physics, beyond the constant field approximation, as well as pro-
viding useful checks on the more general approximate techniques. In order
for a particular background to lead to such an explicit form for the effec-
tive Lagrangian, we need to be able to solve the spectral problem for the
corresponding Dirac or Klein—Gordon operator appearing in (1.1) or (1.7),
respectively. Solvable Dirac and Klein—Gordon equations have been stud-
ied exhaustively, so one can simply look through the list of solvable cases
and decide if the corresponding electromagnetic background is physically
relevant.

2.1.1. Plane-wave background

The simplest case of an inhomogeneous background is that of a single
monochromatic plane wave field. This was shown to lead to a solvable Dirac
equation by Volkov in 1935 [37], and is described in [38]. Such a gauge field
can be written A, = A, (k-x), where k,, is light-like (k-k = 0), and k- A = 0.
Then the solutions to the Dirac equation can be written explicitly as

e(y-k)(y- A)} u(p)
2(k - p) V2po '

where p is the momentum, u(p) is a fundamental free spinor, and the phase

I ko e(p-4) e? A2 -
0= [ (Ga) s g) - 22)

Having the exact solutions means one can compute the exact Green’s func-

P, = e [1 + (2.1)

factor € is

tion, which in turn means one can compute the one-loop effective action.
Schwinger [12] showed that the effective action in fact vanishes for such a
plane wave background. (This is consistent with the fact that for a plane
wave both Lorentz invariants F and G vanish, so that the low frequency
limit Heisenberg—Euler result vanishes.) In Schwinger’s words [12], “there
are no nonlinear vacuum phenomena for a single plane wave, of arbitrary
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strength and spectral composition”. In particular, Schwinger’s result means
that there is no pair production in a single monochromatic plane wave back-
ground, which can be understood from simple energy and momentum con-
servation — at least two plane waves are necessary to produce a pair [12,39].
The problem of pair production in crossed laser beams has been addressed
recently in [41].

2.1.2. Time dependent electric field E(t) = E sech?(wt)

With such an electric field, pointing in a fixed direction, spatially uniform,
but with a special prescribed sech2(wt) time dependence, the Dirac and
Klein—Gordon equations reduce to hypergeometric equations. Narozhnyi
and Nikishov [42] (see also [30]) used this fact to express the effective action
as

ImS:i%/d%L/dpzlog(liwp) , (2.3)

where the upper/lower signs + refers to spinor/scalar QED, respectively, and
(2s 4 1) is an overall spin factor of 2 for spinor QED and 1 for scalar QED.
The momentum has been divided into p, along the direction of the electric
field, with p| being the transverse momentum. The w, can be computed as
a scattering amplitude factor for the corresponding Dirac or Klein—Gordon
equation. For spinor QED one finds [42]

sinh7(A — g+ v)sinhw(A+ p — v)

spinor __ i : 7 (24)
P sinh (=X + p+v)sinh w(XA + p+ v)
where A = —Z—g, and
1
= — 2 2 2
p= 2w\/m +p1 + (pz +eE/w)?,
1
1/_2w\/m +p7 +(p: —eE/w)?. (2.5)
For scalar QED one finds [42]
hra(N — (N —
wscalar — cos ﬂ—( M+ V) cos 7T( + V) (26)

P coshm(N —p—v)coshm(N +pu+v)’
where \' = \/A\? —1/4, and p and v are as defined in (2.5).

When w — 0, the time scale of the electric field tends to infinity and we
recover the constant field results (1.25) and (1.37). To see this, note that
1Fnp

wp ,  where 7, =exp —elE(m2 —l—pi)] . (2.7)
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(:l:l)n71

of the log in (2.3), and finally a Landau degeneracy factor of % from [ d’p.
Thus, the virial representation (2.3) yields

We get a factor of eE from [ dp,, a factor of 1, from the expansion

€2E2 0 (:l:l)n_l

1673 n2
n=1

ImL=(2s+1)

exp [—

in agreement with (1.25) and (1.37).

For nonzero frequency w, the Narozhni-Nikishov answer (2.3) is expressed
as the integral representation (2.3) with w,, given by (2.4) or (2.6) for spinor
or scalar QED respectively. In [43], for spinor QED, a more explicit form of
this exact answer was found, involving just a single integral representation,
analogous to (1.23) for the constant field case.

2mAL3 [ dt eE  tw? 13 —?
S = — +— | (1=v})oF (1,555 ——
3772w/0 e2ﬂt—1[<m2+m2>( v)2l<727271—v2>

+(E — —E)] (2.9)

where v? = %"; + 2%@ t. This can be compared with the proper-time repre-
sentation of the constant field result (1.23), which can be rewritten as

B (eE)2/°°ds _m? 1 s
L= s/, 326 E® | cot s s+3

m* [2eE /00 dt 2B | | (2Et 2 4eE
= —— _— _—_ _— n — _——
872 \ m?2 o et —1| m? m?2 m2
2eEt
+2 arctanh< ¢ 5 > } (2.10)
m

2.1.3. Space dependent magnetic field B(z) = Bsech®(%)

As in the previous case, this case is soluble because the Dirac and Klein—
Gordon equations reduce to hypergeometric equations. In [44] an exact
closed-form expression was found for the spinor effective Lagrangian in 2+ 1
dimensional QED in such a background, and in [45] this was extended to
3 + 1 dimensions. In the 2+ 1 dimensional case [44],

@+1) L o dt . (A2m? +0v3) 1 Am — ivg
S 7= A7t \2 /0 e2mt + 1 <(bjE it) vy B+ g ree )

(2.11)
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where + denotes scalar QED, — denotes spinor QED, c.c. denotes the com-
plex conjugate, and

B (eBA2)2 +1/4 (+) bosons,
be = {eB)\2 (=) fermions, (2.12)
t2+2itby —1/4 (4) bosons
2 + )
VT { t2 +2itb_ (=) fermions. (2.13)

For spinor QED this was extended to 3 4+ 1 dimensions [45], to give

<eB it )(14—112)%

m2  m2)\2 v

9 4L3 00
gB+) _ _2m A / dt arcsin(iv) + c.c.
0

spinor ~ 37T2 e27rt -1

(2.14)

2

where v* = m@—ig + Qifn—g t. This can be compared directly with the constant

magnetic field Heisenberg—Euler result (1.18), which can be written in the
modified form

_ (eB)2/°°ds _m? 1 s
L= st /) 326 B% [ coth s S 3

_om* (2eBY\ [* dt 2eB N\ [y (2Bt
—@ W o e27ft—1 m2 —1 n —+1 m2 + c.c. .

(2.15)

2.1.4. Other solvable backgrounds

Another solvable case, which is very similar to the cases described in Sections
2.1.2 and 2.1.3, is that of an electric field pointing in a fixed direction, static
in time, but having spatial dependence

x
A
along the direction of the electric field. Once again, this case is solvable
because with the gauge field Ag(z) = —EA tanh(g), the Dirac and Klein-
Gordon equations reduce to hypergeometric equations. For details see [46]
and [47]. Such a background in Euclidean 2-dimensional space was studied
in [48].

An interesting class of solvable electric fields was recently found by
Tomaras et al [49,50], who found that when the electric field depends on
a light-cone coordinate x° + 3, then the one loop effective Lagrangian can
be found exactly, and has essentially the same form as the constant field

E(x) = Esech?(%) (2.16)
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Heisenberg—Euler result. Specifically, define the light-cone coordinate
+ L o 3
T = —(z" —x°) (2.17)

and choose the vector potential

zt

A_(zh) = /0 du E(u) (2.18)

with A, = 0, and use the gauge A, = 0. Then the spinor one loop effective
action is [49, 50]

Ss(;mor i 2/ / e~ ism’? [eE(z") s coth (eE(z)s) — 1] .
(2.19)

This leads to a pair production rate

2E2 B (zh) 1 . (eB(zt)\? nmm?
2Im 5 / i 15~ (eBr) ELLLNES
m 55 d'a 47 + 47 nzz:l nw P |eE(x™t)]

2.2. Semiclassical approrimation

The examples listed in the previous section exhaust the analytically solvable
cases with physically realistic inhomogeneous electromagnetic backgrounds.
For more general forms of inhomogeneity in F),, a powerful approach is the
semiclassical approach. The semiclassical method works best if the back-
ground field depends on just one coordinate. Here I concentrate on the
example provided by an electric background field which points in a fixed
direction in space (say the z direction), but has a time dependent profile.
This approach was pioneered by Brezin and Itzykson [51], and Popov and
Marinov [30, 52], building on earlier ionization work by Keldysh [53] and
Perelomov et al [54] which will be discussed below.
For a time dependent electric field we can choose the gauge

A(t) = —g f(wt) = E.(t)=Ef(wt). (2.21)

For example, the solvable case in Section 2.1.2 corresponds to the choice:
A, (t) = —% tanh(wt). I also concentrate in this section on scalar QED;
spinor QED adds some technical details concerning the spin components, but
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the basic techniques and results are very similar. Then the Klein—Gordon
operator for such a background field is

Di +m?=m?+pt + 0+ (p. —eA,)” . (2.22)
We expand the field operator in solutions of [51]
~0 = (p: — Ao = (m* +p)¢ (2.23)
with scattering boundary conditions
¢~ e_it\/m + bﬁeit\/m , t— —00
~ aﬁe_it\/mz—ﬂz , t — +o0 (2.24)

so that particles are viewed as propagating forwards in time and antiparticles
as propagating backwards in time. Then the pair-creation probability is
given in terms of the reflection coefficient b;

d3p
P~ / s el (2.25)

This is an example of “over-the-barrier” scattering [55], and the semiclassical
WKB expression for this amplitude gives

|bs]* ~ exp [—Umj{ \/m2 +p2 + [p. — eA.(1)]2 dt| . (2.26)

Changing variables to u = i[p, — eA,(t)]/m, we can write

2 1 —u?+p?2 /m?
| g VI
bgl? = exp | -2 / o dul (2.27)

where the limits of the u integral are set by the turning points. The ex-
ponential term for the pair production rate comes from neglecting the mo-
menta, which instead affect the prefactor (in fact, different prescriptions
for treating the momenta lead to slightly different forms of the WKB pref-
actor [30,51,52].) The leading WKB approximation for the pair-creation
probability (which is directly related to the imaginary part of the effective
Lagrangian) is then

P ~exp [_7‘- E. 9(7)] ) (2'28)
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where F, = ™% is the critical electric field (1.3) defined by Heisenberg and
Euler, and
A /1 — 92
/ vo v (2.29)
Here v is the “adiabaticity” parameter given by
mw
== 2.30
Y=g (2.30)
For example, in the sinusoidal case,
E
A, = ——sin(wt) = E,(t) = Ecos(wt) (2.31)
w
we can evaluate g(y) exactly [30,51,52],
E — 1 [~ =
1 2
o [K( ;) =)
T 14 ~2 I+~
1-— 1y2 ) < 17
~3 7 (2.32)
= Iny , ~v>1,

where K(z) and E(z) are the complete elliptic integral functions [25].

This is a truly remarkable result as, when inserted into the pair produc-
tion rate (2.28), it leads to an interpolation of the pair production probabil-
ity between a nonperturbative limit when the adiabaticity parameter v < 1,
and a perturbative limit when v > 1,

€xp [_” %] , 7< 1 (nonperturbative),
P~ (2.33)
2
(;£0)4mc /h , v>1 (perturbative),

where we have re-inserted the n and c¢ factors. When v < 1 the time
dependent field is slowly varying and we recover the leading nonperturbative
exponential behavior of the Heisenberg-Euler result (1.10). On the other
hand, when v > 1 the result in (2.33) has the perturbative form of the
square of the gauge field strength (%)2 raised to a power equal to the
number of factors of the photon energies hw needed to make up the pair
creation threshold energy 2mc?.
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It is worth pausing here to recall the corresponding nonrelativistic ion-
ization problem, where this type of interpolation behavior was first found
in a classic paper by Keldysh [53]. Oppenheimer [56] first estimated the
ionization probability for a hydrogen atom in a static electric field E to have
the exponential form

(2.34)

2 2.5
Pwexp[— me}

3 ERl
More generally, for tunneling through a barrier with binding energy &, the
WKB expression is

Ep/eE

2
P ~ exp [— 7 dz+/2m (& — eEz)}
0

12m &Y
=exp | — el (2.35)
3 eEh
For a hydrogen atom, & = 7;—;;, leading to Oppenheimer’s estimate (2.34).

In a seminal paper [53], Keldysh generalized this ionization analysis to a
time dependent electric field, and in particular a monochromatic sinusoidal

field E(t) = E cos(wt). This approach was further developed by Perelomov

. . . Vamed? .
et alin [54]. With the weak field condition, ¥ < ~——;>—, and the condition

for a classical electromagnetic field, hw < &, Keldysh defined the ratio of
these two small ratios to be the “adiabaticity parameter”,

N = hw/Eb o W\/ngb
ehE /(v 2m8§’/2) cE

Using WKB he computed the leading behavior of the ionization probability
to be

(2.36)

P -2 0] (2.37)

where for the sinusoidal electric field

V1472

1
g(v) = <1 + W) arcsinhy — o

2

27, < 1.

~ 137 7 (2.38)
In(2y), y>1.

Keldysh noted that the ionization probability (2.37) interpolates, as v ranges
from 7 < 1 to v > 1, between the nonperturbative tunneling form (2.35)
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and a perturbative multiphoton ionization form,

3/2
exp [—%%] , 7 <1 (nonperturbative).
P~ (2.39)
i 2&p [ hw .
<2UJ\5T—&,) ., v>1 (perturbative).

For v <« 1 we recover the tunneling form (2.35), and for v > 1 we see a
multiphoton form of the ionization rate. The analogy of Keldysh’s result
(2.39) to the QED case for the WKB vacuum pair-production result (2.33)
becomes clear taking the “binding energy” for the pair production process
to be the pair rest energy & = 2mc?.

2.3. Derivative expansion

Another approach to the problem of an inhomogeneous background field
strength F),,, is to expand about the solvable constant field case, in terms
of derivatives of F),,. Thus, generically one obtains an expression for the
one-loop effective action of the form

S = Sig[F] + Sp[F, (0F)*] + Sy [F, (OF)?, (OF)' |+ ...,  (2.40)

where S|y, involves up to 2n derivatives of the field strength. This formal
expansion should of course be understood as a multi-dimensional expansion,
because even the constant field term S|o [F], which is the Heisenberg-Euler
result, has itself a doubly-infinite weak-field expansion, as shown in (1.15).
At higher orders in the derivative expansion, things rapidly become more
complicated since there are many more Lorentz and gauge invariant terms
that can (and do) appear once we include derivatives of F'. In the next
two subsections 2.3.1 and 2.3.2 we consider the question of the convergence
of the derivative expansion and show that it should be understood as an
asymptotic expansion.

Nevertheless, the derivative expansion approach is a very powerful one.
The leading order approximation consists of taking the Heisenberg—Euler
constant field result for the effective Lagrangian, substituting the inhomo-
geneous F),, for the constant one, and then performing the spacetime inte-
grations. In many cases, this gives an excellent approximation to the full
effective action. We expect the derivative expansion to be “good” (in the
sense of an asymptotic expansion [57]) when the scale of variation of the
background field is large compared to the electron Compton wavelength, or
when the scale of variation of the background field is large compared to the
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length scale set by the average magnitude of the background field. For ex-
ample, for a spatially varying magnetic background, with variation scale A,

and peak field B (which defines a “magnetic length” scale lp = \/%), the
derivative expansion is expected to be good when

h
A>p or A> )\Compton =—. (2.41)
me
A very useful tool for systematizing the derivative expansion is to use the
Fock—Schwinger gauge choice

2, A, =0. (2.42)

In this gauge it is possible [19,20] to express the gauge field in terms of the
field strength and its derivatives (evaluated at some reference point z = 0),

1 1
Ap(w) = 52 Foy + ga;%ﬁaﬁFw +...

[e.e]

1
- Z% g Z 2 O Do - O P
n=

1
::L'a/ dnne”w'aFau . (2.43)
0

In this gauge one can expand the effective action (1.1) in powers of deriva-
tives of the field strength. A very convenient formalism for doing such an
expansion is the world-line formalism [58-62] in which the effective action is
written as a quantum mechanical path integral. For scalar QED,

SelA] = /0 - d?Te_sz / D exp{— /0 L B:ﬂ +z'eAu(x(T))¢u(T)](} , |
2.44

where the path integral is over closed spacetime loops x,(7). Keeping just
the first term in the derivative expansion (2.43) of A, this quantum mechan-
ical path integral is Gaussian and exactly solvable. Higher order terms in
the derivative expansion are then generated by expanding the non-Gaussian
interaction terms and computing the resulting expansion terms using the
known worldline Green’s functions for the constant background field about
which one is perturbing. For spinor QED one must also include Grassmann
valued fields v, (7) which are antiperiodic in the propertime parameter 7:
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Y (0) = =9, (T'). Then for spinor QED

dT 2
Ssp[A]:_g/O 7_mT/Dw/,D¢

which can once again be expanded systematically about the constant field
case. The resulting next-to-leading order (NLO) derivative expansion terms
for 2+ 1 dimensions can be found in [63], and for 3+ 1 dimensions in [64,65].

The general expressions, even at the next-to-leading order level, are too
long to be usefully included here. But for a given inhomogeneous back-
ground it is straightforward (albeit tedious) to evaluate the first few orders
of the derivative expansion. Perhaps a more important question is to ask: is
the derivative expansion convergent? As it stands, this is not a well-posed
question because of the proliferation of terms with completely new Lorentz
structures at higher orders. However, this question can be made well-posed
if we restrict the background field to depend on only one spacetime coordi-
nate, with the inhomogeneity characterized by a single scale. In this case
the general derivative expansion expression (2.40) reduces to a double sum,
which we can hope to analyze in more detail. To be even more specific,
consider some of the solvable inhomogeneous cases from Section 2.1 — by
comparing the closed-form answers with the derivative expansion we learn
something about how the derivative expansion behaves.

2.3.1. Spatially inhomogeneous magnetic field B(z) = Bsech?(%)

For this spatially inhomogeneous magnetic background field the exact closed
form answer for the spinor QED effective action was given in (2.14). It is a
simple exercise to make a double asymptotic expansion of this answer,

_LDm! Z i T(2k + 5)0(2k + 7 — 2)Bog 19 <2eB>2k
832 ! m)\ 2 T(2k + 1)T(2k +j + 3) m?
(2.46)

k=1

(where the j = 0 and k = 1 term is excluded from the sum as it corresponds

to a charge renormalization term.) The sum over j corresponds to the deriva-

. . . . A .
tive expansion, with expansion parameter — = (2Semeton)2 while the sum
P : P P GOy )

over k corresponds to a perturbative expansion with expansion parameter
fn—B}, as in the constant-field Heisenberg—Euler case (1.19). The j = 0 term

in (2.46) is the leading order derivative expansion term, and the 7 = 1 term
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is the NLO term. The LO effective Lagrangian is just the Heisenberg—Euler
expression (1.18) for a constant magnetic field,

e?B? [ ds _ 2.8 1 s
ﬁ[o}:—S?/O 8—26 /( )(COthS—g—g)

BQk 2eB
- 87r2 < 2k(2k — 1)(2k — 2) ( > (247)

while the NLO effective Lagrangian for a static but spatially inhomogeneous
magnetic field is [63,65]

0;BO;B [*ds _,
_ P “o _—m?s/(eB) hs)”
L) iy / e (scoth s)

2 0iBOB N Baya (2eB\*
A2 m? Pt (2k —1)

3 (2.48)
which involves two derivatives of the magnetic field. To compare with the
expansion (2.46) of the exact result, we substitute the inhomogeneous mag-
netic field, B(z) = Bsech?(%), for B in the derivative expansion expressions
(2.47) and (2.48), and then integrate over the inhomogeneity direction z.
This yields the LO and NLO derivative expansion results for the effective

action as
L LAmt N 1 Byl 2I<:—2) 2eB\ ¥
2.4
S0~ g Z% T(2k+ 1) <m2> ’ (249)
Bojyol'(2k — 1) 2¢B\ ¥
Y] . 2.
5[2 8)\7‘1’3/2 Z 2]€+ m2 ( 50)

These results agree exactly with the j = 0 and j = 1 terms from the asymp-
totic expansion (2.46) of the exact result. This example clearly illustrates the
approach of substituting the inhomogeneous fields for the fields appearing
in the derivative expansion expressions for the effective Lagrangian.

2.3.2. Time dependent electric field E(t) = E sech?(wt)

Another interesting comparison of the derivative expansion can be made for
this time dependent solvable case, whose exact solution was given in Section
2.1.2. One can do the same thing described above for the inhomogeneous
magnetic case, and compare the asymptotic expansion of the exact result
(2.9) with the LO and NLO field theoretic derivative expansion results from
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[65]. Instead, here I show [66] how the derivative expansion agrees with the
semiclassical WKB results of Section 2.2.

An asymptotic expansion of the exact result (2.9) yields the derivative
expansion

_om! i o~ (1)t <2€E>2k L2k + j)L(2k + j — 2)Baka;
8m/2w (m/w)? \ m? JN2K)IT(2k +j + 3)

(2.51)

SN

Fixing the order j of the derivative expansion, the remaining sum over k is
divergent and nonalternating, and hence has a nonperturbative imaginary
part. For fixed j, the expansion coefficients behave for large k as

Gy (=D (2k + j)T(2k + j + 2)Bogy o542

C =
k T(2k + 3)T(2k +j + 2)
T2k +3j — 1)

Using standard Borel dispersion relations [67,68], one finds [66]

, 1 (amiw?)’ m2 )
U) 0 — (22 -
ImsS 7 <4e3E3> exp [ oE | (2.53)
Remarkably, the sum over j exponentiates to give the leading term:
m2m 1 rmw\2\]
ImsS ~ —— (1= (—) . 2.54
msS exp[ E < RS ) (2.54)

On the other hand, if we first considered a fixed order of the £ summation,
then the remaining j sum is divergent and nonalternating. For large j, the
coefficients behave as

ien D0+ 2B)0() + 2k — 2) By
T+ DI+ 2k + 1)
23_2kr(2j + 4k — 2)

k
= (1)

G j—o00. (2.55)
This leads to the nonperturbative imaginary part
1 [2meE\*

The remaining k& sum also exponentiates, yielding the leading behavior

ImS ~ exp |- 22 (1 B )] (2.57)
(-]
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How do we reconcile these two different expressions (2.54) and (2.57) for
the imaginary part of the effective action? The answer can be found in the
WKB analysis of Section 2.2 and the Keldysh adiabaticity parameter, which
in this case is

mw w/m
=—=—""— 2.58
eE  eE/m?’ (2:58)
the ratio of the two expansion parameters in (2.51).

For this particular time dependent electric field E(t) = Esech?(wt), we
can return to the WKB analysis of Section 2.2 and evaluate [30] the exponent
g(7y) in (2.29) which appears in the leading WKB pair production rate (2.28),

Eg(y) = / 14:15;

o
4

+

, vkl

1+\/1+72 (—% ..), > 1.

Then the WKB approximation (2.28) for the pair-production probability,
P ~ exp[—mmZ2g(y)/(eE)], gives precisely (2.54) in the v < 1 limit, and
(2.57) in the v > 1 limit. In terms of the Borel resummation, it is a matter
of competing exponential factors, with the dominant exponential being de-

(2.59)

2o =

termined by the size of the adiabaticity parameter v. Thus, this derivative
expansion example is completely consistent with the WKB analysis of the
imaginary part of the effective action. It also demonstrates clearly that the
derivative expansion is an asymptotic expansion, rather than a convergent
expansion, because if it were convergent there would be no imaginary parts
generated from the derivative expansion.

2.4. Large mass expansion

The large mass expansion is very closely related to the derivative expansion,
but is a different way of organizing the expansion. For example, consider
the all-orders derivative expansion double series (2.46). This could clearly
be written as an expansion in inverse powers of the mass m, with another
series that involves different powers of the magnetic field strength and its
derivatives,
2 (/2] 2%
. L )\m Z L (2€B) Bgl_gk (2 60)

83/2 m2 e NA=AE (21— 2k)!
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The general structure of the large mass expansion of the effective action is
—m2T
I[F| = / dl' e / dd
o T (4nT)d2
where the functions O,[F] have mass dimension 2n and are expressed in
terms of the field strength F), and its derivatives. There are many dif-
ferent ways to derive such an inverse mass expansion. Perhaps the most
efficient [69] is the string-inspired worldline approach in which the effective
action is expressed as a quantum mechanical path integral over a proper-
time interval 7 € [0,7], as shown for scalar QED in (2.44) and for spinor
QED in (2.45). These worldline forms of the effective action clearly separate
the mass dependence from the background field dependence, and with the
Fock—Schwinger gauge (2.43) lead to manifestly gauge invariant expressions

for the functions O, [F]. A key step in this process is finding a minimal basis
for the O,,[F], since these can clearly be rewritten in various ways using the

, (2.61)

Bianchi identity, the antisymmetry of F},,, and integrations-by-parts. Such
a minimal basis was constructed by U. Miiller in [70], and is described in
detail in [69]. The expressions for the high order terms O, [F] are very com-
plicated and are typically generated using a symbolic manipulation program
such as FORM [71]. Here I list, from [69], the first few terms O,[F] for the
case of charged scalar particles in an inhomogeneous nonabelian background

field:
Ol =0 )
1
02 = 6 trFH)\F)\H )
1 2,
O3 = % tI‘FH)\“FR“)\ — 1—5 1‘CI‘F,,Q)\IT)\MFMH ,
1
04 = ﬁ tr FR}\F)\/J,F;,LVFI/R + 7_0 tr Fﬁ)\pyF)\nVﬂ
2 4
+ g tr FH}\F)\RF/JVFI/,LL + % tr Fn)\F)\MFnVFup
6 . 8 .
35 1tr FH}\FM)\VF,UJ/H ~ 105 1tr Fn)\F)\uuF/wu
11
+ M tr Ff{)\F,u,I/F)\RFI//J, . (262)
Here, F,,, = D,F,,, so it is clear that O,[F] has mass dimension 2n.

The next two terms, Os[F| and Og[F], are also presented in [69], and the
dependence on a background scalar field is included also. The number of
terms appearing in a given O,[F] grows rapidly with n. For example, for
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a gauge background, using the minimal basis, the number of independent
terms in O,[F] is found [69] to be equal to 0, 1, 2, 7, 36, 300, ..., for
n=1,2,...,6, which looks like factorial growth.

2.5. Worldline loops

A recent interesting proposal for evaluating effective actions is to implement
the worldline expressions (2.44) and (2.45) numerically, by doing the quan-
tum mechanical path integral as a Monte-Carlo integration over a randomly
generated set of worldline loops [73,74]. In principle this is a very powerful
and general technique, since it is not constrained by the “slowly varying”
restriction for the applicability of the derivative expansion or the large mass
condition for the inverse mass expansion. Moreover, it can be applied to
both scalar and spinor, and to both abelian and nonabelian systems. So far,
the method has been tested on some fairly simple abelian models (as well
as to the Casimir effect for surfaces of nontrivial shape [75]), and compares
favorably with other methods when a comparison is possible, and produces
robust answers in other inaccessible cases. Technical aspects of this method
are still being developed, but this is an approach whose generality makes it
very promising.

2.6. Bounds

Another approach to the evaluation of one-loop effective actions in nontrivial
inhomogeneous backgrounds is to seek rigorous mathematical bounds using
operator theory and functional analysis. This approach has been developed
recently by M. Fry [76], and also has great potential to yield important infor-
mation about the behavior of fermion determinants in general backgrounds.
For example, in Euclidean 2-dimensions, for a unidirectional abelian field
strength F'(Z), the fermion determinant is bounded below by [76]

Indet(—iJp+m) > % / d?x [eF(f) — (m? + eF(#)) In <1 n eF(:ﬁ’))] '

(2.63)

For higher dimensional systems, such general bounds are considerably more
difficult to establish, but once again their appeal is their generality.

3. Heisenberg—Euler beyond QED

In 1965, Vanyashin and Terent’ev [77] performed a Heisenberg—Euler compu-
tation beyond QED, in a nonrenormalizable theory of vector electrodynam-
ics. They computed the Heisenberg—Euler effective Lagrangian for a massive
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charged vector boson of gyromagnetic ratio 2, in a constant electromagnetic
background field. For an electric background field they found a scalar pair
production rate of the form in (2.8) for spin 1. More significantly, they noted
the anti-screening effect of the vector bosons on the renormalized electric
charge. In hindsight, this is a precursor to asymptotic freedom, but at the
time the physical significance was not appreciated, in large part due to the
fact that this was a nonrenormalizable theory. Later, after the discovery of
asymptotic freedom [78,79], Skalozub [80] explained the physical significance
of Vanyashin and Terent’ev’s results by doing a related Heisenberg—FEuler ef-
fective Lagrangian computation in a renormalizable SU(2) theory with spon-
taneous symmetry breaking. Once the principles of consistently quantizing
nonabelian gauge theories were established, a number of Heisenberg—Euler
applications and calculations followed.

3.1. Cowvariantly constant nonabelian backgrounds

The natural nonabelian generalization of Heisenberg and Fuler’s condition
of constant abelian field strength is that of a covariantly constant nonabelian
field strength,

D,F,=0. (3.1)

This condition implies that the corresponding nonabelian gauge field A, can
be expressed as a quasi-abelian gauge field, up to a gauge transformation
[81-83],

1 1
A, = -3 Bz’ (nT*) — ga“U U-t. (3.2)

Thus we can take the field strength to point in a particular direction n® (with
n®n® = 1) in color space, and characterized by an “abelian” field strength

F;wa

1
Fh, = Fun®, Al = —5 wxr’ nt . (3.3)
Brown and Duff [81] presented the general formalism for computing one-
loop effective actions in nonabelian theories, generalizing the approaches of
Heisenberg and Euler, and Schwinger. Then Duff and Ramén-Medrano [84]
applied this to the one-loop effective action in Yang-Mills theory, finding an
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ultraviolet finite expression

1 * ds . 52 52
. T as [ —Xs —F(Y,s)_l__X2__YVYV]
b = oy /0 53 { ©c 2 127k
_F(V: s?
—2 {6 FQs) 1-— ﬁyuuyuu} } ) (34)
where
1 sin(~ys) 9 _

F(Y, S) = 5 trln (T) 5 ’YIW = Y,uaYua (35)

and X, Y and ) are expressed in terms of the covariantly constant back-
ground field strength Fjj, as [84]

XZZ — 2gfachﬁu 7
Y 5= gf " PFS, bap
Vb =g f*FE, . (3.6)

Duff and Ramén-Medrano noted that the one-loop effective action (3.4) is
UV finite but infrared divergent, due to the massless nature of Yang—Mills
theory.

Savvidy et al [82,85,86] considered the case of SU(2) Yang-Mills the-
ory and wrote a formal unrenormalized expression for the one-loop effective
Lagrangian, motivated by the original Heisenberg—Euler form (1.2),

L/""@ gf1s gfas
8n2 Jy s sinh(gf1s) sin(gfas)

Lo sin(gfis) _ sin(gfas)
v [ Saheee) (SO0 - 2B o)

where f1 and fy are essentially Heisenberg and Euler’s a and b parameters
(1.6), with F = %FﬁyFﬁw and G = %FﬁyFﬁy. In the chromomagnetic case
where f; = H and fs = 0, the effective Lagrangian has the strong field limit

11 gH 1
~———(gH)* |In ({5 ) — 2| . .
e ggator|n (G ) =] 63
Identifying the coefficient of the log term with the 3 function, in the spirit of
Weisskopt’s original observation [2,15] and the work of Coleman and Wein-
berg [87] and Ritus [88-90], Savvidy et al noted that this Heisenberg—Euler
effective action computation gives the correct one-loop Yang-Mills 3 func-

tion [78,79]. The negative sign of the 3 function, which signals asymptotic
freedom in Yang-Mills theories, arises physically because of the magnetic

Lsye) =
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moment coupling of the charged vector nonabelian field. The significance of
this magnetic moment coupling had been emphasized previously by Tsai et
al [91], as noted by Salam and Strathdee [36] in their paper which also helped
to introduce zeta function techniques to the computation of Heisenberg—
Fuler effective Lagrangians. Savvidy et al also noted the interesting fact
that for a covariantly constant chromoelectric field there is a vacuum in-
stability, very much like that found by Heisenberg and Euler for QED in a
constant electric field.

N. K. Nielsen and P. Olesen [92] found that the situation is even more
interesting than this, as they showed that in the covariantly constant non-
abelian case there is in fact also an instability in a chromomagnetic back-
ground, not just in a chromoelectric background. This is in distinct contrast
to the QED case where a constant magnetic background has no vacuum in-
stability. Nielsen and Olesen noted that the difference is directly due to the
anomalous magnetic moment coupling in the Yang—Mills equations, which
contributes to the effective action,

S:—/dki Z \/2gH(n+%—53)—|—k2. (3.9)

n=0 S3==%1

The mode with n = 0 and spin aligned along the chromomagnetic back-
ground (S3 = +1) gives an imaginary contribution to the effective action,
indicating an instability. They further showed that this result can be estab-
lished by a precise treatment of the physical integration contours required
in the formal bare expression (3.7) of Savvidy et al, thereby making di-
rect connection with the proper-time results of Heisenberg and Euler, and
Schwinger. Subsequently, Olesen and collaborators [93] developed a color
magnetic condensate picture of the QCD vacuum based on this chromomag-
netic instability. This chromomagnetic instability was also pointed out by
Yildiz et al [94], who identified an imaginary contribution in the associated
Heisenberg—Euler effective Lagrangian, and who also computed the massive
spinor and scalar contributions to the effective Lagrangian in a covariantly
constant background. Then, in a development that will be of interest later in
this review, Leutwyler [95] showed that for a covariantly constant nonabelian
background there is an instability unless the background field is self-dual (or
anti self-dual), F},, = j:FW. At about the same time, the significance of self-
dual backgrounds was becoming appreciated in gauge theory [96,97], having
already been realized to be important in gravity and supergravity [98,99].
Dittrich and Reuter [100] and Elizalde [101] further developed the zeta func-
tion approach, and applied it to the computation of the QCD effective La-
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grangian in covariantly constant nonabelian backgrounds. Other important
developments have been the derivative expansion and large mass expansion
for nonabelian theories [19, 20,69, 102], and also for nonabelian supersym-
metric theories [103].

3.2. Supersymmetric Heisenberg—FEuler effective Lagrangians

The Heisenberg—Euler approach is of great use in studies of supersymmetry
and supersymmetry breaking. It is possible to apply the Heisenberg—Euler
techniques, as generalized by Schwinger, Tsai and others [104] to higher
spins, to study effective Lagrangians of supersymmetric theories in constant
background fields. This is now a vast branch of quantum field theory [105], so
it is only possible to give a small taste of the approach here. An important
paper in this development was by Fradkin and Tseytlin [106], who used
dimensional reduction from d = 10 to d = 4 to compute the one loop effective
Lagrangian for 4 dimensional ' = 4 SYM (supersymmetric Yang-Mills).
Fradkin and Tseytlin considered a quasi-abelian covariantly constant SU(2)
background as in (3.3) in the 4 spacetime dimensions, with A; = 0 in the
remaining 6 dimensions. Then the one loop effective action has the form

1V < ds
m_ 1 Va
M0 = /0 (), (3.10)

where the important observation is that the form of the integrand ®(s) is
independent of the dimension d, with the dimension dependence entering in
the measure of the propertime s integration. Thus, one can compute the
d = 4 SYM case beginning from d = 10. Analogous to the Heisenberg—FEuler
definitions (1.6), Fradkin and Tseytlin defined the (Euclidean) invariants

Fly=J1+/J? - J2, (3.11)

where J; = %FWFW, and Jy =
finds that for gauge group SU(2):

%FWFW. Then for spin 0, %, and 1, one

8F1 8F2
sinh(sF}) sinh(sFy) ’

D(Ay)2) = 2192 cosh(sFy) cosh(sFy) ®(Ao) ,
P(A)=[d+4 (Sinh2(sF1) + sinh2(sF2))] O(Ay) - (3.12)

B(Ag) = 2
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where Ag /5 are the corresponding operators for fields of spin 0, 5, and 1.
Thus for d = 10 we obtain
1
P(s) = —29(Ag) — Z‘I’(Am) + ®(Ay)
= 4 (cosh sF} — cosh sFy)* ®(Ay) . (3.13)

Therefore, in the dimensionally reduced d = 4 theory one has [106]
1 / X ds sk sFy
0

E&;M =— (cosh sFy — cosh sFy)? . (3.14)

42 $3 sinh sFy sinh sFy
This expression (3.14) is UV finite, owing to the supersymmetry. It is,
however, IR divergent unless F' = F, in which case Fy = F,. This IR
divergence is due to the anomalous magnetic moment term in the spin 1
operator Ai, as has been noted already in our discussion of QCD effective
Lagrangians in Section 3.1.

Another illustrative supersymmetric application of Heisenberg—Euler
techniques is to the computation of the one loop effective Lagrangian for
4 dimensional N/ = 4 SYM in a constant N/ = 2 SUSY background [107].
This N' = 2 background is characterized by a vector multiplet W = {W,,, ®},
and if W satisfies the constancy conditions

D Wg = D,Wpg)y = constant , ® = constant , (3.15)

then the superfield analogue of Schwinger’s proper-time formalism [105] can
be applied to compute the one loop effective action [107]

1 W22 W2 W2
1) _ 8 8 —t
F()_167T2/dz 5o 87r2/d / dtte 5= w(tV, tv) .

(3.16)

Here w(zx,y) is the trigonometric function

coshzx —1 coshy — 1 2 — 2 1
_ — = (3.17
w(@:y) ( x? ) < Y2 > (cosh:n — coshy 2 (3:17)
and ¥ and U are the fields
_ 1 w2 w2
V= ——D?(— V= _— D? : 1
= (3) . vemP (%) ew

Notice the clear similarity to the basic Heisenberg—Euler structures in the
integrand. Supersymmetry combines contributions from different spin fields
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with particular weights. Buchbinder et al show [107] that this result can be
made manifestly N' = 2 superconformal invariant to yield

1 w.oWw 1 = _
F(l):_/d12]—l— _/d12/ dtte t Qt®, ¢ ) .
162 Zn,u nu+8772 20 e (e, )
(3.19)

Here W is the full superconformal field, and the function Q(z,y) is related
to the function w(x,y) by [107]

o
If wy = Z Cmnt My

m,n=1
_ - cm,n 2m, 2n
then  £(z,y) = mzn; emenrnEe sy v (820

The interesting thing about this computation is that the fact that the the-
ory is superconformal allows one to use the classification of superconformal
invariants in order to go beyond the Heisenberg—Euler constant field approxi-
mation. This is an example where added symmetry, combined with the basic
Heisenberg—Euler structure is a very powerful computational tool [105].

3.3. Instanton background

An important example of nonabelian effective actions concerns the spinor
and scalar effective action in an instanton background. This was first com-
puted in the small mass limit by 't Hooft [108]. While not strictly-speaking
of Heisenberg—Euler form, there are many parallels, since the spectra of the
massless Dirac and Klein—Gordon operators are known in closed-form for an
instanton background, as are the associated Green’s functions. Nevertheless,
unlike the Heisenberg—Euler cases, there is no known exact solution for the
one loop effective action in an instanton background for arbitrary quark (or
scalar) mass. Consider the case of an SU(2) single instanton background,

Ay = A2 T — L a2y

- 3.21
2 g x2+4p2 7 (3:21)

where p denotes the scale of the instanton, 7% are the Pauli matrices, and 7,4
are the ’t Hooft symbols, which mix the spacetime and group indices [20,108].
The corresponding field strength is

2 Pt

Fiu(@) = == £ (3.22)
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Due to the self-duality of the background field, the Dirac operator has a
quantum mechanical supersymmetry [108-111], which means that the spec-
trum of the Dirac operator coincides with that of the corresponding Klein—
Gordon operator, except for a multiplicity factor of 4, and the presence of
zero modes for the Dirac operator. The net effect is that the the one-loop
spinor and scalar effective Lagrangians in such a background are related by

2 2
M _ o, 1(g m
‘Cspinor - _2£scalar + 5 <327‘r2 FSI/FSI/> In (Mg > : (323)

. . . 2 .
Here 11 is a renormalization scale mass, and 5 Fyj, Fyj, is the number den-

sity of zero modes, with the total number of zero modes being the instanton
number

2
No = 3;2 / d*z Fo,F, (3.24)
where Ny = 1 for the single instanton field strength in (3.22). The implica-
tion of (3.23) is that one can compute the (somewhat simpler) scalar effective
Lagrangian and deduce the corresponding spinor one.

Using a combination of the solubility of the zero mass Green’s functions
and spectra, and spacetime-dependent mass regulators, 't Hooft computed
the leading small mass behavior of the scalar effective action as [108]

o 1 1
scalar ™ & In(m p) + a<2> +..., (3.25)
where the constant a(%) is given by
I @) 17 _
a(i) = S (y+Inm) = 2 — = ~ 0145873 . (3.26)

Carlitz and Creamer [112] computed the next order term in the small mass
expansion, and Kwon et al [113] the next-to-next order term, so that we now
have the small mass expansion

D ~ g nlmp) +a(3) + 5 (mp)? (nmp) +7~ 1 2) +0 (mp)")
(3.27)

Gross et al [114] extended the 't Hooft style determinant calculation to
the important case of finite temperature instantons, or calorons. Very re-
cently [115], the analogous computation has been performed for the more
complicated situation of a background caloron field with nontrivial holon-
omy.
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The large mass expansion of the one loop effective action in an instanton
background can be computed using various techniques, ranging from the
operator product expansion and the derivative expansion [19,20], to the
heat kernel [113] and inverse mass expansion of [69]. The first two terms
were computed in [19], and the next two in [113],

S(l) _i # B 1_7 1 n 232 1 _ 7916 1
scalar 75 (’I’)’L P)2 735 (’I’)’L P)4 2835 (m p)6 148225 (m p)8

(3.28)

A smooth interpolating approximation between the small and large mass lim-
its (3.27) and (3.28), based on a modified Padé approximation, was proposed
in [113]. Such an interpolation is of physical interest for the extrapolation of
lattice results, obtained at unphysically high quark masses, to lower physi-
cal quark masses. Details of this type of interpolation were studied for the
soluble Heisenberg—Euler case in [116].

4. Two-Loop Heisenberg—Euler effective Lagrangian

All the previous results have been for the one-loop effective Lagrangian,
which neglects virtual lines inside the single scalar or spinor loop. In this
Section I summarize what is known about the two-loop effective Lagrangian.
In principle, the computation of the two-loop Heisenberg—Fuler effective La-
grangian in QED is completely straightforward, as we only need to compute
a single vacuum diagram (see Figure 3) with an internal photon line and a
single fermion (or scalar) loop, where these spinor or scalar propagators are
in the presence of the background field. These background field propagators
have been known in closed-form for a long time [12,117,118].

Figure 3. The two-loop diagram for the two-loop effective Lagrangian. The double line refers to
a propagator in the presence of the constant background field, while the wavy line represents the
internal virtual photon.

The problem is, however, not completely straightforward because at two-
loop we need to perform mass renormalization in addition to charge renor-
malization. Nevertheless, in seminal work in the mid-1970’s, Ritus found ex-
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act integral representations for the fully renormalized two loop Heisenberg—
Euler effective Lagrangian in both spinor [88] and scalar [89] QED. These
were impressive computations, but unfortunately the answers are rather
complicated double-parameter integrals [see (4.9) and (4.26) below]. I first
review the structure of Ritus’s solutions and then discuss some recent sim-
plifications that have been found.

4.1. Two loop spinor QED Heisenberg—FEuler effective
Lagrangian
Using Feynman gauge for the internal photon line in Figure 3, the two-loop

spinor QED effective Lagrangian is [88,90]

e?
Z_

ﬁéfﬁnor =i /d4x, tr [v,G(z, 2" W' G(2',2)] D(x — ')

= 26—2/ /ﬂtr WGP G(@] Dp—q),  (41)
2 (2m)t
where the position and momentum space propagators are related by
d*p

G(z,2') = *@) / @ e @) G (p) . (4.2)

Here ®(z,2’) is a gauge dependent phase factor coming from the line integral
of the gauge field from z to 2’. For a constant background field strength F,,,
using the Fock—Schwinger gauge (2.43), one finds [88,90]

d*p
(2m)*

—1

/ CeTigEaleL - poo g 1 » y
GSpiHOI‘(‘T7x ) =1 W/O 8_2 [m — §’yu(ﬁ“ + eFH )ZV:| X

exp {—z‘m2s — L(s) + izuﬁ“”(s)zy + %JWF’“’S} , (4.3)

where we have defined z, = x, — :c;“ and 3, and L are functions of the
proper time s involving trigonometric functions of the 4 x 4 constant field
strength matrix F),, defined by

Buw(s) = [eF coth(eF's)] , , L(s) = %tr In <%> . (4.4)

Note that the contour of the proper time s integration is defined to pass
below the singularities on the real axis, in accordance with the ie prescription
m? — m? — ie [90].

It is now straightforward, but somewhat tedious, to do the Dirac traces
and spacetime integrals in (4.1) to obtain the following expression for the
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bare two-loop effective Lagrangian as an integral over the proper time pa-
rameters s and s’ of the two spinor propagators,

i 2 /
@ B (en)2( )2 e—im (s+s")
‘Csplnor - 1287[' / ds/

* sin (ens) sin(ens’) sinh(ees) sinh(ees’)

x%mﬁ(55“+Pfﬂ]b—iI}. (4.5)
Here (following Ritus’s conventions [88]), the two eigenvalues of F),, are
called 17 and €, rather than b and a respectively, as used by Heisenberg and
Euler (1.5). Thus, in a frame in which the magnetic and electric fields are
parallel we can take n = B, and ¢ = E. The functions S, S’, P, P’, I and
Iy appearing in the two-loop bare effective Lagrangian (4.5) are defined as:

S(s) = cos(ens) cosh(ees) ,
S(s)
1 In g

1
0= b—a

)

P(s) = sin(ens) sinh(ees) .
P =P,

_g-p b (-8
I‘@—aﬁma_<%?2>’
b = ee (coth(ees) + coth(ees”)) |

a = en (cot(ens) + cot(ens’)) ,
_ 2(en)? cosh(ee(s — s'))
sin(ens) sin(ens’)

_ 2(e€)? cos(en(s — s'))
sinh(ees) sinh(ees’)

(4.6)

The bare effective Lagrangian (4.5) has several different types of divergences.
These must be regulated and then interpreted physically. Proper time regu-
larization involves cutting off each proper time integral at a lower bound s,
as was done by Ritus [88]. The divergences can then be isolated systemati-
cally. First there is a subtraction of the field free case, so that £ vanishes
when the background fields vanish. Then there is charge and wavefunc-
tion renormalization, just as for the one-loop effective Lagrangian, which
involves identifying a divergent term in £ of the form of the zero-loop
Maxwell Lagrangian. This is done simply by expanding the integrand to
quadratic order in the fields n and e. This divergence can be absorbed by
redefining the electric charge and the fields as

1/2 ~1/2

1/2
628023 ) 77:77023 ) /

e=e€y 2y ', (4.7)
where Z3 is the usual multiplicative renormalization factor [119]. With these
redefinitions, we can express £2) in terms of the renormalized charges and
fields. In fact, note that the combinations en and ee are renormalization
invariant. Third, and more complicated, is mass renormalization. Even
after dealing with the charge renormalization divergence, there remains a

logarithmic divergence associated with taking one or other of s and s’ to



September 11, 2004 12:8 WSPC/Trim Size: 9.75in x 6.5in for Proceedings dunne

Heisenberg—FEuler Effective Lagrangians 491

0, while keeping the other one fixed and nonzero. This divergence can be
separated and one finds that it has precisely the correct form for the one-loop
renormalization of the electron mass,

m¥% = mi + om? |

oLy (m3)

) )
Ly (m%) = Ly (md) + om? oni?

(4.8)

(1)

Note that the second term in (4.8) is of order a?, because m? and L}’ are
each of order a. Thus it is natural to see this term arising in the compu-
tation of the two loop effective Lagrangian. The identification of the mass
renormalization is quite an involved manipulation, and we refer the reader
to [88,90] for details. In particular, finding the correct finite part of the mass
shift m? for the relevant renormalization scheme is not straightforward. It
relies on an independent computation of dm?, or can be done a posteriori
by studying the imaginary part of the two-loop effective Lagrangian in an
electric background, as is discussed in more detail below in Section 4.1.1.
The final answer for the renormalized two loop effective Lagrangian is [88]

;.2 00 s
(2) _ e Ky(s)
ﬁR, spinor — _647['4 0 dS o dS/ {K(S, S/) _ S/
—ﬁ /OO dsKo(s) § In(im?s) 4+ — 5 (4.9)
6474 J, 0 Y 6(° .

where v ~ 0.577... is Euler’s constant (note that Ritus calls Euler’s constant
In~), and the functions K (s,s’) and Ky(s) are

2 2
K(s,s) = e—im?(st) {7(677])3 ;Def) [4m2(S §' + P P') Iy — il]

1 a2 N e2(n? — €2)
ss'(s+ ') s+s 3

(2m (ss' —2s% —2(5")?)

)

Kols) =" <4m “aa > [tan(er(]zgl)‘éan)h(ees) - s% + n3— 62)} :
(4.10)

Ritus’s expression (4.9) for the renormalized two loop Heisenberg-Euler ef-
fective Lagrangian is finite and expressed in terms of renormalized quantities.
It is, nevertheless, a very complicated expression, and it is significantly more
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difficult to extract physical information from it, along the lines of the appli-
cations discussed in Section 1.2. For example, one can extract the two-loop
light-light scattering low energy effective Lagrangian by expanding Ritus’s
answer to quartic order in the fields. One finds [88]

263

(n* — )+ @(n 6)2] +... (4.11)

o e [E
spinor ™ Gordmd | 81

which should be compared to the one loop result (1.9). Similarly, in the
limit of a strong magnetic field, one finds [8§]

4,2
(2) en €n
Lopinor ™ 587 [ln (sz) + constant} +... (4.12)

from which we can extract the two loop spinor QED ( function, as discussed
below in Section 5. This leading strong-field behavior (4.12) should be com-
pared with (1.54). However, the general weak and strong field expansions of
Ritus’s result (4.9) are very cumbersome, due to the double integral structure
and the complicated integrand. In Section 6 we shall see that for a self-dual
background the corresponding expression simplifies dramatically and much
more can be said about the weak and strong field behavior of £2).

4.1.1. Two loop spinor case for magnetic background

If we specialize Ritus’s result (4.9) to a constant magnetic background, by
taking n = B and € = 0, then £3 simplifies a bit, but not much. Then one
finds (after rotating the contours and changing integration variables)

2,4 2 poo 1
) _e‘m eB ds _,.2s/(eB 9
ﬁR, spinor (471')4 <m2> /0 g e /(eB) /0 du |:L(S, U) — 2s

+ 0 < i + scoths> ]
w(l —u) \ sinh?s

B s e [ 18
(4m)t m? J, s 3

3 m3s eB
——~v—1 — S 4.1
X[z gt og<eB>+m28]7 (4.13)
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where

log (gg;;;) By
[u(l —u) — G(u, s)]? Fit G(u, s)[u(l —u) — G(u, 9)]

L(s,u) = scoths[

+ i
w(l —u)[u(l —u) — G(u,8)] |’

coshs — cosh((1 — 2u)s)
2ssinhs

G(u,s) = ) (4.14)

Fy = 4s(coths — tanhs)G(u, s) — 4u(l — u),

sinh((1 — 2u)s)

Fo=2(1=2u) sinhs

+ s(8tanhs — 4coths)G(u, s) — 2,

sinh((1 — 2u)s)
sinhs

F3 =4u(l —u) — 2(1 — 2u) — 45 G(u, s)tanhs + 2 .
While simpler than the general expression (4.9), this magnetic background
two loop effective Lagrangian (4.13) is still not particularly simple. By a

direct expansion of the integrand one can compute a number of terms in the
weak-field expansion [62,120],

2,4 4 6 8
(e St L [y (<5120 ()" s e
T (4m)t 81 m? 25 \m? 1225 \m2

791384 [ eB 10+8519287552 eB\ 2 (4.15)
1575 \ m?2 2223375 \ m2 ol ‘

The coefficients of this expansion alternate in sign and grow factorially fast,
and the Borel summation properties of the series have been studied in [120].
At present, no closed formula is known for these expansion coefficients.

For an electric background, £

spinor
—FE2. Lebedev and Ritus [121] analyzed the singularity structure of the
integrand in (4.13) to deduce that including the two loop contribution led

to

is given by the replacement B? —

2 2 o
1 2 e E 1 Ck eE _m27'rk
Im(cgp>+cgp>): T |mtor | = +1+0< —2) e ",
k=1

m2

(4.16)



September 11, 2004 12:8 WSPC/Trim Size: 9.75in x 6.5in for Proceedings dunne

494 Gerald V. Dunne

2, .
where oo = 7 is the fine structure constant, and the coefficients c are

cp=0;

Z \/7 k>2. (4.17)
Note that the two loop contribution has the same exponential form as at one
loop, but with an overall factor of arm, and with a (perturbative) expansion
in the electric field strength in the prefactor. Ritus and Lebedev were able to
extract information about the coefficient ¢, of the first term in this prefactor.

For k > 2 the prefactor expansions in (4.16) begin with terms that are
singular in the limit of vanishing field £ — 0, which seems potentially un-
physical. In [121] a physically intuitive solution was offered to this apparent
dilemma. Their proposal is that if one could take into account all contribu-
tions from even higher loop orders to the prefactor of the k-th exponential,
then one would find them to exponentiate in the following way,

1 ek krm? 1 krmi(k, E)
|:]€2 +a7TKk <m2> +] exp |:— eE :|— ﬁexp |: T] . (418)

Thus, it should be possible to absorb their effect into a field-dependent shift
of the electron mass. Using just the lowest order coefficients (4.17) in the
small E expansion of Kj(%5 L), this mass shift reads

1
my(k, E) =m+ = ak‘ck\/eE——ak— (4.19)

As shown in [121, 122] these contributions to the mass shift have a simple
meaning in the coherent tunneling picture: the negative term can be inter-
preted as the total Coulomb energy of attraction between opposite charges
in a coherent group; the positive one, which is present only in the case
k > 2, represents the energy of repulsion between like charges. The pic-
ture is consistent with the work of Affleck et al [123] who showed that in
the weak field limit, the dominant result of all higher loop corrections to
the leading one-loop pair production rate (1.10) is a multiplicative factor of
M= 1 tart....

It is important to note that this interpretation of the mass shift requires
the mass m on the right hand side of (4.19) to be the physical renormalized
electron mass of the vacuum theory. Only in this case does the expansion of
K k(;—Ez) have the form indicated in eqs. (4.16) and (4.17). It is an interesting
corollary of the Lebedev—Ritus analysis that the physical electron mass can
be recognized from an inspection of the two-loop effective Lagrangian alone,
without ever considering the one-loop electron mass operator. Thus, one



September 11, 2004 12:8 WSPC/Trim Size: 9.75in x 6.5in for Proceedings dunne

Heisenberg—FEuler Effective Lagrangians 495

can fix even the finite part of the mass renormalization by demanding that
the physical mass be that which appears in the leading exponential of the
imaginary part of the effective Lagrangian in an electric field [121].

Later, in a Borel analysis [120] of the large order perturbation theory be-
havior of the two loop result (4.13), a numerical value for the next coefficient
was extracted, but only for the leading single-instanton term:

E m2ﬂ'
1+ ar <1—0.44\/e—2+...>] e "F . (4.20)
m

This numerical approach was not sensitive to higher order terms in the in-

e2E?
873

I (£ + £8)) ~

stanton expansion [the sum over k in (4.16)], as such terms are exponentially
suppressed.

Dittrich [124], and Dittrich and Reuter [5] also computed this two-loop
effective Lagrangian, for the case of a magnetic background, and their final
answer was in a slightly different form from Ritus’s result. The strong field
limits agreed, but it was later found that the weak field expansions did not
agree, and the cause was found to be a difference in the finite part of the
mass renormalization [125]. This latter approach [125] used the worldline
formalism and dimensional regularization, which was also applied to the case
of a general constant electromagnetic background in both spinor and scalar
QED in [126]. In Section 7.3 a much simpler, almost trivial, method of mass
renormalization is presented, for the case of scalar QED.

4.2. Two loop scalar QED Heisenberg—Fuler effective
Lagrangian

Ritus also computed [89] the two loop renormalized Heisenberg—Euler ef-
fective Lagrangian for scalar QED, generalizing Weisskopf’s one loop result
(1.8). For scalar QED, the scalar propagator in a constant background field
F,, is simpler in form than the corresponding spinor one (4.3), but the
vertices are more complicated as the momentum dependence of the vertex
changes from p, to (p, —eA,) in a background field. The scalar propagator
in coordinate space is

G (z,2') = —i M /00 ds e —im?s — L(s) + 3'zﬂ(s)z
scalar \<, - (47_[_)2 0 52 Xp 4 ’
(4.21)

where (3,,,(s) and L(s) are the same functions defined in (4.4) for the spinor
propagator. Using Feynman gauge for the internal photon propagator, the



September 11, 2004 12:8 WSPC/Trim Size: 9.75in x 6.5in for Proceedings dunne

496 Gerald V. Dunne

two loop effective action is [89]

S = i€ / d' / d'a’' D(x — o) { (2|1, Gla') 2/ I, G z)

+(2[IL,GIL, |a") (x| G|z) + 4i6(x — o')(x|G|2")} ,  (4.22)
where we have dropped a term (z|II,G|z)(2/|I,G|z’), which vanishes. The
delta function term in (4.22) corresponds to the tadpole diagram, a new
feature of scalar QED compared to spinor QED. Using the basic matrix
elements [89]
(x|, Gla’) =
—iSx, Frva! ds 1 .
—i ezT)? /0 i 25 [Buv + €F] 2, exp {—zm2s — L(s) + izﬂ(s)z} :
(|G, [2") =
_iCqp, V! 0o .
e 2tn ds1 ) i
—q W/o 25 B — eFu] 2, exp {—zm2s — L(s) + Zzﬂ(s)z} )
2
(z|T1,GT,|2") = —id(x — 2') — m*(z|G|a") + %(ZFFZ) (x|G|2"y  (4.23)

one finds that the bare, unrenormalized, two loop effective Lagrangian for
scalar QED is

£(2) _ / / d/ )2 —im2(8+s’) [m210—|—%[:|

scalar — 256774 sin(ens) sin(ens’) sinh(ees) sinh(ees’) ’
(4.24)

where the forms of the functions Iy, I, a and b are the same as in the spinor
case (4.6), but the functions p and ¢ entering in the definition of I are
changed from those in (4.6) to

p = 2(en)? (cot(ens) cot(ens’) +3) ,

q = 2(ee)? (coth(ees) coth(ees’) —3) . (4.25)
The bare effective Lagrangian (4.24) also contains several divergences, which
may be regulated using a proper time cut-off sg. These divergences corre-

spond, as in the spinor QED case, to charge and mass renormalization.
Proceeding as in the spinor case, one finds [89]

2) _ ~ Ko(s)
‘CR,scalar - 1287’(’4/ ds/ dS { s }

1287T4/0 dsKo(s ){ln(zm )47 — g} o (426)
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where the functions K (s, s’) and Ky(s) are

(en)®(e€)® [-m?Io — 31
sin(ens) sin(ens’) sinh(ees) sinh(ees’)

1 ; 2 2 _ 2 11 /
- m2 + ¢ + € (77 € ) m2(8 + 81)2 . m2ss' + 188
ss'(s + s') s+s 6 s+

o) = (s 1) [l - SR

K(s,s') = e‘imz(”s'){

(4.27)

Just as in the spinor case (4.9), the general weak and strong field expan-
sions of Ritus’s scalar QED result (4.26) are very cumbersome, due to the
double integral structure and the complicated integrand. Also, note that it
is very different from the spinor result, in the sense that the integrands are
very different. We return to this comment later when we consider self-dual
backgrounds in Section 6.

Nevertheless, it is still possible to extract from (4.26) the leading weak-
field and leading strong-field behavior [89]. For weak fields, expanding the
integrand to quartic order in the fields,

ﬁ(z) b 275
scalar = G4mim? | 2592

(n? — €¥)? + %(7] 6)2:| +... (4.28)

which should be compared to the one loop result (1.32). Similarly, in the
limit of a strong magnetic field,

4,2
(2) en en
Lortar ~ 128,77 [ln <7Tm2) + constant] +... (4.29)
from which we can extract the two loop spinor QED [ function, as discussed
below in Section 5. Indeed, the fact that (4.12) and (4.29) have the same
leading coefficient tells us that the two loop S-function coefficients in spinor
and scalar QED are equal [see (5.13) and (5.14) below].

4.2.1. Two loop scalar case for magnetic background

The general expression (4.26) can be specialized to just a magnetic back-
ground by setting ¢ = 0 and n = B, and one obtains an expression similar in
form to (4.13) [62]. This expression is, however, still not particularly simple.
By a direct expansion of the integrand one can compute a number of terms
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in the weak-field expansion [62],

£ e*m* 1275 (eB\" 5159 (eB 6+2255019 eB\®
scalar = (44 81 8 \m2 200 \ m? 39200 \ m?

931061 (eB 10+139252117469 eB 12_ (430)
3600 \ m?2 71148000  \ m?2 ol '

The coeflicients of this expansion alternate in sign and grow factorially fast,
just as in the spinor case discussed in the previous section. At present, no
closed formula is known for these expansion coeflicients.

To conclude this section on the two loop effective Lagrangians, we briefly

mention that the world-line techniques have been applied to two loop effec-
tive Lagrangians in Yang—Mills theory [127], where there are infrared diver-
gences due to the masslessness of the gluon fields. Kuzenko and McArthur
[128] have computed the two-loop Heisenberg—Euler effective Lagrangian for
N =2 SUSY QED, finding a result expressed as a double parameter integral
similar in structure to those in the spinor and scalar QED results of Ritus.

5. B-functions and the strong-field limit of effective
Lagrangians

In quantum field theory there is a close connection between the short-
distance behavior of renormalized Green’s functions and the strong-field limit
of associated quantities calculated using the background field method. This
correspondence leads, for example, to a direct relation between the perturba-
tive § function and the strong-field asymptotics of the effective Lagrangian,
as was first established by Coleman and Weinberg [87]. Ritus developed
this relation for QED using the renormalization group, with the assumption
that the strong-field limit of the renormalized effective Lagrangian is mass-
independent [88-90]. Another, equivalent, derivation which invokes the scale
anomaly [129,130] in a massless limit, has been given in various forms by
many authors [8,86,131-133]. This derivation is reviewed below for QED in
Section 5.1.

I stress that computing the [ function, which characterizes the scale
dependence of the running coupling, is a much simpler problem than finding
the full renormalized effective Lagrangians, (4.9) and (4.26), as one only
needs the leading strong field behavior of £. In this approach, one uses the
external field as a probing scale, instead of the external momentum of a
self-energy diagram (which is the usual text-book approach). One adapts
the Gell-Mann Low [16] renormalization group argument for II,,,(q?, ) at
large ¢2, to the effective Lagrangian £(eF, u?) to relate the strong-field limit
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of £ to the G-function coefficients. A similar idea was used at two loop by
Shifman and Vainshtein to compute the QED § function using the operator
product expansion [134], and has recently been extended to the three-loop
Yang-Mills § function [135]. There is an immediate combinatorial advantage
to this background field approach, as there are many fewer diagrams at a
given order, since there are no external lines. Furthermore, each diagram
has fewer vertices and propagators. The price, of course, is that the spinor
(or scalar) propagators are not free ones, but are in the background field.

Here I concentrate on QED, but these ideas generalize to, and have been
applied to, nonabelian theories. Begin by recalling some basic facts about the
QED f function [119,136]. The [ function encapsulates the scale dependence
of running coupling, and is defined as

Bla) = —2°

= —-— 1

where the natural expansion parameter turns out to be a = -, with a = %
being the fine structure constant. At present, the spinor QED ( function is
known to four loop order. Beyond two loop order the G-function coefficients
are scheme dependent; for the M S scheme the four loop result is [137]
62 5570 832

4 [ } a4+

ﬂMs(a) = §CL2 +4a® — —a — + T C(3)

9 243 (52)

It is worth emphasizing how difficult these computations are. The two loop
result, 4a3, was obtained in 1950 by Jost and Luttinger [138], the three loop
result by Rosner in 1966 [139], and the four loop result in 1991 by Gor-
ishny et al [137]. (One is tempted to extrapolate that the five loop result
will require 36 years to compute!) The four loop result was computed us-
ing computer programs to organize and manipulate the many hundreds of
Feynman diagrams involved. This complexity contributed to the earlier pub-
lication of a different result for the four loop term by the same group [140],
this result being retracted four years later after errors were found in some
of the computer subroutines. This illustrates how difficult these calculations
are, and motivates other ways to understand and perform the computations.
Nevertheless, the techniques [137] used to produce this landmark result (5.2)
for the four loop QED S-function coefficient have now been applied to QCD
where we now know the 8 function and the anomalous quark mass dimension
to four loop order [141], a truly remarkable achievement.

Another 3 function of interest is the so-called “quenched” (3 function (or
F; function), in which one only includes a single fermion (or scalar) loop,
neglecting self energy corrections to internal photon lines. This § function
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is scheme independent, essentially because the corresponding single-fermion-
loop diagrams only diverge like a single logarithm. At four loop order, the
quenched spinor QED S function is

4
Bola) = §a2 + 4a® — 2a* — 46a° + ... (5.3)

which has the remarkable property that the coefficients are rational num-
bers. This is despite the fact that at intermediate stages of the computation
individual diagrams, and groups of diagrams, contribute irrational terms
such as ((3) and ¢(5), but these all cancel at the end when the quenched
G function is computed. This fascinating property was already noticed at
the 3-loop level by Rosner in 1966, and has been studied in detail over the
years [142]. Despite impressive recent progress by Broadhurst et al [143] who
have identified the cancellation of such irrationals with a relation between
Feynman diagrams and knots, a truly deep understanding of this behavior
is still lacking. A promising approach is the worldline formalism [62] which
combines the relevant Feynman diagrams into a much more compact repre-
sentation, making the large cancellations somewhat more ‘natural’. This has
been studied at the two-loop level [60], but little is known beyond two loop
at present. Even at a more basic level, we do not know how the perturbative
series for the § function behaves. It is presumably divergent, but we do not
know if it is Borel summable. The first four signs of —, —, +, +, do not give
us much basis for predicting the alternating or nonalternating behavior of
the full series. These comments motivate the exploration of various different
ways to compute [ functions, and the strong field limit of a Heisenberg—
Euler effective Lagrangian technique gives a particularly efficient way to do
such a computation.

5.1. General Argument

In this section I review the general argument [8,86,88,90,131-133,144] relat-
ing the strong-field asymptotic behavior of the effective Lagrangian to the
perturbative (8 function. I present the argument for QED, but it is more
general. Consider an abelian gauge field coupled to spinor or scalar matter
fields, which are either explicitly massless or which have a well-defined mass-
less limit. Then the trace anomaly for the energy-momentum tensor states
that [129,130]

e) e?
o) =29 (5. (5.4
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where € is the running coupling, and $(€) is the [ function, defined below
in (5.8). The expectation value of the energy-momentum tensor can also be
related to the effective Lagrangian for a constant background field strength

F;u/a

8ﬁeff

QMY = V' L o 1 2 .
(0H) " Leg D

(5.5)

These two relations, (5.4) and (5.5), determine the effective Lagrangian to
be of the form

L __16_2]:‘ jalzx (5.6)
eff — 452(75) pv ) .

where the “renormalization group time”, ¢, is expressed in terms of the scale
set by the field strength, serving as the renormalization scale parameter

1 2|F?
t:zln<e‘ ‘), (5.7)

g

:u2 ~ €|F|v

and po denotes a fixed reference scale at which, for example, the value of the
coupling may be measured. Note that in this argument the field strength
plays the role which is usually associated with a momentum transfer Q2.
This already suggests at a very basic level why the strong-field and short-
distance limits are related.

The § function is defined in terms of the running of the coupling as

_ de(t)

s = 2 (53)

To see how this solution (5.6) leads to an explicit connection between the
strong-field asymptotics of L. and the perturbative 8 function, note that
(5.8) can also be expressed as

e(t) d /
t= / o (5.9)

ple)
where e = €(0). Making a perturbative expansion of the § function
Ble) = pre + Baed + ... (5.10)

the relation (5.9) determines the running coupling, &(t), in terms of e as

1
e(t)

1
=5~ 201t — 202€2 t + O(e*t?) . (5.11)
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Inserting this into (5.6), the strong-field asymptotics of the effective La-
grangian is, to two-loop order,

1 2 4 p ¢*|F?|
Lefr ~ 16 (261€° +262¢" +...) Flup "™ In pd ) (5-12)

where, as is conventional, we have subtracted the classical Lagrangian,
—%FWF‘“’ , from L.g. Note the appearance of the [-function coefficients
B1 and By in the prefactor of the strong-field behavior of the £. At higher
loops the structure is slightly more complicated, but knowledge of the leading
strong-field behavior up to a given loop order determines the S-function coef-
ficients to that order, within the corresponding renormalization scheme [90].

In order to illustrate this correspondence explicitly, we recall that the
QED 3 functions, for spinor and scalar QED, to two-loop order, are

63 65
5spinor == W + 64? + cee (513)
3 5

(& (&

—_—t —— 4+ ... . .14
4872 + 6474 + (5.14)

5scalar =

5.2. Ezxplicit example: constant magnetic field background

Equation (5.12) gives a direct correspondence between the perturbative 3
function coefficients and the strong-field behavior of the effective Lagrangian.
We now compare this with some explicit results where the effective La-
grangian is known. First, consider the Euler-Heisenberg effective Lagrangian
for a constant background magnetic field, of strength B.

At one loop, the leading strong-field asymptotics is [recall (1.54) and

(1.63)]
232
(1) " e’B eB
ﬁspirﬁ?gnc ic Y In <W +..., (5.15)
2 22
(1) magnetic e“B eB
‘Cscalar ~ W 111 <W 4+ ... . (516)
Noting that —%FWF B = —%Bz, and comparing with the correspondence
(5.12), we deduce that BP"" = # and gjealar — ﬁ, in agreement with

the one-loop (3 function coefficients quoted in (5.13) and (5.14).
At two loop, the corresponding leading behaviors are deduced from Ri-
tus’s results. Recalling the leading strong field behaviors (4.12) and (4.29)
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we have
42
(2) magnetic e*B eB
‘Cspinor ~ 1287-‘-4 ln (W 4+ ... 5 (517)
4172
(2) magnetic e'B eB
‘Cscalar ~ 1287-[-4 111 <W 4+ ... . (518)
Once again, comparing with the correspondence (5.12), we deduce that
S = ﬂ;calar = 6417T4, in agreement with the two-loop G function coef-

ficients quoted in (5.13) and (5.14).

6. Two loop Effective Lagrangian in a self-dual background

Ritus’s results for the two loop Heisenberg—Fuler effective Lagrangian are
significantly more complicated in form than the one-loop results. This re-
stricts somewhat the investigation of two loop effects. For example, as dis-
cussed in Section 4.1.1, we have only very limited information about the two
loop generalization of the pair production formulae (1.25) and (1.37). In this
section I review some recent developments in which the two loop Heisenberg—
Euler effective Lagrangian has been shown to simplify dramatically when the
background field is self-dual.

6.1. Closed-form effective Lagrangians in a self-dual
background

Consider restricting the constant electromagnetic background to be self-dual
F=FE,, (6.1)

where F w = %EWPUF P? is the standard dual electromagnetic field strength.
In QED, which is an abelian theory without instantons, such a classical
background field is unphysical in Minkowski space as it means £ = iB
(or B = —iFE). However, Duff and Isham showed that such nonhermitian
classical fields arise as vacuum to coherent state matrix elements of hermitian
quantum field operators [97], which means that effective actions in such
backgrounds are physically meaningful generating functions. We will discuss
this further below in terms of helicity amplitudes. Also, Euclidean classical
configurations can be used as probes of real QED properties, such as the 3
function and the anomalous mass dimension.

When the constant background is restricted to be self-dual, the fully
renormalized two-loop Heisenberg—Euler effective Lagrangian takes a re-
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markably simple closed-form, for both spinor and scalar QED [145-147],

Lo = =07 5 [3€2() = €(0)] . (62)
213
= L |30 - €00 (6.3

Here f is the field strength parameter, %FWF’“’ = f2, and & is the natural
dimensionless parameter

3

K (6.4)

[\
~

e

The ubiquitous function £(k) is essentially the Euler digamma function
b(r) = 45 InT(x),

(k) = —x <1/1(/£) “n(k) + i) . (6.5)

The subtraction of the first two terms of the asymptotic expansion [22, 23]
of (k) correspond to renormalization subtractions, as will be shown below
in Section 7.

It comes as something of a surprise that in this self-dual background both
parameter integrals in each of the expressions (4.9) and (4.26) for the two
loop effective Lagrangian can be done in closed form to produce the simple
answers (6.2) and (6.3). If we simply take Ritus’s expressions (4.9) and
(4.26) and specialize to the self-dual case by taking n = ie, then it is not
at all obvious that the resulting integrals can be reduced to such a simple
closed form as in (6.2) and (6.3).

It is also interesting to note that in such a self-dual background, the one-
loop Heisenberg—Euler effective Lagrangians (1.2) and (1.8) for spinor and
scalar QED are also naturally expressed in terms of this same function £(k):

22 oo gy 2t2
£ = _68 f2 / = e 2nt [tz coth?t — 1 — ?]
™ Jo
e f? 1 =
2f2 [ dt t2 t
‘Cgi;lar = . f2 / +3 6—2"“ |: 2y L+ _:|
(4m)2 Jo t sinh” ¢ 3
e? f2 1 =
= W {_ﬁ Ink+¢'(—1) + :(m)] . (6.7)
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Here we have defined the function (which is closely related to the Barnes G
function [33,34])
2 2 T
E(z)=—zInl(x) + R P +/ dy InT'(y) (6.8)
2 4 2 0
which has the property that ='(k) = £(k).
The dramatic simplicity of the two loop results (6.2) and (6.3) raises three
obvious questions:
e why are these expressions so simple?
e why are these expressions so similar?
e why is the particular function (k) so special?
The answers lie in the three-way relationship between self-duality, helicity
and (quantum mechanical) supersymmetry.

6.1.1. Self-duality and helicity

Self-dual fields have definite helicity [96,97]. Indeed, the self-duality condi-
tion (6.1) is just another way of writing the helicity projection:

- 1
FMV = F/w g UMVFMV <%> =0. (6‘9)

For anti-self-dual fields the other helicity projection vanishes, so that the
photon field has the opposite helicity.

It is well-known that scattering amplitudes for external field lines with
like helicities are particularly simple [148-150]. Since the effective action
for a self-dual field is the generating function for like-helicity amplitudes,
it is consistent that the effective action in a self-dual background should
be simple. However, almost all of these helicity amplitude results are for
massless particles on internal lines (but see for example [151]), while here
we see a generalization to massive particles. For example, in massless QCD,
the tree level amplitudes with all external helicities alike, or all but one alike
vanish identically [149],

Mpi+;p2+;..sppt] =0, M[pi—;pa+;...;ipn+]=0.  (6.10)

For massless QED at one loop, amplitudes with all external helicities alike
vanish except for the case of four external lines, and these are simple [152]

M[pi+;pa+;...;pn+H =0, n#4
(12)*(34)"

- 4
2n2 (12)(34) (6.11)

M(p1+; pa+; ps+; pat] =
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Here the RHS is written in terms of a convenient spinor-helicity basis [148—
150] for the momenta: (ij) = u—(p;)us(p;j), with us(p) being fundamental
spinors of definite helicity. Similarly, when all but one external helicity is
alike, the amplitudes vanish except for four external lines, where it also has
a simple expression

M[pl—;p2+;---;pn+]=07 n # 4

e (12)(34)" (24)°
5 (12 A1) (6.12)

These massless helicity amplitudes, with 4 external legs, have been extended
to two-loop level [153], where they also exhibit remarkable simplicities.

The results (6.2) and (6.3) provide information about amplitudes with
any number of external lines, with all helicities being equal. Massive QED
turns out to be rather different from massless QED, but still shows dramatic
simplicity when considered in a helicity basis. For example, a new prediction
[146] is that for massive QED the low energy limit of the one-loop and two-
loop amplitudes with all external helicities + behave as

(2€)N (1)

Mpi—;po+;p3+;pat] =

F(l)[k’l,ei‘r;kQ,E;; .. ,]{3]\[,67\}] = -2 WCN/z XN (613)
2e)N
F(z)[/cl,ef;kg,e;; kN eN] = —2am % ﬁ}z XN, (6.14)

(47)%m

where the momentum dependence of the low energy limit is naturally ex-
pressed in terms of symmetrized helicity basis elements x v,

XN = (]2\[1\{/22)! {[12]*[34]* - - [(N — 1)N]? + all perms} (6.15)

and [ij] = (k" |k;") denotes a basic spinor product [148-150]. The numerical

coefficients i) and ¢ appearing in (6.13) and (6.14) come from the weak

field expansion of the one-loop and two-loop effective Lagrangians for a self-
dual background [146],

(B
" 2n(2n —2)’
1 By B
2 _ 2k P2n—2k
) = G { B2n 2 32 T } (6.16)

In massive QED, the [+ + + --- 4] helicity amplitudes for N > 6 do not
vanish at one or two loop, in contrast to the one loop case (6.11) for massless
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QED. On the other hand, the amplitudes with all but one helicity alike,
the [— + + ---+] amplitudes, vanish in the low-energy limit in massive
QED, a result that is true to all orders [146]. These results have since been
generalized to all helicity combinations (up to 10 external legs) by making
an explicit helicity expansion of Ritus’s general result (4.9). In fact, in the
low energy limit all “odd -” amplitudes vanish, to all orders [154].

6.1.2. Self-duality and quantum mechanical supersymmetry

Another consequence of the self-duality of the background is that the corre-
sponding Dirac operator has a quantum mechanical supersymmetry. That
is, apart from zero modes, the Dirac operator has the same spectrum (but
with a multiplicity of 4) as the corresponding scalar Klein—-Gordon opera-
tor [108,109,111]. At one-loop this implies [compare to (3.23)]

2 2
1) (1) 1 /ef m
£sp1nor ‘Cscalar + 2 <27T> n <M2 > ) (6 7)

2
where Ny = (%) is the zero mode number density. The logarithmic term

in (6.17) corresponds to the zero mode contribution, as can be verified di-
rectly from the one loop Heisenberg—Euler results restricted to a self-dual
background [144]. Renormalizing on-shell ( i.e., u? = m?), we find that the
spinor and scalar effective Lagrangians (6.6) and (6.7) are proportional to
one another for a self-dual background, in such a way that the supersym-
metric combination vanishes,

ch o . (6.18)

spinor scalar

These properties are familiar from one loop instanton physics [96, 108, 109).

Now consider the implications of self-duality of the background at the two
loop level. The two-loop the effective action is not simply a log determinant,
so the situation is more complicated and we do not expect a SUSY relation
like (6.18) to hold. Nevertheless, the quantum mechanical SUSY of the Dirac
operator relates the spinor propagator to the scalar propagator via simple
helicity projections [155],

s = —(lD—m)G(l‘;%) _Gjp<1—2’ys> L+ 26D (127526.19)

This has the consequence that simply doing the Dirac traces in the spinor
two loop effective Lagrangian (4.1), one finds that it can be written as the
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sum of two terms involving matrix elements of the scalar propagator, and
moreover these are the same two matrix elements of the scalar propaga-
tor that appear in the scalar QED effective Lagrangian, but with different
numerical coefficients [144],

«

d*z’
£ — - / m [A<$|D“G|$/><$/|DuG|£L'> +B<$|G|$/><$/|DuGDu|l‘>] ,

spinor QED: A= -4, B=28; scalar QED: A=-1,B=-1. (6.20)

This structure explains why the two loop answers (6.2) and (6.3) for spinor
and scalar QED have such a similar form, involving just two terms with
different numerical coefficients.

6.1.3. Propagators in self-dual background

A more prosaic reason for the simplicity of the two-loop expressions (6.2) and
(6.3) is that for a self-dual field the square of the matrix F),, is proportional
to the identity matrix,

F;u/Fup = _f26Mp . (621)

This dramatically simplifies the propagators of spinors or scalars in the back-
ground field. For example, for a scalar particle, the Lorentz matrix structure
in (4.21) disappears, leaving (neglecting the unimportant phase factor)

2o dt
Gscalar(w .'L'/) — g / - e—mzt—%(m—x’)z coth(eft) (622)
7 4m o sinh?(eft) ’

o dt —mzt—ﬁ tanh(eft)
Giscalar = —_— ef . 6.23
tar(P) /0 cosh?(eft) ‘ ( )

Note that these propagators are functions of (x — /)2 and p? respectively,
which greatly simplifies computations involving the propagators. Also note
the duality between the momentum and coordinate space propagators — the
coordinate space form is well suited to a weak-field expansion, while the
momentum space form is well suited to a strong-field expansion. The propa-
gators satisfy simple differential equations

ef > 2 9*G(p)

(»* +m*)G(p) =1+ (— :
2 op?,

(6.24)

2
(—85 +m?)G(z,2") = 6(x — 2') — <%> (z —2)2G(z,2") . (6.25)
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The simplification of the self-dual propagators is even more dramatic for
massless particles, where for scalars
2
e~ @=a)? 1—e"eF

Gscalar(l' l') m ’ Gscalar(p) = T : (626)

6.2. Weak field expansions in self-dual case

The weak field expansions are trivial to derive because we have simple closed-
form expressions for the two loop effective Lagrangians in terms of the func-
tion £(k) in (6.5), whose analytic properties are completely understood, since
it is essentially the digamma function. To derive the weak field expansion,
first recall the definition of k as Kk = %, so that the weak field limit is the
large x limit. This weak-field expansion follows directly from (6.5), together
with the asymptotic (large x) expansion of the digamma function [23],

1 < By
k=1

where By, are the Bernoulli numbers. Then the weak-field (large x) expan-
sion of (6.2) is

gggmmm_m 7 Z )spinor____ (6.28)

where the two-loop expansion coefficients are (for n > 2)

C(2) spinor _ 1 2n — B z:l B_ 2n—2k (6 29)
n @nZ\2n—2 27 £ 2k (20— 2Kk) '

The leading term in the weak-field expansion (6.28) is

6f4 5
mAnt 384

L hor (1) ~ =

spinor

(6.30)
agreeing with Ritus’s result (4.11) with the self-dual replacement 1 = ie = f.

Similarly, for scalar QED the results are almost the same, but with dif-
ferent coeflicients,

4
(2) N m (2) scalar 1 1
Lo (k) ~ am )2 ,;2% o (6.31)
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where the two-loop expansion coefficients are (for n > 2)

n—l
1 2n -3 Bar B
(2) scalar _ 2k 2n—2k
n (27)? { on g Pm-2t g kz ok (2n — 2k) } (6:32)

The leading term in the weak-field expansion (6.28) is

£® “ft 3

scalar(’%) m4 4 512 (633)

agreeing with Ritus’s result (4.28) with the self-dual replacement 1 = ie = f.

Another advantage of having a closed-form expression for the two loop
effective Lagrangians is that it becomes simple to study the nonperturbative
contributions to the imaginary part. For example, real x is like the magnetic
B field case, while imaginary « is like the electric E field case [147]. When &
is imaginary, using the properties of the digamma function we find the exact
instanton expansions (here for scalar QED)

M LS~ (2m LY o
Tml™ = - 4@3&2;( i) e : (6.34)

4 o
(2) _ n® 1 9,2 ) B —2mkk
ImL\ = am yPSE 5.2 kE: <27mk 1-3k E 721&2[ e .

Note that the leading terms in the weak field (large ) limit differ by a
factor of am, just as in the electric field case discussed in Section 4.1.1.
Also, observe that the two loop imaginary part has a prefactor of the same
form as that proposed by Lebedev and Ritus in (4.16), but in this self-dual
case we have a closed-form expression for all terms in this prefactor series.
We see moreover that this prefactor series is an asymptotic series. While
this self-dual background is unphysical in Minkowski space, these results are
suggestive of what to expect for a real electric field background at the two
loop level.

6.3. Strong field limits in self-dual case

The strong-field (small ) expansion follows directly from (6.5), together
with the small argument expansion of the digamma function [23],

P(@) ~ =2 =y S (1Rt (6.35)
k=2
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This leads to the following strong-field behavior for spinor QED),

2 o0 2
3 (% + vk + Kkln /{> +3 (Z(—l)lg(l)/{l—1>

=2

-6 (% +79k+ kln /{> <Z(—1)l((l)ﬁl_l)

=2

@ 2am* 1
spinor — (47-[-)3 ?

— (A4 y+Ink)+ ) (-DI¢OR (6.36)
1=2
The leading strong-field behavior for spinor QED is
42
) e’ f 2ef
Espinor ~ _3271'4 In <W . (637)

Similarly, for scalar QED we find

4 2 2
2) am® 13 (1 | 3 ! -1
= |zl = = —1 l
Lo e [2 <2+’yﬂ+/<; neK 2 l 2 )'C(Dk

(o) (S0 )

—(1+y+nk)+ i(—l)ll ¢k ] (6.38)

=2

The leading strong-field behavior for scalar QED is
4 2 9
£ I (if> : (6.39)

scalar 6474 m2

6.3.1. Strong-field limit and B function in self-dual case

Since in some sense the self-dual background is the simplest type of back-
ground, as it leads to the simplest propagators, this suggests it should be
a useful probe for computing 8 functions. From the one-loop Heisenberg—
Euler expressions (6.6) and (6.7), and the closed-form two-loop expressions
(6.2, 6.3) we find

2 2
1 € ef W C 2 ef
‘Cscalar 487['2 f In <m2 > ’ ‘Cspinor 247[.2 f In <m2 > ’

4 4
(2) e 12 ef ) et ef
i et () - e g (1) - 610
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Recalling the argument in Section 5.1 relating the coefficient of the leading
strong-field behavior of the effective Lagrangian to the [g-function coeffi-
cients, we see that the scalar QED results in (6.40) give the correct one and
two loop scalar QED S-function coefficients (compare with (5.12) and (5.14),
and recall that the Maxwell Lagrangian is f2). However, for spinor QED
comparing with (5.13) we see that the correspondence appears to fail. The
reason is that in a self-dual background spinor QED has zero modes, and
these preclude the massless limit on which is based the argument in Section
5.1 relating the § function and the strong field limit of £. This argument
must be modified to account for the zero modes [144]. At one loop the mis-
match is due to the infrared divergence of the unrenormalized Lgpinor, as is
familiar from instanton physics [108,109]. But at two loop there is no IR
divergence in the bare Lagrangian and the zero modes actually enter via the
mass renormalization [144].

7. Diagrammatic approach to two loop effective Lagrangians

It is natural to ask if the remarkable simplifications of the two loop results for
a self-dual background might extend to even higher loops. To go beyond two
loops one should take advantage of the great progress that has been made
recently in understanding the structure of higher-loop quantum field theory
(without background fields). The general strategy is to manipulate diagrams
to reduce the number to a much smaller set of so-called “master diagrams”
which need to be computed. This has led, for example, to many new two-loop
results for QCD scattering amplitudes [156]. Kreimer [157] and collaborators
have discovered an elegant Hopf algebra structure underlying the seemingly
messy jumble of ordinary Feynman diagram perturbation theory. I conclude
this review with some brief comments and speculations about how these
techniques can be extended to incorporate background fields [158].

7.1. Why &€ and &' ?

The first question to address is why are the simple expressions (6.2) and
(6.3) for the two loop Heisenberg—Euler effective Lagrangians in a self-dual
background expressed in terms of the function £(x) and its derivative, where
recall that £ was defined in (6.5) as essentially the Euler digamma function.
The first hint comes from the following facts that for a self-dual background
the scalar propagator loops, evaluated using (6.23), turn out to be simply
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related to the (k) function,

m”_ &(k)

4

O- O =/ &ew-am=- .
4 "k

Q- Q =/ & ey - w1 =55 . @

Here the double lines refer to scalar propagators in the self-dual background
and the single line is the free scalar propagator, while the dot on a propagator

refers to the propagator being squared. Thus, £ and £’ are natural one loop
traces for the self-dual background.

Given (7.1) and (7.2), we can write the closed-form expressions (6.2) and
(6.3) for the two loop effective Lagrangians in diagrammatic form,

spinor QED :
©-&)|-+[O-O] -0 -]
(7.3)
scalar QED :

6 ©)|-10 -0 20O

Here the notation is that the triple line loop on the LHS of (7.3) refers to
a spinor propagator in a self-dual background, while the double-line loops
[including those on the RHS of (7.3)] refer to a scalar propagator in the self-

(7.4)

dual background. This shows the remarkable result that the two loop fully
renormalized answers are expressed naturally in terms of one loop quantities.
Qualitatively, we can write

two loop = (one loop)? 4 (one loop) . (7.5)

Interestingly, such a relation with two loop quantities being expressed as
squares of one loop quantities plus a one loop remainder has been found
recently [159] in the amplitudes of 4 dimensional super Yang—Mills theory,
which is a very different theory from QED. This suggests something deeper
is at work here. This is discussed in the next sections.
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7.2. Background field “integration-by-parts” rules

Indeed, we can go further than the qualitative statement (7.5) and derive the
results (7.3) and (7.4) by algebraic means. First, we identify the source of
the coefficient factors —6e? and %e2 which appear in front of the (one loop)2
terms in (7.3) and (7.4). Note that in free QED (i.e., with no background
field) it is a straightforward exercise to show that in 4 dimensions

spinor QED : @ = —6¢? [Or (7.6)
scalar QED : @ = ge2 [Qr (7.7)

(The loop on the RHS is a scalar loop in each case.) Thus, the two loop free
vacuum diagram can be expressed in terms of a simpler one loop diagram.
These results can either be derived by computing each side using dimen-
sional regularization, or a quicker proof follows from an integration-by-parts
argument (see below). Notice that the coefficients of the (one loop)? parts
in this free case are exactly the same as the corresponding coeflicients in the
background field case, for both spinor and scalar QED. This is no accident,
as I now illustrate for the case of scalar QED (for spinor QED the argument
is similar).

Consider the derivation of (7.7) using dimensional regularization and
integration-by-parts [142, 160, 161]. By purely algebraic manipulations it
follows that

@ _ f/ddpddq (» +9)?

2 ) (2m)2* (p—q)*(p* +m?)(¢* +m?)
e? / dpdiq [—(p — @)* + 2(p* + m?) + 2(¢* + m?) — 4m?]
(2m)2d (p — @)2(p* +m?)(¢?® +m?)

- 2O [, o

where the dotted line denotes a massless scalar propagator. The first term
has been written as the square of a one loop diagram but the second term
is apparently still two loop. However, using simple integration-by-parts ma-

nipulations, this two loop diagram can also be written as a square of a one
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loop diagram,

_ [d%diq & (P =
0= / (2m)% Op,, [(p —q)*(p* + m?)(¢* + m?)

=(@=2) [} - / iéi?;q (p— Q)z(;]; %(Z%gzq? +m?)

dp dd 2 2 2) (2 42
o[- [ bl o L )

(p

-u-s[0]-[Q)O
-u-5[0]-4:2(0]'

Thus, the apparently 2-loop term on the RHS of (7.8) is a square of a one
loop diagram, leading to

@ -2 (=[O 10

This reduces to (7.7) in d = 4, and I stress that this result has been derived
without doing any integrations, only making simple algebraic manipulations

on the integrands.

Now consider the analogous manipulation in a self-dual background [158].
First, we extend the scalar propagator in a self-dual background to arbitrary
dimensions by taking multiple copies of the block diagonal structure of F),, .
That is, we take as our definition of “self-dual” fields in d # 4 the property
(6.21), since the notion of self-duality in (6.1) is clearly tied to d = 4. This
is equivalent to dimensional regularization in the worldline formalism [62].
Then the scalar propagator (6.23) becomes

o0 dt —m2t— ﬁ tanh(eft)
G(p) = / ————e ot : 7.1l
) o cosh? 2(eft) (e)

Then we can repeat the algebraic steps in (7.8) to obtain

/dZ]:Td:d _1 mE {(p+q)2G(p)G(q)—(ef)28G(p) aG(Q)}

-5 (755) [OF] e i
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where we have chosen to isolate this particular coefficient of the square of
the one loop propagator trace motivated by the free-field result (7.10).

7.3. Algebraic view of mass renormalization

The advantage of the manipulation in (7.12) is that it makes the mass renor-
malization (which was a very difficult part of previous two loop computa-
tions) almost trivial. To see this we subtract the free field two loop diagram
from the background field diagram

©-0) i(ié){@T[@r}*“’%g)

and then simply complete the square in the first terms,

O]-[O]-[O-OJ+O[O-OJ- e

The cross-term in (7.14) is immediately identified with the mass renormal-
ization because

m? = {ﬁ_ﬂ:m =IO (7.15)

which can also be derived algebraically. Furthermore,

[@ O] a£<1 + (f? term) . (7.16)

The f? term in (7.16) contributes to the charge renormalization, and so

(7.13) can be written as

©-@]-5 (1=5)[O- OJ - 225 +ou.

(7.17)

Observe that the first term is now completely finite, so that we can set d = 4,
and by (7.1) we obtain the first term of the final answer (7.4), the (one loop)?
piece, without doing any integrals at all! The second term is manifestly the
mass renormalization term, and so is absorbed by mass renormalization (4.8).
The only remaining divergence can be proportional to the bare Maxwell
Lagrangian f2, which is then subtracted by charge renormalization. It is
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simple to isolate and subtract this piece, leaving an O(f*) term, whose kernel
in the d — 4 limit reduces to a momentum delta function,

o) =4 —awe(ep? [ T2 (6()G(0) ~ Golwiota)] 0

= —46—;(6]“)2[@— Q} (7.18)

where in the last step we have used (7.2). Thus, we have derived the dia-
grammatic form (7.4) of the fully renormalized two loop scalar QED effective
Lagrangian in a self-dual background by essentially algebraic manipulations.
It would be interesting to develop these background field “integration-by-
parts” rules into a systematic set of rules that might be applied to even
higher loop order.

8. Conclusions

To conclude, 1 reiterate that from seemingly humble beginnings the
Heisenberg—Fuler result for the one loop effective Lagrangian for spinor QED
in a constant background field has led to many applications in a wide range
of branches of modern particle physics and quantum field theory. In some
sense the Heisenberg—Euler result is analogous to Landau’s computation of
the partition function for nonrelativistic Landau levels which leads to nu-
merous applications for the magnetic properties of materials. I have only
skimmed the surface in this review, but hopefully enough groundwork has
been covered to lead the interested reader directly into the more advanced
applications.
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