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This is a short review of recent work on fuzzy spaces in their relation to the M(atrix)

theory and the Quantum Hall Effect. We give an introduction to fuzzy spaces and how

the limit of large matrices is obtained. The complex projective spaces CPk, and to a

lesser extent spheres, are considered. The Quantum Hall Effect and the behavior of edge

excitations of a droplet of fermions on these spaces and their relation to fuzzy spaces are

also discussed.

831



September 11, 2004 12:4 WSPC/Trim Size: 9.75in x 6.5in for Proceedings daemi

832 D. Karabali, V.P. Nair and S. Randjbar-Daemi

Table of Contents

1 Introduction 833

2 Quantizing CPk 834
2.1 The action and the Hilbert space . . . . . . . . . . . . . . . 834
2.2 Star products, commutators and Poisson brackets . . . . . . 840
2.3 The large n limit of matrices . . . . . . . . . . . . . . . . . 842
2.4 The symbol and diagonal coherent state representation . . . 844

3 Special cases 846
3.1 The fuzzy two-sphere . . . . . . . . . . . . . . . . . . . . . . 846
3.2 Fuzzy CP2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 847

4 Fields on fuzzy spaces 848

5 Construction of spheres 850

6 Brane solutions in M(atrix) theory 854
6.1 The ansatz for a solution . . . . . . . . . . . . . . . . . . . 855
6.2 Fuzzy CP2 as a brane solution . . . . . . . . . . . . . . . . 858
6.3 M-theory properties of the fuzzy CP2 . . . . . . . . . . . . 861
6.4 Other Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 863

7 Fuzzy spaces and the Quantum Hall Effect 864
7.1 The Landau problem and HN . . . . . . . . . . . . . . . . . 864
7.2 A quantum Hall droplet and the edge excitations . . . . . . 867
7.3 Quantum Hall Effect on spheres . . . . . . . . . . . . . . . . 869
7.4 The fuzzy space – Quantum Hall Effect connection . . . . . 872



September 11, 2004 12:4 WSPC/Trim Size: 9.75in x 6.5in for Proceedings daemi

Fuzzy spaces, the M(atrix) model and the Quantum Hall Effect 833

1. Introduction

It is a well known fact that in many quantum mechanical systems, as the
occupation number becomes very large, the quantum theory can be approxi-
mated by a classical theory. Quantum observables which are linear hermitian
operators on the Hilbert space can be approximated by functions on the clas-
sical phase space. Properties of classical functions on the phase space can
thus be obtained as a limit of the quantum theory. This raises the pos-
sibility that one may consider the quantum Hilbert space and the algebra
of operators on it as the fundamental entities for constructing a manifold,
the classical (phase) space being only an approximation to it. Fuzzy spaces
are a realization of this possibility [1–4]. They are defined by a sequence
of triples, (HN ,MatN ,∆N ), where MatN is the matrix algebra of N × N

matrices which act on the N -dimensional Hilbert space HN , and ∆N is a
matrix analog of the Laplacian. The inner product on the matrix algebra
is given by 〈A,B〉 = 1

N Tr(A†B). Such fuzzy spaces may be considered as a
finite-state approximation to a smooth manifold M , which will be the clas-
sical phase space corresponding to HN as N → ∞. More specifically, the
matrix algebra MatN approximates to the algebra of functions on a smooth
manifold M as N → ∞. The Laplacian ∆N is needed to recover metrical
and other geometrical properties of the manifold M . For example, informa-
tion about the dimension of M is contained in the growth of the number of
eigenvalues.

Fuzzy spaces are part of the more general framework of noncommutative
geometry of A. Connes and others [1, 4, 5]. Noncommutative geometry is
a generalization of ordinary geometry, motivated by the following observa-
tion. Consider the algebra of complex-valued square-integrable functions on
a manifold M . The algebra of such functions with pointwise multiplication
is a commutative C∗-algebra. It captures many of the geometrical features
of the manifold M . Conversely, any commutative C∗-algebra can be repre-
sented by the algebra of functions on an appropriate space M . This leads to
the idea that a noncommutative C∗-algebra may be considered as the analog
of an “algebra of functions” on some noncommutative space. One can then
develop properties of this noncommutative space in terms of the properties
of the algebra. This is the basic idea.

More specifically, one introduces the notion of a spectral triple (A,H,D),
where A is a noncommutative algebra with an involution, H is a Hilbert
space on which we can realize the algebra A as bounded operators and D is
a special operator which will characterize the geometry. In terms of such a
spectral triple, there is a construction of the analog of differential calculus
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on a manifold. In particular, if H is the space of square-integrable spinor
functions on a manifold M (technically, sections of the irreducible spinor
bundle), A is the algebra of complex-valued smooth functions on M , and D
is the Dirac operator on M for a particular metric and the Levi-Civita spin
connection, then the usual differential calculus on M can be recovered from
the spectral triple. (For further developments in physics along these lines,
see [6].) In what follows, we shall be interested in fuzzy spaces where we use
matrix algebras to approximate the algebra of functions on a manifold.

A number of fuzzy spaces have been constructed by now. A finite dimen-
sional Hilbert space is obtained if one quantizes a classical phase space of
finite volume. Thus, for manifolds M which have a symplectic structure, so
that they can be considered as classical phase spaces, and have finite volume,
we have a natural method of constructing fuzzy approximations to M . We
quantize the phase space M and consider the algebra of matrices acting on
the resultant Hilbert space.

A natural family of symplectic manifolds of finite volume are given by the
co-adjoint orbits of a compact semisimple Lie group G. (In this case, there is
no real distinction between co-adjoint and adjoint orbits. For quantization
of co-adjoint orbits, see [7, 8].) One can quantize such spaces, at least when
a Dirac-type quantization condition is satisfied, and the resulting Hilbert
space corresponds to a unitary irreducible representation of the group G. In
this way, we can construct fuzzy analogs of spaces which are the co-adjoint
orbits. In the following, we will work through this strategy for the case of
CPk = SU(k + 1)/U(k).

In this review, we will focus on fuzzy spaces, how they may appear as
solutions to M(atrix) theory and their connection to generalizations of the
Quantum Hall Effect. There is a considerable amount of interesting work
on noncommutative spaces, particularly flat spaces, in which case one has
infinite-dimensional matrices, and the properties of field theories on them.
Such spaces can also arise in special limits of string theory. We will not
discuss them here, since there are excellent reviews on the subject [9].

2. Quantizing CPk

2.1. The action and the Hilbert space

We start with some observations on CPk. a This is the complex projective
space of complex dimension k and is given by a set of complex numbers

a Much of the material in this section is well known and can be found in many places; we will

follow the presentation in [10, 11]. For an earlier work on coherent states on CPk and related

matters see [12].
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uα, α = 1, 2, ..., (k + 1), with the identification uα ∼ λuα for any nonzero
complex number λ. We introduce a differential one-form given by

A(u) = − i

2

[
ū · du− dū · u

ū · u

]
, (2.1)

where ū · du = ūαduα, etc. Notice that this form is not invariant under
u → λu; in fact,

A(λu) = A(u) + df , (2.2)

where f = − i
2 log(λ/λ̄). (λ can, in general, be a function of the coordinates,

ū, u.) This transformation law shows that the exterior derivative or curl of
A is in fact invariant under u → λu; it is the Kähler two-form of CPk and
is given by

Ω ≡ dA

= −i

[
dū · du

ū · u
− dū · u ū · du

(ū · u)2

]
. (2.3)

Notice that Ω is closed, dΩ = 0, but it is not exact, since the form A is
not well-defined on the manifold. (We may say that Ω is an element of
the second cohomology group of CPk.) The symplectic form we choose to
quantize CPk will be proportional to Ω.

The identification of u and λu shows that, by choosing λ appropriately,
we may take uα to be normalized so that ūαuα = 1. In this case, we can
introduce local complex coordinates for the manifold by writing

uα =
1√

1 + z̄ · z


1
z1

....

zk

 . (2.4)

In the local coordinates z, z̄, the two-form Ω has the form

Ω = −i

[
dz̄i dzi

(1 + z̄ · z)
− dz̄ · z z̄ · dz

(1 + z̄ · z)2

]
. (2.5)

In terms of the normalized u’s, a basis for functions on CPk is then given
by {φl}, where l can take all integral values from zero to infinity, and

φl = ūα1 · · · ūαluβ1 · · ·uβl
. (2.6)

Notice that, for a fixed value of l, we have complete symmetry for all the
upper indices corresponding to the ū’s and complete symmetry correspond-
ing to the lower indices; further any contraction of indices corresponds to a
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lower value of l since ū · u = 1. Thus the number of independent functions
is given by

d(k, l) =
[
(k + l)!

k!l!

]2

−
[
(k + l − 1)!
k!(l − 1)!

]2

. (2.7)

Since the traceless part of ūαuβ transforms as the adjoint representation of
SU(k + 1), we see that these functions are contained in the representations
obtained by reduction of the products of the adjoint with itself.

As we have mentioned before, CPk can also be considered as the coset
space SU(k +1)/U(k). The defining representation of SU(k +1) is in terms
of (k + 1) × (k + 1)-matrices, which we may think of as acting on a k + 1-
dimensional vector space. Let tA denote the generators of SU(k + 1) as
matrices in this representation; we normalize them by Tr(tAtB) = 1

2δAB.
The generators of SU(k) ⊂ U(k) are then given by tj , j = 1, 2, ..., k2 − 1
and are matrices which have zeros for the k + 1-th row and column. The
generator corresponding to the U(1) direction of the subgroup U(k) will be
denoted by tk2+2k. As a matrix,

tk2+2k =
1√

2k(k + 1)


1 0 · · · 0 0
0 1 · · · 0 0
· · · · · · · · · 1 0
0 0 · · · 0 −k

 . (2.8)

We can use a general element of SU(k + 1), denoted by g, to parametrize
CPk, by making the identification g ∼ gh, where h ∈ U(k). In terms of g,
the one-form A is given by

A = i

√
2k

k + 1
Tr(tk2+2kg

−1dg)

= −ig∗k+1,αdgα,k+1 . (2.9)

If we identify the normalized u by uα = gα,k+1, we see that this agrees with
(2.1). On the group element g ∈ SU(k +1), considered as a (k +1)× (k +1)
matrix, we can define left and right SU(k + 1) actions by

L̂A g = tA g , R̂A g = g tA . (2.10)

If we denote the group parameters in g by ϕi, then we can write, in general,

g−1dg = −itAEA
B dϕB, dgg−1 = −itAẼA

B dϕB . (2.11)

For functions of g, the right and left translations are represented by the
differential operators

R̂A = i(E−1)B
A

∂

∂ϕB
, L̂A = i(Ẽ−1)B

A

∂

∂ϕB
. (2.12)
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The action which we shall quantize is given by

S = in

√
2k

k + 1

∫
dt Tr (tk2+2kg

−1ġ) . (2.13)

Since Tr(tk2+2ktj) = 0 for generators tj of SU(k), this action is invari-
ant under g → gh, for h ∈ SU(k). For the U(1) transformations of
the form exp(itk2+2kθ), the action changes by a boundary term; the equa-
tions of motion are not affected and the classical theory is thus defined on
SU(k + 1)/U(k), as needed. In quantizing the theory, we observe that there
is no coordinate corresponding to the SU(k) directions; the corresponding
canonical momenta are constrained to be zero. Further, the canonical mo-
mentum corresponding to the angle θ for the U(1) direction is given by
−nk/

√
2k(k + 1). The states in the quantum theory must thus obey the

conditions
R̂j Ψ = 0 , j = 1, · · · , k2 − 1 ,

R̂k2+2k Ψ = −nk
1√

2k(k + 1)
Ψ . (2.14)

Another way to see the last condition is to notice that, under g → gh,
h = exp(itk2+2kθ), the action changes by

∆S = − nk√
2k(k + 1)

∆θ , (2.15)

leading to the requirement

Ψ(gh) = Ψ(g) exp

(
−i

nk√
2k(k + 1)

θ

)
(2.16)

for wave functions Ψ(g). (This also shows that the wave functions are not
genuine functions on CPk, but rather they are sections of a U(1) bundle on
CPk.)

We will now consider these wave functions in some more detail. A basis
of functions on SU(k + 1) is given by the Wigner D-functions which are the
matrices corresponding to the group elements in a representation J

D(J)
L,R(g) = 〈J, Li| ĝ |J,Ri〉 , (2.17)

where Li, Ri stand for two sets of quantum numbers specifying the states
on which the generators act, for left and right SU(k + 1) actions on g,
respectively. The quantum numbers Ri in (2.17) must be constrained by the
conditions (2.14). Thus the state |J,Ri〉 corresponds to an SU(k) singlet
with a specific U(1) charge given by (2.14). In addition to these conditions,



September 11, 2004 12:4 WSPC/Trim Size: 9.75in x 6.5in for Proceedings daemi

838 D. Karabali, V.P. Nair and S. Randjbar-Daemi

we must recall that g parametrizes the whole phase space, and so the Wigner
functions depend on all phase space coordinates, not just half of them. To
eliminate half of them, we first define the derivatives on the phase space.

There are 2k right generators of SU(k + 1) which are not in U(k); these
can be separated into t+i which are of the raising type and t−i which are of
the lowering type. The derivatives on CPk can be identified with these R̂±i

right rotations on g. The R̂−i commute among themselves, as do the R̂+i’s;
for the commutator between them we have

[R̂+i, R̂−j ] = ifa
ij R̂a + δij

√
2(k + 1)

k
R̂k2+2k

= −n δij (2.18)

where R̂a is a generator of SU(k) transformations, fa
ij are the appropriate

structure constants, and in the second line, we give the values when acting
on wave functions obeying (2.14). The derivatives thus split into conjugate
pairs, analogously to the creation and annihilation operators. Because of
this, the requirement that the wave functions should not depend on half of
the phase space coordinates can be taken as

R̂−iΨ = 0 . (2.19)

(In the geometric quantization approach to the action (2.13) and the con-
struction of the Hilbert space, this is the so-called polarization condition; for
general works on geometric quantization, see [7].) Based on the requirements
(2.14) and (2.19), we see that a basis for the wave functions is given by the
Wigner functions corresponding to irreducible SU(k + 1) representations J ,
where right state |J,Ri〉 is an SU(k) singlet, has a value of −nk/

√
2k(k + 1)

for R̂k2+2k, and further it must be a highest weight state, so that (2.19) holds.
Representations which contain an SU(k) singlet, with the appropriate

value of R̂k2+2k, can be labeled by two integers J = (p, q) such that p−q = n.
The highest weight condition requires p = n, q = 0. These are completely
symmetric representations. The dimension of this representation J = (n, 0)
is

dimJ =
(n + k)!

n!k!
≡ N , (2.20)

where N expresses the number of states in the Hilbert space upon quanti-
zation. Notice that n has to be an integer for this procedure to go through;
this requirement of integrality is the Dirac-type quantization condition men-
tioned earlier.

A basis for the wavefunctions on CPk can thus be written as

Ψ(n)
m (g) =

√
N D(n)

m,−n(g) . (2.21)
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We denote the fixed state for the right action on the Wigner function above
as −n, indicating that the eigenvalue for R̂k2+2k is −nk/

√
2k(k + 1) as in

(2.14). The index m specifies the state in this basis for the Hilbert space.
The Wigner D-functions obey the orthogonality condition∫

dµ(g) D∗(J)
m,k (g) D(J ′)

m′,k′(g) = δJJ ′ δmm′δkk′

dimJ
, (2.22)

where dµ(g) is the Haar measure on the group SU(k + 1); we normalize it
so that

∫
dµ(g) = 1. Specializing to our case, we see that the wave functions

(2.21) are normalized since∫
dµ(g) D∗(n)

m,−n(g) D(n)
m′,−n(g) =

δmm′

N
. (2.23)

Strictly speaking, the integration for the wave functions should be over the
manifold CPk = SU(k+1)/U(k). The measure should be the Haar measure
for SU(k + 1)/U(k); however, we can integrate over the whole group since
the integrand is U(k) invariant.

We now use the notation uα ≡ gα,k+1; in terms of the uα’s, the Wigner
D-functions are of the form D ∼ uα1uα2 · · ·uαn . Using the local complex
coordinates introduced in (2.4), the wave functions (2.21) are

Ψ(n)
m =

√
N D(n)

m,−n(g) ,

D(n)
m,−n(g) =

[
n!

i1!i2!...ik!(n− s)!

]1
2 zi1

1 zi2
2 · · · z

ik
k

(1 + z̄ · z)
n
2

, (2.24)

s = i1 + i2 + · · ·+ ik .

Here 0 ≤ il ≤ n, 0 ≤ s ≤ n. The condition R̂−iD(n)
m,−n = 0 is a holomor-

phicity condition and this is reflected in the fact that the wave functions are
holomorphic in z’s, apart from certain overall factors. The states (2.24) are
coherent states for CPk [8]. The inner product for the Ψ’s may be written
in these coordinates as

〈Ψ|Ψ′〉 =
∫

dµ Ψ∗ Ψ′ ,

dµ =
k!
πk

dkzdkz̄

(1 + z̄ · z)k+1
. (2.25)

At this point, we are able to define more precisely what we mean by
fuzzy CPk [13–15]. Functions on fuzzy CPk will correspond to matrices
acting on the N -dimensional Hilbert space given by the basis (2.21). They
are thus N ×N -matrices and the composition law is matrix multiplication.
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The composition law is not commutative and so this corresponds to a non-
commutative version of CPk. There are N2 independent elements for an
arbitrary N×N matrix; thus there are N2 independent “functions” possible
on fuzzy CPk at finite N (or finite n). What we need to show is that these
functions are in one-to-one correspondence with functions on the usual com-
mutative CPk, as n →∞. Further, in this limit, the matrix product of two
matrices tend to the ordinary commutative product of the corresponding
functions. The first step is to define the symbol corresponding to any ma-
trix; the symbol is an ordinary function on commutative CPk to which the
matrix approximates in the large n limit. The matrix product can then be
represented in terms of symbols by a deformation of the ordinary product,
known as the star product. We now turn to a discussion of these concepts
and their properties.

2.2. Star products, commutators and Poisson brackets

Let Â be a general matrix acting on the N -dimensional Hilbert space gen-
erated by the basis (2.21) with matrix elements Ams. We define the symbol
corresponding to A as the function

A(g) = A(z, z̄) =
∑
ms

D(n)
m,−n(g)AmsD∗(n)

s,−n(g)

= 〈 − n|ĝT Âĝ∗| − n〉 , (2.26)

where | − n〉 = |J = n,−n〉. We are interested in the symbol corresponding
to the product of two matrices A and B. This can be written as

(AB)(g) =
∑

r

AmrBrsD(n)
m,−n(g)D∗(n)

s,−n(g)

=
∑
rr′p

D(n)
m,−n(g)Amr D∗(n)

r,p (g)D(n)
r′,p(g) Br′sD

∗(n)
s,−n(g) (2.27)

using δrr′ =
∑

pD
∗(n)
r,p (g)D(n)

r′,p(g). The term with p = −n on the right hand
side of (2.27) gives the product of the symbols for A and B. The terms with
p > −n may be written using raising operators as

D(n)
r,p (g) =

[
(n− s)!

n!i1!i2! · · · ik!

]1
2

R̂i1
+1 R̂i2

+2 · · · R̂
ik
+k D

(n)
r,−n(g) . (2.28)
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Here s = i1 + i2 + · · · + ik and the tk2+2k-eigenvalue for the state |p〉 is
(−nk + sk + s)/

√
2k(k + 1). Since R̂+iD∗(n)

s,−n = 0, we can also write[
R̂+iD(n)

r′,−n(g)
]
Br′sD

∗(n)
s,−n(g) =

[
R̂+iD(n)

r′,−nBr′sD
∗(n)
s,−n(g)

]
= R̂+iB(g) .

(2.29)
Further keeping in mind that R̂∗

+ = −R̂−, we can combine (2.27-2.29) to get

(AB)(g) =
∑

s

(−1)s

[
(n− s)!

n!s!

] n∑
i1+i2+···+ik=s

s!
i1!i2! · · · ik!

×R̂i1
−1R̂

i2
−2 · · · R̂

ik
−kA(g)R̂i1

+1R̂
i2
+2 · · · R̂

ik
+kB(g)

≡ A(g) ∗B(g) . (2.30)

The right hand side of this equation is what is known as the star product
for functions on CPk. It has been written down in different forms in the
context of noncommutative CPk and related spaces [15, 16]; our argument
here follows the presentation in [17], which gives a simple and general way
of constructing star products. The first term of the sum on the right hand
side gives A(g)B(g), successive terms involve derivatives and are down by
powers of n, as n → ∞. For the symbol corresponding to the commutator
of A and B, we have

(
[A,B]

)
(g) = − 1

n

k∑
i=1

(R̂−iA R̂+iB − R̂−iB R̂+iA) + O(1/n2) . (2.31)

The Kähler two-form on CPk may be written as

Ω = −i

√
2k

k + 1
Tr
(
tk2+2k g−1dg ∧ g−1dg

)
= −1

4

k∑
i=1

(
E+i

C E−i
D − E−i

C E+i
D

)
dϕC ∧ dϕD

= −1
4

k∑
i=1

εMiNiE
Mi
C ENi

D dϕC ∧ dϕD

≡ 1
2
ΩCD dϕC ∧ dϕD , (2.32)

where εMiNi is equal to 1 for mi = +i, Ni = −i and is equal to −1 for
Mi = −i,Ni = +i.

Functions A, B on CPk obey the condition R̂αA = R̂αB = 0, where
R̂α (with the index α) is any generator of the subgroup U(k). With this
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condition, we find

i
∑

i

εMiNi(R̂MiA)(E−1)C
Ni

ΩCD = − ∂A

∂ϕD
. (2.33)

The Poisson bracket of A and B, as defined by Ω, is thus given by

{A,B} ≡ (Ω−1)MN ∂A

∂ϕM

∂B

∂ϕN

= i

k∑
i=1

(
R̂−iA R̂+iB − R̂−iB R̂+iA

)
. (2.34)

Combining with (2.31), we find

([A,B]) (g) =
i

n
{A,B} + O(1/n2) . (2.35)

This is the general correspondence of commutators and Poisson brackets,
here realized for the specific case of CPk. If desired, one can also write the
Poisson bracket in terms of the local coordinates z, z̄ introduced in (2.4).
The relevant expressions are

{A,B} = i(1 + z̄ · z)

(
∂A

∂zi

∂B

∂z̄i
− ∂A

∂z̄i

∂B

∂zi
+ z · ∂A

∂z
z̄ · ∂B

∂z̄
− z̄ · ∂A

∂z̄
z · ∂B

∂z

)
.

(2.36)
The trace of an operator Â may be written as

TrÂ =
∑
m

Amm = N

∫
dµ(g)D(n)

m,−n Amm′ D∗(n)
m′,−n

= N

∫
dµ(g) A(g) . (2.37)

The trace of the product of two operators A,B is then given by

TrÂB̂ = N

∫
dµ(g) A(g) ∗B(g) . (2.38)

2.3. The large n limit of matrices

We now consider the symbol for the product T̂BÂ where T̂B are the genera-
tors of SU(k + 1), viewed as linear operators on the states in the represen-
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tation J . Using the formula (2.26), it can be simplified as follows,

(T̂BÂ)αβ = 〈α| ĝT T̂B Â ĝ∗ |β〉

= SBC 〈α| T̂C ĝT Â ĝ∗ |β〉

= SBa(Ta)αγ 〈γ| ĝT Â ĝ∗ |β〉+ SB+i 〈α| T̂−i ĝT Â ĝ∗ |β〉

+SB k2+2k 〈α| T̂k2+2k ĝT Â ĝ∗ |β〉

= LBαγ 〈γ| ĝT Â ĝ∗ |β〉

= LBαγ A(g)γβ , (2.39)

where we have used ĝT T̂B ĝ∗ = SBC T̂C , SBC = 2Tr(gT tBg∗tC). (Here tB, tC
and the trace are in the fundamental representation of SU(k + 1).) LB is
defined as

LBαγ = −δαγ
nk√

2k(k + 1)
SB k2+2k + δαγSB+i

ˆ̃R−i (2.40)

and ˆ̃R−i is a differential operator defined by ˆ̃R−ig
T = T−ig

T . (This can be
related to R̂−i but it is immaterial here.) We have also used the fact that
the states |α〉, |β〉 are SU(k)-invariant. By choosing Â as a product of T̂ ’s,
we can extend the calculation of the symbol for any product of T̂ ’s using
equation (2.39). We find

(T̂AT̂B · · · T̂M )αβ = LAαγ1LBγ1γ2 · · · LMγrβ · 1 . (2.41)

A function on fuzzy CPk is an N × N matrix. It can be written as a
linear combination of products of T̂ ’s and by using the above formula, we
can obtain its large n limit. When n becomes very large, the term that
dominates in LA is SA k2+2k. We then see that for any matrix function we
have the relation, F (T̂A) ≈ F (SA k2+2k).

We will now define a set of “coordinates” XA which are N ×N -matrices
by

XA = − 1√
C2(k + 1, n)

T̂A , (2.42)

where

C2(k + 1, n) =
n2k2

2k(k + 1)
+

nk

2
(2.43)

is the quadratic Casimir value for the symmetric rank n representation. XA

will be considered as coordinates of fuzzy CPk embedded in Rk2+2k. In the
large n limit, we evidently have XA ≈ SA k2+2k = 2Tr(gT tAg∗tk2+2k). By
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its definition, SA k2+2k obeys algebraic constraints which can be verified to
be the correct ones for describing CPk as embedded in Rk2+2k.

2.4. The symbol and diagonal coherent state representation

The states we have constructed are the coherent states for CPk and we have
an associated diagonal coherent state representation [8], [12]. Notice that the
states have the expected holomorphicity property that coherent states have.
In fact, the condition (2.19) is the statement of holomorphicity; explicitly,
the wave functions in (2.24), apart from the prefactor involving (1+ z̄ ·z)−

n
2 ,

involve only zi and not z̄i. We now show that the symbol of an operator is
related to, but is not exactly, the expectation value of the operator in this
coherent state representation. The first step towards this is the Wigner-
Eckart theorem, which is a standard result, and can also be seen easily as
follows.

Let Fα be a tensor operator belonging to the representation r. We then
have

ĝFαĝ† = D(r)
β,αFβ . (2.44)

We can now write

(Fα)km = 〈n, k|Fα|n, m〉

= 〈n, k|ĝ†ĝFαĝ†ĝ|n, m〉

=
∑
p,q,β

D(n)
k,p (g†) D(n)

q,m(g)D(r)
β,α(g) 〈n, p|Fβ|n, q〉 . (2.45)

In this expression, we can combine the product of the representations by the
Clebsch-Gordon theorem; the Clebsch-Gordon coefficients 〈j, p|r, β;n, q〉 for
reduction of product representations are defined by

|r, β;n, q〉 =
∑
j,p

〈j, p|r, β;n, q〉 |j, p〉 , (2.46)

where the sum is over all representations which can be obtained by the prod-
uct of representations r and n, and over the states within each such repre-
sentation. Using this result and integrating both sides of equation (2.45)
over all g, we get the Wigner-Eckart theorem

(Fα)km = 〈n, k|r, α;n, m〉 〈〈F 〉〉 , (2.47)

the reduced matrix element 〈〈F 〉〉 being given by

〈〈F 〉〉 =
∑
p,q,β

1
N
〈r, β;n, q|n, p〉 〈n, p|Fβ|n, q〉 (2.48)
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where N is the dimension of the representation labeled by n .
Now, from the definition of the Clebsch-Gordon coefficient in (2.46), we

have the relation∫
dµ(g)D(n)

k,p (g†) D(n)
q,m(g)D(r)

β,α(g) =
1
N
〈r, β;n, q|n, p〉 〈n, k|r, α;n, m〉 .

(2.49)
We can put β = 0, p = q = −n in this equation and use (2.47) to obtain

〈〈F 〉〉 〈n, k|r, α;n, m〉 〈r, 0;n,−n|n,−n〉

= N

∫
dµ(g) D(n)∗

−n,k(g
†) D(n)

−n,m(g)〈〈F 〉〉D(r)
0,α(g)

= N

∫
dµ(g)D(n)∗

k,−n(gT )D(n)
m,−n(gT )〈〈F 〉〉D(r)

α,0(g
T )

=
∫

dµ(g) Ψ(n)∗
k

[
〈〈F 〉〉D(r)

α,0(g)
]
Ψ(n)

m , (2.50)

where, in the last step, we made a change of variable g → gT , and used the
definition of states (2.24). We now define a function fα(g) by

fα(g) 〈r, 0;n,−n|n,−n〉 = D(r)
α,0(g)〈〈F 〉〉 . (2.51)

We can then rewrite (2.50) as∫
dµ(g)Ψ(n)∗

k fα(g) Ψ(n)
m = 〈n, k|r, α;n, m〉 〈〈F 〉〉

= (Fα)km . (2.52)

We see that the matrix element of Fα can be reproduced by the expectation
value of a function fα(g). This is the diagonal coherent state representation.
The result is easily extended to any matrix since we can always write it as
a linear combination of tensor operators which have definite transformation
properties. Thus

〈k|F̂ |m〉 =
∫

dµ(g) Ψ(n)∗
k f(g) Ψ(n)

m (2.53)

or, equivalently,

F̂ =
∫

dµ(g) |g〉 f(g) 〈g| , (2.54)

where the states |g〉 are defined by 〈k|g〉 = Ψ(n)∗
k , 〈g|m〉 = Ψ(n)

m .
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The function f(g) is not the same as the symbol for F . In fact, the
symbol may be written as

F (g) =
∑
km

D(n)
k,−n(g) Fkm D(n)∗

m,−n(g)

= N
∑
km

∫
h
D(n)

k,−n(g)D(n)∗
k,−n(h) f(h) D(n)

m,−n(h) D(n)∗
m,−n(g) (2.55)

=
∫

h
D(n)∗
−n,−n(g†h) f(h) D(n)

−n,−n(g†h)

=
∫

u
D(n)∗
−n,−n(u) f(gu) D(n)

−n,−n(u) .

Since F can be written as a combination of tensor operators, we have f(g) =∑
r,α Cr

αD
(r)
α,0, for some coefficient numbers Cr

α. Using this in the above
equation, we get

F (g) =
∑
r,α

Cr
αD

(r)
α,0(g) |C|2 , (2.56)

C = 〈n,−n|r, 0;n,−n〉 .

In the large n limit, C → 1, and the symbol and the function f coincide.

3. Special cases

It is instructive at this point to consider some special cases.

3.1. The fuzzy two-sphere

This is one of the best-studied cases [18]. Since S2 ∼ CP1 = SU(2)/U(1),
this is the special case of k = 1 in our analysis. In this case, the rep-
resentations of SU(2) are given by standard angular momentum theory.
Representations are labeled by the maximal angular momentum j = n

2 ,
with N = 2j + 1 = n + 1. The generators of the group are the angular
momentum matrices, and one may identify the coordinates of fuzzy S2 by
Xi = Ji/

√
j(j + 1). At finite n, the coordinates do not commute,

[Xi, Xj ] =
i√

j(j + 1)
εijkXk . (3.1)

We can parametrize an element of SU(2) as

g =
1√

(1 + z̄z)

[
z̄ 1
−1 z

]
. (3.2)
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For Si3(g) we then find

S13 = − z + z̄

(1 + zz̄)
, S23 = −i

z − z̄

(1 + zz̄)
, S33 =

zz̄ − 1
zz̄ + 1

. (3.3)

At the matrix level, we have XiXi = 1; in the large n limit, Xi ≈ Si3, which
also obey the same condition. z, z̄ are the local complex coordinates for the
sphere.

A function on fuzzy S2 is an N ×N matrix, so, at the matrix level, there
are N2 = (n + 1)2 independent “functions”. On the smooth S2, a basis
for functions is given by the spherical harmonics, labeled by the integer
l = 0, 1, 2, .... There are (2l + 1) such functions for each value of l. If we
consider a truncated set of functions with a maximal value of l equal to n,
the number of functions is

∑n
0 (2l + 1) = (n + 1)2. Notice that this number

coincides with the number of “functions” at the matrix level. By using
the relation Xi ≈ Si3, we can see that the functions involved correspond to
products of Si3 with up to n factors. These are in one-to-one correspondence
with the spherical harmonics, for l = 0, 1, 2, etc., up to l = n, since Si3 has
angular momentum 1. Thus we see that the set of functions at the matrix
level will go over to the set of functions on the smooth S2 as n →∞.

Fuzzy S2 may thus be viewed as a regularized version of the smooth S2

where we impose a cut-off on the number of modes of a function. n is the
regulator or cut-off parameter.

3.2. Fuzzy CP2

This corresponds to the case k = 2 [13–15]. The large n limit of the coor-
dinates XA is SA8 = 2Tr(gT tAg∗t8). It is easily checked that, in this limit,
they obey the conditions

XAXA = 1 ,

dABCXBXC = − 1√
3

XC , (3.4)

where dABC = 2TrtA(tBtC + tCtB). These conditions are well known to be
the equations representing CP2 as embedded in R8. Thus, in the large n

limit, our definition of fuzzy CP2 does recover the smooth CP2. One can
impose these conditions at the level of matrices to get a purely matrix-level
definition of fuzzy CP2.

The dimension N of the Hilbert space is in this case given by 1
2(n+1)(n+

2). We may also consider the matrix functions which are N × N -matrices;
they can be thought of as products of the T̂ ’s with up to N − 1 factors.
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There are N2 independent functions possible. On the smooth CP2, a basis
of functions is given by (2.6). There are d(2, l) = (l + 1)3 such functions for
each value of l. If we consider a truncated set, with values of l going up to
n, the number of independent functions will be

n∑
0

(l + 1)3 =
1
4
(n + 1)2(n + 2)2 = N2 . (3.5)

It is thus possible to consider the fuzzy CP2 as a regularization of the smooth
CP2 with a cut-off on the number of modes of a function. Since any matrix
function can be written as a sum of products of T̂ ’s, the corresponding large
n limit has a sum of products of SA8’s. The independent basis functions are
thus given by representations of SU(3) obtained from reducing symmetric
products of the adjoint representation with itself; they are the φl’s of equa-
tion (2.6). In fact, since the states are of the form uα1uα2 ...uαn , a general
linear transformation is of the form Mα1...αn

β1...βn
. The traceless part of this forms

the irreducible representation φn, the traces give lower rank irreducible rep-
resentations φl, l < n. We see that there is complete agreement with the set
of functions on CP2 with a cut-off on the modes at l = n.

Since we can regard fuzzy CPk as a regularization of the smooth CPk

with a cut-off on the number of modes of a function, one can use these fuzzy
spaces to construct regulated field theories, in much the same way that
lattice regularization of field theories is carried out. There are novel features
associated with such a regularization; for example, the famous (or notorious)
fermion doubling problem on the lattice can be evaded in an interesting way.
For these and other details, see [19].

4. Fields on fuzzy spaces

In this section we will briefly consider how one can define a field theory on
a fuzzy space.

A scalar field Φ on a fuzzy space is obviously an N ×N matrix which can
take arbitrary values. We may write Φ(X), indicating that it is a function of
the coordinate matrices XA. For constructing an action, we need derivatives.
From the general property (2.35), we see that we can write

[TA,Φ] ≈ − i

n

nk√
2k(k + 1)

{SA k2+2k,Φ}

≡ −iDAΦ . (4.1)

On the left hand side of this equation we have the matrix quantities while
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on the right hand side we have the corresponding symbols. DA, as defined
by this equation, are given by

DA =

√
k

2(k + 1)
(1 + z̄z)

[(
∂

∂zi
+ z̄iz ·

∂

∂z

)
SA k2+2k

∂

∂z̄i

−
(

∂

∂z̄i
+ ziz̄ ·

∂

∂z̄

)
SA k2+2kt

∂

∂zi

]
. (4.2)

DA are derivative operators appropriate to the space we are considering. For
example, for the fuzzy S2, we find

D1 =
1
2

(z̄2∂z̄ + ∂z − z2∂z − ∂z̄) ,

D2 = − i

2
(z̄2∂z̄ + ∂z + z2∂z + ∂z̄) , (4.3)

D3 = z̄∂z̄ − z∂z .

These obey the SU(2) algebra, [DA, DB] = iεABCDC ; they generate the
translations on the two-sphere. They are, in fact, the three isometry trans-
formations. This shows that we can define the derivative of Φ, at the matrix
level, as the commutator i[TA,Φ], which is the adjoint action of TA on Φ.
The Laplace operator is then given by −∆ · Φ = [TA, [TA,Φ]].

An example of the Euclidean action for a scalar field is then

S =
1
N

Tr
[
Φ†[TA, [TA,Φ]] + V (Φ)

]
, (4.4)

where V (Φ) is a potential term which does not involve derivatives.
Another interesting class of fields is given by gauge fields. Since the

derivatives are given by the adjoint action of the TA, we can introduce a
gauge field AA and the covariant derivative

−iDAΦ = [TA,Φ] +AAΦ , (4.5)

where AA is a set of hermitian matrices. In the absence of the the gauge
field, we have the commutation rules [TA, TB] = ifABCTC , so that the field
strength tensor FAB may be defined by

−iFAB = [TA +AA, TB +AB]− ifABC(TC +AC) . (4.6)

One can now construct a Yang-Mills type action for a gauge theory as

S =
1
N

Tr
[
1
4
FABFAB

]
. (4.7)
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Starting with actions of the type (4.4) and (4.7), it is possible to de-
velop the functional integral for the quantum theory of these fields and do
perturbation theory in terms of Feynman diagrams, etc. We will not do
this analysis here for two reasons. The analysis of field theories on fuzzy
spaces where the nontrivial geometry plays an important role has not yet
been developed to a great extent. We give some of the references which can
point the reader to ongoing work [19]. Properties of field theories on flat
noncommutative spaces (which we have not discussed here) has been more
extensively investigated; for this there are good reviews available [9, 20].

5. Construction of spheres

We have discussed in some detail the complex projective spaces. They are
the spaces which emerge most naturally in any matrix construction. The
reason is simple. Matrices are linear operators on a Hilbert space and so
they are related to the quantization of a classical phase space. Therefore,
spaces which admit a symplectic structure are natural candidates for fuzzi-
fication. Spheres, except for S2 and products thereof, do not fall into this
category. The construction of the spheres is thus more involved. The general
strategy has been to identify them as subspaces of suitable fuzzy spaces and
to introduce conditions restricting the functions to be on the sphere.

There is good reason to seek fuzzification of spheres, apart from the gen-
eral mathematical interest in constructing them. As we mentioned before,
one of the ways fuzzy spaces can be used is that they provide a finite mode
truncation of field theories. Therefore, one may think of them as an alter-
native to the usual lattice formulation of field theory which is necessary to
formulate field theories in a finite way and ask and answer questions about
whether they exist and so on. Further, they can be useful for numerical anal-
yses of field theories. Four dimensions, of course, are the most interesting
from this point of view; however, CP2 is not the best, since the smooth CP2

does not have a spin structure. (It can have a so-called spinc structure, with
an additional U(1) field, which we can take to be the ”monopole potential”
given in (2.1) [21]. For a recent analysis of the solution of Dirac equation
in the background of this field, see [22].) Fuzzification of S4 would be very
useful for this.

The method for the construction of spheres is exemplified and illustrated
by the case of fuzzy S1. We start with fuzzy S2 ∼ CP1; the modes at finite
n are the fuzzy versions of the spherical harmonics Y l

m(θ, ϕ) with l = 0, 1,
etc., up to l = n. Take the highest spherical harmonic; this has m values
−n,−n + 1, etc., up to n. The ϕ-dependence of this function corresponds
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to modes eimϕ on S1 for the same range of values for m. If we take the
large n limit, we see that this single spherical harmonic can give all the
modes required for S1. So, one strategy, advocated in [23], is to introduce a
projection operator which, acting on a matrix F , which may be viewed as a
function on the fuzzy space, retains only the highest mode. If we split F as
F = F++F−, where F+ is the part corresponding to the harmonics on S1 and
F− the remainder, the projection operator P is defined by P (F ) = F+. This
can be done for higher dimensional spheres as well. The difficulty with this
approach is that the product of two such projected matrices will generate the
other unwanted modes, so we have to define the operation of multiplication
by F ∗ G = P (FG); the algebra is done before the projector is applied.
This product is not associative in general, so that one cannot interpret the
matrix functions on the fuzzy sphere as a linear transformation on a Hilbert
space; in the large n limit, associativity is recovered. Nevertheless, the lack
of associativity limits the utility of this approach.

A related idea starts with the question: what do we want to use the fuzzy
sphere for? If it is for the purpose of constructing field theories on it and
studying their behavior as n →∞, then a different strategy is possible [24].
It would be more practical, even for numerical simulations of theories, to
include all modes, for example, all the spherical harmonics for all l ≤ n,
so that we do have the algebra of functions on the bigger space, the fuzzy
two-sphere in this example. One can then choose the action, so that all the
unwanted modes have a large contribution to the Euclidean action. Such
modes are then suppressed and one gets a softer way of approaching the
modes on the sphere we want. In the example of S1, notice that the quantity
h[n(n+1)−T 2], where TA are the angular momentum generators, is positive
for all l < n and is zero for l = n. Thus adding a term with this eigenvalue
would prejudice it against all modes l < n, and by taking the parameter h

to be large, we can get a good approximation to the circle S1. For a scalar
field, such an action is given by

S =
1

n + 1
Tr
[
1
2

Φ†[T3, [T3,Φ]] +
h

2
Φ†[n(n + 1)− T 2] · Φ

]
, (5.1)

where T 2 · Φ = [TA, [TA,Φ]].
These ideas can be extended to higher dimensional spheres. We have

to start with suitable co-adjoint orbits to construct the Hilbert space via
quantization as we have done. For spheres, some of the useful co-adjoint
orbits are [24]:

(1) SO(3)/SO(2) ∼ S2.
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(2) SO(4)/[SO(2)×SO(2)] ∼ S2×S2. (This can be related to S3/Z2 as
we show below.)

(3) SO(5)/[SO(3)× SO(2)] ∼ CP3/Z2. (This can be used for the fuzzy
version of S4 utilizing the fact that CP3 is an S2 bundle over S4. It
can also be used to approximate S3 by prejudicing the action against
the unwanted modes as in the case of S1.)

(4) SO(N+2)/[SO(N)×SO(2)]. (This can be used for higher dimensional
spheres in a similar way.)

A matrix version of the four-sphere, which is useful in the context of
solutions to M(atrix) theory, is worthy of special mention [26]. For the four
sphere, we expect to have five matrices Xµ, µ = 1, ..., 5, such that XµXµ = 1.
This can be achieved by using the Euclidean Dirac γ-matrices. There is only
one irreducible representation for the γ matrices, so to get a sequence of
larger and larger matrices, one can take tensor products of these,

Xµ = (γµ ⊗ 1⊗ 1...⊗ 1 + 1⊗ γµ ⊗ 1...⊗ 1 + · · · )sym , (5.2)

where the subscript sym indicates symmetrization.
We now consider the fuzzy version of S3/Z2 which is related to S2 × S2

[27]. The end result is not quite a sphere, but it is still an interesting example,
since there is an algebra of functions which has closure under multiplication.
In this case, S2 × S2 plays a role, vis-à-vis S3/Z2, analogous to what CP3

does for S4.
In the smooth limit, the space S3/Z2 can be embedded in S2 × S2.

The latter space can be described by n2 = 1, m2 = 1, n = (x1, x2, x3),
m = (y1, y2, y3). The space S3/Z2 is now obtained by imposing the further
condition n·m = x1y1+x2y2+x3y3 = 0. It is clear that any solution to these
equations gives an SO(3) matrix RAB = (εABCmBnC ,mA, nA). Conversely,
given any element RAB ∈ SO(3), we can identify nA = RA3, mA = RA2.
There are other ways to identify (n, m) but these are equivalent to choosing
different sets of values for the SO(3) parameters; this statement can be easily
checked using the Euler angle parametrization. What we have described is
essentially the angle-axis parametrization of rotations [28]. Since the space
S2×S2 has Kähler structure, it is the simplest enlargement of space we can
use to define coherent states.

We now turn to the fuzzy version of S3/Z2. Consider SU(2) × SU(2),
with generators TA, T ′

A and take a particular representation where l = l′,
so that we can think of T, T ′ as (N × N)-matrices, N = 2l + 1. Since
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the quadratic Casimirs satisfy T 2 = T ′2 = l(l + 1), this gives the standard
realization of fuzzy S2 × S2 [18]. As l becomes large, we can use our result
(2.40)

TA ≈ l 2 Tr (g†tAgt3), T ′
A ≈ l 2 Tr (g′†tAg′t3) (5.3)

where g, g′ are (2×2)-matrices parametrizing the two SU(2)’s. All functions
of T, T ′ are similarly approximated. To get to a smaller space, clearly we
need to put an additional restriction which we will take as the following. An
operator is considered admissible or physical if it commutes with T · T ′, or
equivalently commutes with (T − T ′)2 or (T + T ′)2, i.e,

[O, (T − T ′)2] = 0 . (5.4)

It is easily seen that the product of any two operators which obey this
condition will also obey the same condition, so this leads to a closed algebra.
A basis for the vector space on which T, T ′ act is given by |lmlm′〉 in the
standard angular momentum notation. We rearrange these into multiplets of
JA = TA +T ′

A. For all states within each irreducible representation of the J-
subalgebra labeled by j, (T−T ′)2 has the same eigenvalue 4l(l+1)−j(j+1).
Operators which commute with it are thus block diagonal, consisting of all
unitary transformations on each (2j + 1)-dimensional subspace. There are
(2j +1)2 independent transformations for each j-value putting them in one-
to-one correspondence with the basis functions Dj

a,b(U) for an S3 described
by the SU(2) element U . By construction, we get only integral values of j,
even if l can be half-odd-integral, so we certainly cannot get S3 in the large
l limit, only S3/Z2.

We can go further and ask how the condition (5.4) can be implemented
in the large l limit. This can be done by fixing the value of T · T ′ to be any
constant. Using (5.3) we find that this leads to

T · T ′ ∼ 2 Tr (g′†g t3g
†g′t3) ∼ constant . (5.5)

This means that

g′†g = M exp(it3θ) (5.6)

where M is a constant SU(2) matrix. θ can be absorbed into g. Since
T · T ′ ∼ 2 Tr (Mt3M

†t3), we can take M = exp(it2β0) using the Euler angle
parametrization. We then find

TA ∼ 2 Tr (g†tAgt3) ,

T ′
A ∼ cos β0 2 Tr (g†tAgt3) + sin β0 2 Tr (g†tAgt1) . (5.7)
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Thus all functions of these can be built up from the SO(3) elements RAB =
2Tr(g†tAgtB). (Actually we need B = 1, 3, but B = 2 is automatically given
by the cross product.) Thus, in the large l limit, the operators obeying the
further condition (5.4), tend to the expected mode functions for the group
manifold of SO(3) which is S3/Z2. We have thus obtained a fuzzy version of
S3/Z2 or RP3. The condition we have imposed, namely (5.4), is also very
natural, once we realize that (T −T ′)2 is the matrix analog of the Laplacian,
and mode functions can be obtained as eigenfunctions of the Laplacian.

A similar construction is possible for fuzzy S4, utilizing the fact that CP3

is an S2-bundle over S4. This has been shown in a recent paper by Abe [25].

6. Brane solutions in M(atrix) theory

The idea of M-theory was formulated by Witten who showed that the five su-
perstring theories in ten dimensions could be considered as special cases of a
single theory, the M-theory [29]. Witten also showed that eleven-dimensional
supergravity is another limit of M-theory, corresponding to compactification
on a circle. Shortly afterwards, BFSS proposed a matrix model as a version
of M-theory in the lightcone formulation; as the dimension N of the matri-
ces becomes large, the model is supposed to describe M-theory in the large
lightcone momentum limit [30]. Another matrix model, which applies to the
type IIB case, as opposed to the type IIA which is described by the BFSS
model, has been given by IKKT [31]. These matrix versions of M-theory
are often referred to as M(atrix) models and have been rather intensively
investigated over the last few years [32]. It is by now clear that M(atrix)
theory does capture many of the expected features of M-theory such as
the eleven-dimensional supergravity regime and the existence of extended
objects of appropriate dimensions. Solutions to this theory are given by spe-
cial matrices; hence these theories generically have the possibility of fuzzy
spaces appearing as solutions. These will correspond to brane solutions, with
smooth extended objects or branes emerging in the large N -limit. Finding
such solutions is clearly of some interest. The emergence of the two-brane or
the standard membrane was analyzed many years ago [33]. More recently,
spherically symmetric membranes have been obtained [34]. As regards the
five-brane, which is the other extended object of interest, there has been no
satisfactory construction or understanding of the transverse brane where all
five spatial dimensions are a subset of the nine manifest dimensions of the
matrix theory. The longitudinal five-branes, called L5-branes, which have
four manifest dimensions and one along the compactified direction (either
the eleventh dimension or the lightlike circle) have been obtained. These in-
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clude flat branes [35] and stacks of S4×S1-branes [26]. With the discussion
of fuzzy spaces given in the previous sections, we are now in a position to
analyze the construction of brane configurations. The presentation in this
section will closely follow [13].

6.1. The ansatz for a solution

The action for matrix theory can be written as

S = Tr

[
Ẋ2

I

2R
+

R

4
[XI , XJ ]2 + θT θ̇ + iR θT ΓI [XI , θ]

]
, (6.1)

where I, J = 1, ..., 9 and θ is a 16-component spinor of O(9) and ΓI are
the appropriate gamma matrices. The θ’s represent the fermionic degrees
of freedom which are needed for the supersymmetry of the model. XI are
hermitian (N ×N)-matrices; they are elements of the Lie algebra of U(N)
in the fundamental representation. The theory is defined by this Lagrangian
supplemented by the Gauss law constraint

[XI , ẊI ]− [θ, θT ] ≈ 0 . (6.2)

In the following we shall be concerned with bosonic solutions and the θ’s
will be set to zero. The relevant equations of motion are thus

1
R

ẌI − R[XJ , [XI , XJ ]] = 0 . (6.3)

Even though the solutions we consider will be mostly fuzzy CP’s, we will
start with a more general framework, analyzing general features of solutions
for the model (6.1). We shall look for solutions which carry some amount
of symmetry. In this case, we can formulate a simple ansatz in terms of the
group coset space G/H where H ⊂ G ⊂ U(N). The ansatz we consider will
have spacetime symmetries, a spacetime transformation being compensated
by an H transformation. Along the lines of the discussions in the previous
sections, in the large N -limit, the matrices XI will go over to continuous
brane-like solutions with the geometry of G/H.

As before, let tA, A = 1, ..., dimG denote a basis of the Lie algebra of
G. We split this set of generators into two groups, tα, α = 1, ..., dimH,
which form the Lie algebra of H, and ti, i = 1, ..., (dimG − dimH), which
form the complementary set. Our ansatz will be to take XI ’s to lie along
the entire algebra of G or to be linear combinations of the ti’s. In the latter
case, in order to satisfy the equation of motion (78), we shall then need the
double commutator [XJ , [XI , XJ ]] to be combinations of the ti’s themselves.
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This is guaranteed if [ti, tj ] ⊂ H, since the ti’s themselves transform as
representations of H. In this case the commutation rules are of the form

[tα, tβ] = ifαβγtγ ,

[tα, ti] = ifαijtj ,

[ti, tj ] = icijαtα (6.4)

and G/H is a symmetric space. If H = 1, the ti’s will belong to the full
algebra G. In this case, cα

ij of (6.4) will be the structure constants of G.
In such a case, even though the ansatz involves the full algebra G, it can
satisfy further algebraic constraints. These additional constraints may have
only a smaller invariance group H; the solution will then again reduce to the
G/H-type. These are the cases we analyze.

Since XI are elements of the Lie algebra of U(N), having chosen a G

and an H, we must consider the embedding of G in U(N). This is done
as follows. We consider a value of N which corresponds to the dimension
of a unitary irreducible representation (UIR) of G. The embedding is then
specified by identifying the fundamental N -dimensional representation of
U(N) with the N -dimensional UIR of G. Eventually we need to consider
the limit N →∞ as well. Thus we must have an infinite sequence of UIR’s
of G, so that we have a true fuzzy version of G/H. Generally, different
choices of such sequences are possible, corresponding to different ways of
defining the N → ∞ limit. Following previous sections, we will focus on
the symmetric rank n-tensors of G, of dimension, say, d(n). Thus we choose
N = d(n), defining the large N -limit by n →∞.

The ansatz we take is of the form

Xi = r(t)
Ti

Na
(6.5)

for a subset i = 1, ..., p of the nine X’s. Ti are generators in G −H, in the
symmetric rank n-tensor representation of G. The eigenvalues for any of
the Ti’s in the n-tensor representation will range from cn to −cn, where c

is a constant. The eigenvalues thus become dense with a finite range of the
variation of the Xi’s as n →∞ if Na ∼ n. In this case, as n →∞, the Xi’s
will tend to a smooth brane-like configuration. Our choice of the index a

will be fixed by this requirement, viz., Na ∼ n. (For fuzzy CPk, we defined
X by equation (2.42). they correspond to a particular choice of a. We will
return to that choice shortly.) Notice also that this ansatz is consistent with
the Gauss law (6.2). r(t) represents the radius of the brane; it can vary with
time and is the only collective coordinate in our ansatz.
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The ansatz (6.5) has a symmetry of the form

Rij UXjU
−1 = Xi , (6.6)

where Rij is a spatial rotation of the Xi’s and U is an H transformation
for the G/H case or more generally it can be in U(N). Rij is determined
by the choice of the Xi’s involved in (6.5). Further, the ansatz (6.5) is to
be interpreted as being given in a specific gauge. A U(N) transformation,
common to all the Xi’s, is a gauge transformation and does not bring in new
degrees of freedom. We may alternatively say that the meaning of (6.6) is
that Xj is invariant under rotations Rij up to a gauge transformation.

For the ansatz (6.5), the action simplifies to

S = An

[
ṙ2

2RN2a
− cijαcijα

4N4a
Rr4

]
, (6.7)

where An is defined by Tr(TATB) = AnδAB and the matrices and trace are in
the n-tensor of G. From its definition, An = d(n)C2(n)/dimG, where C2(n)
is the quadratic Casimir of the n-tensor representation, which goes like n2

for large n. Thus, with Na ∼ n, the kinetic term in (6.7) will always go like
N/R for large n.

We now turn to some specific cases. Consider first G = SU(2). In this
case, d(n) = n + 1, An = n(n + 1)(n + 2)/12. The smooth brane limit thus
requires a = 1 or Na ∼ N ∼ n. The kinetic energy term in (6.7) goes like
N/R, while the potential term goes like R/N . Thus both these terms would
have a finite limit if we take N →∞, R →∞, keeping (N/R) fixed. In fact,
this particular property holds only for G = SU(2) or products thereof, such
as G = O(4). For this reason some of the branes which are realized as cosets
of products of the SU(2) group can perhaps be regarded as being transverse
as their energy will not depend on R in the large R limit. We can use
this case to obtain a slightly different description of the spherical membrane
of [34] as well as a ”squashed” S2 or CP1. The round CP1 corresponds to
the case where the three generators of SU(2) lie along three of the nine X ′

Is.
As another example, consider G = O(6) ∼ SU(4). In this case,

d(n) = (n + 1)(n + 2)(n + 3)/6, An = (1/240)(n + 4)!/(n − 1)! and we
need a = 1

3 . The kinetic energy term goes like N/R while the potential
energy goes like nR. This corresponds to the longitudinal five-brane with
S4 geometry discussed in [26]. SU(4) has an O(5) subgroup under which
the 15-dimensional adjoint representation of SU(4) splits into the adjoint
of O(5) and the 5-dimensional vector representation. The coset generators,
corresponding to the 5-dimensional representation, may be represented by
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the (4 × 4)-gamma matrices, γµ, µ = 1, ..., 5. The ansatz (5) thus takes
the form Xµ = rγµ/N

1
3 . For the N -dimensional representation, we use the

symmetrized tensor product form given in (5.2). The sum of the squares
of the Xµ’s is then proportional to the identity, thus giving effectively a
four-dimensional brane. This is interpreted as n copies of a longitudinal
five-brane, one of the directions being along the compactified eleventh or
lightcone coordinate, of extent R, an interpretation consistent with the po-
tential energy ∼ nR.

6.2. Fuzzy CP2 as a brane solution

We now turn to an especially interesting case of a static solution to the matrix
theory, which corresponds to fuzzy CP2 with G = SU(3) obtained in [13].
In this case, d(n) = (n+1)(n+2)/2 ∼ n2 and An = (1/48)(n+3)!/(n−1)!.
We choose a = 1

2 . The kinetic energy again goes like N/R for large N while
the potential energy goes like R. The potential energy is independent of n

and thus, for r independent of t, we have a single static smooth five-brane
wrapped around the compactified dimension in the n → ∞ limit. In other
words, the tension defined by the static energy per unit volume remains
finite as n → ∞. An appropriate choice of H in this case is H = U(2) ∼
SU(2) × U(1). The world volume geometry is then CP2 × S1, where S1

corresponds to the compactified eleventh dimension. The immersion of this
solution in R9 can be complicated and will depend on the details of the
ansatz. As we shall see in the next section the coset embedding will produce
a singular surface in a nine-dimensional Euclidean space, while when the
eight generators of SU(3) are set parallel to eight of nine XI ’s we shall
obtain the standard CP2 embedded in an S7 contained in R9.

Notice also that since the effective mass for the degree of freedom cor-
responding to r goes like N/R, oscillations in r are suppressed as N → ∞
with R fixed; in this limit this configuration becomes a static solution. We
can fix r to any value and time-evolution does not change this.

Using the wave functions given earlier, it is straightforward to see that,
in matrix elements, we may use

T+i ≡ Ti = (n + 3)
z̄i

(1 + z̄ · z)
,

T−i ≡ T †
i = (n + 3)

zi

(1 + z̄ · z)
, (6.8)

[T+i, T−j ] ≡ hij = (n + 3)
(δij − z̄izj)
(1 + z̄ · z)

. (6.9)
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The ansatz for the five-brane may now be stated as follows. The simplest
case to consider is the following. We define the complex combinations Zi =
1√
2
(Xi + iXi+2), i = 1, 2. The symmetric ansatz is then given by

Zi = r(t)
Ti√
N

, i = 1, 2 ,

Xi = 0 , , i = 5, ..., 9 . (6.10)

In the large n-limit,

Zi ≈ r
n√
N

z̄i

(1 + z̄ · z)
≈
√

2 r
z̄i

(1 + z̄ · z)
(6.11)

realizing a continuous map from CP2 to the space R9. This map is not
one-to-one; the region z̄ · z < 1 and the region z̄ · z > 1 are mapped into
the same spatial region |Z| < r

√
2, corresponding to a somewhat squashed

CP2.
The standard CP2 is obtained by considering an R8-subspace of R9,

whose coordinates can be identified with the SU(3) generators as in (6.5),
i.e., XA = rTA/

√
N, A = 1, 2, ..., 8, and X9 = 0. Specifically, using the

expression for the SU(3) generators in terms of the z’s, this ansatz is given
by (recall that in the large N limit n ≈

√
2N)

Xi =
r√
2

z̄σiz

1 + z̄z
,

X4 + iX5 =
r√
2

2z1

1 + z̄z
,

X6 + iX7 =
r√
2

2z2

1 + z̄z
, (6.12)

X8 =
r√
6

2− zz̄

1 + z̄z
,

X9 = 0 ,

where σi, i = 1, 2, 3 are Pauli matrices. Notice that the singularity of the
squashed CP2 is removed by this ansatz since the regions z̄ · z < 1 and
z̄ · z > 1 are mapped to different regions of the nine-dimensional space. In
fact it is easy to see by direct inspection that the map is actually one-to-one.
Furthermore it is easily seen that Σ8

A=1XAXA = 2r2

3 . Thus our surface is
embedded in an S7. In fact, we can use the above relations and express
X1, X2 and X3 in terms of X4, ..., X8 as

Xa =
3√
2

ζ̄σaζ

r +
√

6X8

, (6.13)
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where ζ is a two-component vector defined by ζ1 = 1√
2
(X4 + iX5) and

ζ2 = 1√
2
(X6 + iX7).

The coset structure is clearer directly in terms of the ansatz for (6.10),
which is why we started with this squashed CP2. The smooth configuration
(6.12) may be regarded as a relaxation of (6.10) along some of the R9-
directions.

The action for ansatz (6.10), (6.12) becomes

S =
(n + 3)!
(n− 1)!

[
ṙ2

12NR
− Rr4

8N2

]
≈
[
N

R

ṙ2

3
− Rr4

2

]
(1 +O(1/n)) . (6.14)

In terms of the world volume coordinates, we can also write

S ≈
∫

2 d4z

π2(1 + z̄ · z)3

[
n4

2NR
ṙ2 z̄ · z

(1 + z̄ · z)2
−Rr4 n4

4N2

2− 2z̄ · z + (z̄ · z)2

(1 + z̄ · z)2

]
(6.15)

≈
∫

2 d4z

π2(1 + z̄ · z)3

[
N

R

ṙ2

3
− Rr4

2

]
. (6.16)

Expression (6.15) applies to ansatz (6.10), expression (6.16) to ansatz (6.12).
The energy densities are uniformly distributed over the world volume for
(6.12), but not for (6.10).

The equation of motion for r becomes

N

R
f̈ + 6f3 = 0 , (6.17)

where r = f/
√

R. The effective mass for the degree of freedom corresponding
to r is 2

3(N/R). Thus in the limit N → ∞ with R fixed, any solution with
finite energy would have to have a constant r or f . In this limit, we thus get
a five-brane which is a static solution of the matrix theory. Alternatively, if
we consider N,R →∞ with (N/R) fixed, f can have a finite value. However,
in this limit, the physical dimension of the brane as given by r would vanish.

Explicit solutions to (6.17) may be written in terms of the sine-lemniscate
function as

f = A sin lemn

(√
3R

N
A(t− t0)

)
. (6.18)
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6.3. M-theory properties of the fuzzy CP2

There are some properties of the solution we found which are of interest
from the matrix theory point of view. We will briefly mention these for
completeness.

First, regarding the spacetime properties of the solution, we note that
the matrix action (6.1) is in terms of lightcone coordinates. As a result,
the Hamiltonian corresponding to this action gives the lightcone component
T+− of the energy-momentum tensor. Other components of the energy-
momentum tensor can be evaluated, following the general formula of [32,36];
they will act as a source for gravitons, again along the general lines of [32,36].
The current T IJK which is the source for the antisymmetric tensor field of
eleven-dimensional supergravity is another quantity of interest. This van-
ishes for the spherically symmetric configurations considered in [26], since
there are no invariant O(9)-tensors of the appropriate rank and symmetry.
However, for the CP2 geometry, there is the Kähler form and the possibil-
ity that T −ij could be proportional to the Kähler form has to be checked
explicitly. The kinetic terms of T −ij which depend on ṙ are easily seen to
vanish for the solution (6.12), essentially because of the symmetric nature
of the ansatz. For solution (6.10), we find, by direct evaluation,

T −11̄ = T −22̄ = − i

60
n5

N2
ṙ2r2 + ... ,

T −12̄ = T −21̄ = 0 . (6.19)

Naively, this diverges as n → ∞. However, as we have noticed before, in
this limit the solution becomes static, ṙ = 0, and hence this vanishes. This
holds for other components of T IJK as well. The nonkinetic terms in T IJK

are of the form R2r6(n5/N3) and also vanish as n → ∞. Thus the source
for the antisymmetric tensor field is zero in the n (or N) →∞ limit.

Another important spacetime property has to do with supersymmetry.
The Lagrangian of the matrix theory is invariant under supersymmetry
transformations. The supersymmetry variation of θ is given by

δθ ≡ Kε + ρ =
1
2

[
ẊIΓI + [XI , XJ ]ΓIJ

]
ε + ρ , (6.20)

where ε and ρ are 16-component spinors of O(9).
Since δθ has n-dependent terms, the question of supersymmetry is best

understood by considering fermionic collective coordinates. These are in-
troduced by using the supersymmetry variation (6.20) with the parameters
ε, ρ taken to be time-dependent. Upon substitution in the Lagrangian, the
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term Tr[θT θ̇] generates the symplectic structure for (ε, ρ). We can then con-
struct the supersymmetry generators for fluctuations around our solution.
If the starting configuration is supersymmetric, there will be zero modes in
the symplectic form so constructed and we will have only a smaller number
of fermionic parameters appearing in Tr[θT θ̇]. Now, in the large n-limit,
we have Tr[θT θ̇] ∼ n2[εT KT Kε̇ + ρT ρ̇] which goes to zero as n → ∞ if
δθ ∼ n−1−η, η > 0. Thus if δθ vanishes faster than 1/n, we can conclude
that the starting bosonic configuration is supersymmetric.

Consider the squashed CP2 first. The finiteness of the kinetic energy in
the large N limit requires that the leading term in r must be a constant,
which is how we obtained a static solution. The equation of motion then
shows that ṙ must go like 1

N ∼ 1
n2 . In other words, we can write r =

r0 + 1
N r1 + .... The ẊI term of δθ thus vanishes to the order required. The

vanishing of δθ (or the Bogomol’nyi-Prasad-Sommerfield-like condition) then
becomes, to leading order,

−8r2
0

N
(λaLa +

√
3λ8R1)ε + ρ = 0 , (6.21)

where the set λa, λ8, a = 1, 2, 3, generate an SU(2) × U(1) subgroup of
SU(3) while the operators La, R1 generate an SUL(2)× UR(1) subgroup of
O(4) ∼ SUL(2) × SUR(2). In terms of (16 × 16) Γ-matrices they are given
by

L1 =
i

4
(Γ1Γ3 + Γ4Γ2) ,

L2 =
i

4
(Γ1Γ2 + Γ3Γ4) , (6.22)

L3 =
i

4
(Γ2Γ3 + Γ1Γ4) ,

R1 =
i

4
(Γ1Γ3 − Γ4Γ2) . (6.23)

Notice that the ε term is of order 1/n since λa, λ8 have eigenvalues of order n

and in the large n limit N ≈ 1
2n2; the ρ term is of order one. Thus condition

(6.21) is required for supersymmetry as explained above. Further, in our
problem the O(9) group is broken to O(4) × O(5). With respect to this
breaking, the 16-component spinor of O(9) decomposes according to 16 =
((1, 2), 4) + ((2, 1), 4), where 4 denotes the spinor of O(5). In terms of the
SUL(2)×UR(1) subgroup generated by the La and R1 we have (1, 2) = 11 +
1−1 and (2, 1) = 20 where the subscripts denote the U(1) charges. Clearly
we have no singlets under SUL(2)×UR(1); SUL(2) singlets necessarily carry
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U(1) charges. Therefore the operator (λaLa+
√

3λ8R1) can neither annihilate
ε nor can it be a multiple of the unit operator in the SU(3) space. Hence a
nontrivial ε supersymmetry cannot be compensated by a ρ transformation.
Thus we have no supersymmetry.

The supersymmetry variation produces a θ of the form (λaLa+
√

3λ8R1)ε,
where we set ρ = 0 for the moment. The contribution of this θ to the Hamil-
tonian via the term Tr(θT [Xi, θ]) is zero due to the orthogonality of the
SU(N) generators. In other words, the configurations (Xi, 0) and (Xi, δθ)
have the same energy. This gives a supersymmetric set of degenerate configu-
rations, or supermultiplets upon quantization. The starting bosonic configu-
ration is not supersymmetric but is part of a set of degenerate configurations
related by supersymmetry.

Consider now the solution (6.12). In this case also, a ρ transformation
cannot compensate for an ε transformation and the condition for supersym-
metry becomes fIJKΓIΓJε = 0, where fIJK are the structure constants of
SU(3). LK = fIJKΓIΓJ obey the commutation rules for SU(3) and, indeed,
this defines an SU(3) subgroup of O(8). The spinors of O(8) do not contain
singlets under this SU(3) and hence there is again no supersymmetry.

There is, perhaps, no surprise in this lack of supersymmetry, since CP2

does not admit a spin structure; nevertheless, it is interesting to see how it
works out at the matrix level.

6.4. Other Solutions

So far we have focused mainly on fuzzy CP2 as a solution to M(atrix) the-
ory. There are other interesting configurations possible, some of which we
have already mentioned. One could consider CPk in general; in this case,
the required exponent a is given by 1/n and the potential energy goes like
nk−2Rr4. Thus it is only for k = 2 that the potential energy becomes inde-
pendent of n.

The required condition on the double commutators is satisfied if the XI

span the entire Lie algebra of G as well. The equations of motion for all
these cases are generically of the form(

N

R

)2a

f̈ + C2(adj)f3 = 0 , (6.24)

where C2(adj) represents the quadratic Casimir of G in the adjoint repre-
sentation and r = fR1−a. Since there are only nine XI , if G is not a product
group, its dimension for this type of solutions cannot exceed 9. The case of
G = SU(2) reproduces the spherical membrane [34]. In this case a = 1, and,
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as noted before, both kinetic and potential energies have well-defined limits
as N, R →∞ with their ratio fixed.

In the large n limit, this solution has the form,

Z =
X1 + iX2√

2
= r(t)

(n + 2)
(n + 1)

z̄

(1 + z̄ · z)
≈ r(t)

z̄

(1 + z̄ · z)
,

ζ = X3 = 1
2 r(t)

(n + 2)
(n + 1)

(1− z̄ · z)
(1 + z̄ · z)

≈ 1
2 r(t)

(1− z̄ · z)
(1 + z̄ · z)

. (6.25)

Clearly we have a two-sphere defined by

ZZ̄ + ζ2 ≈ 1
4

r(t)2 . (6.26)

The radius of the sphere remains finite as n →∞. Even though the ansatz
has the full SU(2)-symmetry, there is a further algebraic constraint, viz.,
(6.26), and this reduces the space of free parameters to SU(2)/U(1).

Another interesting case which was briefly mentioned is that of S4 ge-
ometry which is related to the coset O(6)/O(5), with a further algebraic
condition which reduces the dimension to four [26]. There are other cases
which can be considered along these lines; for example, for SU(2)× SU(2),
we can set six of the Xi’s proportional to the generators and the energies
depend only on N/R as N,R → ∞. This can be embedded in U(N) in
a block-diagonal way by choosing the representation (N1, 1) + (1, N2) with
N = N1 +N2. Presumably this can give two copies of the two-brane in some
involved geometrical arrangement in R9.

7. Fuzzy spaces and the Quantum Hall Effect

There is an interesting connection between the Quantum Hall Effect and
fuzzy spaces which we shall briefly discuss now.

7.1. The Landau problem and HN

In the classic Landau problem of a charged particle in a magnetic field ~B, one
has a number of equally spaced Landau levels. Other than the translational
degree of freedom along the magnetic field, the dynamics is confined to a
two-dimensional plane transverse to ~B. In many physical situations, based
on energy considerations, the dynamics is often confined to one Landau
level, say the lowest. In this case, the observables are hermitian operators
on this subspace of the Hilbert space and are obtained by projecting the
full operators to this subspace. The operators representing coordinates, for
example, when projected to the lowest Landau level (or any other level),
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are no longer mutually commuting. The dynamics restricted to the lowest
Landau level is thus dynamics on a noncommutative two-plane. This has
been known for a long time. One can generalize such considerations to a two-
sphere, for example. (The Landau problem on the two-sphere was considered
by Haldane [37]; we follow [10].) One can have a uniform magnetic field on
the two-sphere which is normal to it; this would be the radial field of a
magnetic monopole sitting at the origin if we think of the two-sphere as
embedded in the usual way in R3. (The potential for a uniform magnetic
field is given by (2.1).) Since S2 = SU(2)/U(1), we may think of the wave
functions for a particle on S2 as functions of g ∈ SU(2) with the condition
that they are invariant under g → gh, h ∈ U(1), so that they actually project
down to S2. We may take the U(1) direction to be along the T3 direction
in the SU(2) algebra. Since a basis of functions for SU(2) is given by the
Wigner D-functions, a basis for functions on S2 is given by the SU(2) Wigner
functions D(j)

mk(g), with trivial right action of U(1), in other words, the UR(1)
charge k = 0. In this language, derivatives on S2 can be identified as SU(2)
right rotations on g (denoted by SUR(2)) satisfying an SU(2) algebra[

R+, R−
]

= 2 R3 , (7.1)

where R± = R1 ± iR2. R± are dimensionless quantities. The standard
covariant derivatives, with the correct dimensions, are

D± = i
R±
r

, (7.2)

where r is the radius of the sphere. In the presence of the magnetic monopole,
the commutator of the covariant derivatives is related to the magnetic field,
in other words, we need [D+, D−] = −2B. With the identification (7.2), and
the commutation rule (7.1), we see that this fixes R3 to be half the monopole
number n, with n = 2Br2. Therefore the wave functions on S2 with the
magnetic field background are of the form D(j)

m, n
2
(g). The Dirac quantization

rule is seen, from this point of view, as related to the quantization of angular
momentum, as first noted by Saha [39]. For a detailed description of the
formalism presented here and analysis of fields of various spin on S2 on the
monopole background see [38].

We can now write down the one-particle Hamiltonian

H = − 1
4µ

(
D+D− + D−D+

)
=

1
2µr2

( 3∑
A=1

R2
A −R2

3

)
, (7.3)
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where µ is the particle mass. For the eigenvalue 1
2n to occur as one of the

possible values for R3, so that we can form D(j)
m, n

2
(g), we need j = 1

2n + q,

q = 0, 1, ... Since R2 = j(j + 1), the energy eigenvalues are

Eq =
1

2µr2

[
(1
2n + q)(1

2n + q + 1)− n2

4

]
=

B

2µ
(2q + 1) +

q(q + 1)
2µr2

. (7.4)

The integer q plays the role of the Landau level index. The lowest Landau
level ( q = 0), or the ground state, has energy B/2µ, and the states q > 0
are separated by a finite energy gap. The degeneracy of the q-th Landau
level is 2j + 1 = n + 1 + 2q. (Notice that, in the limit r → ∞, the planar
image of the sphere under the stereographic map becomes flat and so this
corresponds to the standard planar Landau problem.) We see that, as r →
∞, (7.4) reproduces the known planar result for the energy eigenvalues and
the degeneracy.

In the limit of large magnetic fields, the separation of the levels is large,
and it is meaningful to restrict dynamics to one level, say the lowest, if
the available excitation energies are small compared to B/2µ. In this case,
j = 1

2n, R3 = 1
2n, so that we have the highest weight state for the right

action of SU(2). The condition for the lowest Landau level is R+Ψ = 0 and
this level has degeneracy n + 1.

We now see the connection to fuzzy S2. The Hilbert space of the lowest
Landau level corresponds exactly to the symmetric rank n representation of
SU(2). The condition R+Ψ = 0, which was used as the condition restricting
the wave functions to depend on only half of the phase space coordinates in
the quantization procedure outlined in section 2, is obtained for the Landau
problem as well, but as a condition choosing the lowest Landau level. The
Hilbert subspace spanned by D(n

2
)

m, n
2

is the same and hence all observables for

the lowest Landau level correspond to the observables of the fuzzy S2.
This correspondence can be extended to the Landau problem on other

spaces. For all CPk with a U(1) background field, we have an exact corre-
spondence between the lowest Landau level and fuzzy CPk. The background
field specifies the choice of the eigenvalues Ri in the Wigner D-functions;
the lowest Landau level condition becomes the polarization condition for
the wave functions [10]. The wave functions for the lowest Landau level are
exactly those given in (2.21); they are characterized by the integer n, which
gives the rank of the symmetric SU(k + 1) representation and corresponds
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to a uniform magnetic field along the direction tk2+2k, as seen from (2.18).
An especially interesting case is that of CP3. Because this is an S2 bundle

over S4, the Landau problem on CP3 is equivalent to a similar problem on
S4 with an SU(2) background field [40]. We will come back to this briefly.

7.2. A quantum Hall droplet and the edge excitations

In discussing the physics of the Quantum Hall Effect, we need to go beyond
just the construction of the states. Typically one has a number of states oc-
cupied by electrons, which are fermions, and so there is no double occupancy
for any state. Generally these electrons cluster into a droplet. Dynamically
this is due to an additional potential V̂ ; electrons tend to localize near the
minimum of the potential. The excitations of this droplet are of interest in
quantum Hall systems. Since there cannot be double occupancy and there is
conservation of the number of electrons, the excitations are deformations of
the droplet which preserve the total volume of occupied states. In the large
n limit, these are surface deformations of an almost continuous droplet; they
are hence called the edge excitations.

We can specify the droplet by a diagonal density matrix ρ̂0 which is equal
to 1 for occupied states and zero for unoccupied states. The dynamical
modes are then fluctuations which keep the number of occupied states, or
the rank of ρ̂0, fixed. They are thus given by a unitary transformation of ρ̂0,
ρ̂0 → Û ρ̂0Û

†. One can write an action for these modes as

S =
∫

dt
[
iTr (ρ̂0Û

†∂tÛ)− Tr (ρ̂0Û
†ĤÛ)

]
, (7.5)

where Ĥ is the Hamiltonian. Since we are in the lowest Landau level of fixed
energy, we can take the Hamiltonian to be just the potential V̂ . Variation
of Û leads to the extremization condition for S as

i
∂ρ̂

∂t
= [Ĥ, ρ̂] (7.6)

which is the expected evolution equation for the density matrix. In the
large n limit, we can simplify this action by writing Û = exp(iΦ̂), and
replacing operators by their symbols, matrix products by ∗-products and
the trace by CPk-integration, as discussed in section 2. We also have to
write Û → 1 + iΦ − 1

2!Φ ∗ Φ + · · · , where Φ is the symbol for Φ̂. We will
consider a droplet with M occupied states, with M very large. The large n

limit of (7.5) can then be obtained, for a simple spherical droplet, as [10]

SCPk ≈ − 1
4πk

Mk−1

∫
dΩS2k−1

[
∂Φ
∂t

(LΦ) + ω (LΦ)2
]

, (7.7)
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where dΩS2k−1 denotes the volume element on the sphere S2k−1, which is
the boundary of the droplet; the factor Mk−1 is as expected for a droplet of
radius ∼

√
M . The operator L is identified in terms of the coordinates z̄, z

as

L = i

(
z · ∂

∂z
− z̄ · ∂

∂z̄

)
. (7.8)

Terms which vanish as n →∞ have been dropped. As an example, we have
taken a potential

V̂ =

√
2k

k + 1
ω

(
Tk2+2k +

nk√
2k(k + 1)

)
(7.9)

with ω as a constant parameter. (The form of the action is not sensitive to
the specifics of the potential; more generally one has ω = 1

n
∂V

∂(z̄·z) .) The ac-
tion (7.7) is a generalization of a chiral Abelian Wess-Zumino-Witten theory.
(The calculations leading to (7.7) are not complicated, after the discussion
of the large n limit in section 2; but they are still quite involved and we refer
the reader to the original articles.)

One can also consider non-Abelian background fields, say, constant SU(k)
backgrounds for CPk, since the latter is SU(k + 1)/U(k). In this case, the
wave functions must obey the conditions

R̂a ΨJ
m,α(g) = (T J̃

a )αβΨJ
m,β(g) ,

R̂k2+2k ΨJ
m,α(g) = − nk√

2k(k + 1)
ΨJ

m,α(g) (7.10)

since there is a background SU(k)-field. The wave functions must transform
under right rotations as a representation of SU(k), (T J̃

a )αβ being the repre-
sentation matrices for the generators of SU(k) in the representation J̃ . n is
an integer characterizing the Abelian part of the background field. α, β label
states within the SU(k) representation J̃ (which is itself contained in the
representation J of SU(k + 1)). The index α carried by the wavefunctions
(7.10) is basically the gauge index. The wave functions are sections of a
U(k) bundle on CPk. The wave functions for the lowest Landau level are
thus given by

ΨJ
m,α(g) =

√
N 〈J, L| ĝ |J, (J̃ , α),−n〉

=
√

N DJ
m;α(g) . (7.11)
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The symbol corresponding to an operator F̂ is now a matrix, defined as

Fαβ(g) =
∑
km

Dk,α(g) FkmD∗
m,β(g) . (7.12)

The simplification of the action (7.5) will now involve a field G which is a
unitary matrix, an element of U(dimJ̃). The large n limit can be calculated
as in the Abelian case and gives the action [11]

S(G) =
1

4πk
Mk−1

∫
∂D

dt tr
[(

G†Ġ + ω G†LG
)

G†LG
]

+ (−1)
k(k−1)

2
i

4π

Mk−1

(k − 1)!

∫
D

dt 2 tr
[
G†Ġ(G−1DG)2

]
∧
(

iΩ
π

)k−1

.

(7.13)

This is a chiral, gauged Wess-Zumino-Witten (WZW) action generalized to
higher dimensions. Here the first term is on the boundary ∂D of the droplet
and it is precisely the gauged, non-Abelian analog of (7.7). The operator L
in (7.13) is the gauged version of (7.8),

L = i
(
ziDi − z̄iDī

)
. (7.14)

The gauge covariant derivative is given by D = ∂ + [A, ], where A is
the SU(k) gauge potential, given by Aa

i = 2iTr(tag−1dg). (This potential
corresponds to the spin connection on CPk; the corresponding Riemann
curvature is constant in the tangent frame basis. The gauge field we have
chosen is proportional to this.) The second term in (7.13), written as a
differential form, is a higher dimensional Wess-Zumino term; it is an integral
over the droplet D itself, with the radial variable playing the role of the extra
dimension. As expected, since we have an SU(k) background, the action has
an SU(k) gauge symmetry.

We shall discuss the fuzzy space point of view regarding the edge excita-
tions in the Quantum Hall Effect shortly; before we do that, we shall briefly
consider the Hall Effect on spheres.

7.3. Quantum Hall Effect on spheres

The most interesting cases of the Quantum Hall Effect on spheres pertain
to S4 and S3.

The edge excitations for the droplet on S4 was recently suggested by
Zhang and Hu as a model for higher spin gapless states, including the gravi-
ton [40]. (In fact, this is what started many investigations into the higher
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dimensional Quantum Hall Effect [41,42].) This is a very nice idea, although
it has not yet worked out as hoped. The action for this case can be obtained
from (7.7) by utilizing the fact that CP3 is an S2-bundle over S4. We
can describe CP3 by the four complex coordinates Zα, α = 1, ..., 4, with
the identification Zα ∼ λZα where λ is any complex number except zero,
λ ∈ C − {0}. Explicitly, we may write Zα as

√
Z̄ · Z uα =

√
Z̄ · Z gα4, but

for the present purpose, it is more convenient to write it in terms of two
two-component spinors w, π as

(Z1, Z2, Z3, Z4) = (w1, w2, π1, π2) . (7.15)

Coordinates xµ on S4 are then defined by

w = (x4 − iσ · x) π . (7.16)

The scale invariance Z ∼ λZ can be realized as the scale invariance π ∼ λπ;
the π’s then describe a CP1 = S2. This will be the fiber space. The
coordinates xµ are the standard stereographic coordinates for S4; one can
in fact write

y0 =
1− x2

1 + x2
, yµ =

2xµ

1 + x2
(7.17)

to realize the S4 as embedded in R5. The definition of xµ in terms of w may
be solved as

x4 =
1
2

π̄w + w̄π

π̄π
,

xi =
i

2
π̄σiw − w̄σiπ

π̄π
. (7.18)

There is a natural subgroup, SUL(2)×SUR(2), of SU(4), with π transforming
as the fundamental representation of SUL(2) and w transforming as the
fundamental representation of SUR(2).

The Kähler two-form on CP3 is given, as in (2.3), by

Ω = −i

[
dZ̄ · dZ
Z̄ · Z

− dZ̄ · Z Z̄ · dZ
(Z̄ · Z)2

]
. (7.19)

This is invariant under Z → λZ, and Z̄ → λZ̄. We can reduce this using



September 11, 2004 12:4 WSPC/Trim Size: 9.75in x 6.5in for Proceedings daemi

Fuzzy spaces, the M(atrix) model and the Quantum Hall Effect 871

(7.16), (7.18) to get

ΩCP3 = ΩCP1 − i F ,

F = dA + A A ,

A = i
Naηa

µνx
µdxν

(1 + x2)
, (7.20)

where

ηa
µν = εaµν4 + δaµδ4ν − δaνδ4µ ,

Na = π̄σaπ/π̄π . (7.21)

ηa
µν is the ’t Hooft tensor and Na is a unit three-vector, which may be taken

as parametrizing the fiber CP1 ∼ S2. The field F is the instanton field.
We see that we can get an instanton background on S4 by taking a U(1)
background field on CP3 which is proportional to the Kähler form.

The action (7.7) may now be used with the separation of variables indi-
cated; it simplifies to

S = − M

4π2
n

∫
dµCP1

∫
dΩ3

[
∂Φ
∂t

(LΦ) + ω(LΦ)2
]

, (7.22)

where LΦ = 2xνKµν∂µΦ. Φ’s are to be expanded in terms of harmonics on
CP1 which correspond to the representations of SUL(2) in SUL(2)×SUR(2).
(This is the subgroup corresponding to the instanton gauge group.) Since Φ
is a function on CP1, we must have invariance under the scaling π → λπ.
The mode expansion for Φ is thus given by [10]

Φ =
∑
l≥m

C(Ȧ)m(Ḃ)l(C)l−m+k(D)k f(Ȧ)m(Ḃ)l(C)l−m+k(D)k

+
∑
l<m

C̃(Ȧ)m(Ḃ)l(C)k(D)m−l+k f̃(Ȧ)m(Ḃ)l(C)k(D)m−l+k
, (7.23)

where the mode functions have the form

f(Ȧ)m(Ḃ)l(C)l−m+k(D)k
=

1
(π̄ · π)l+k

w̃Ȧ1
· · · w̃Ȧm

wḂ1
· · ·wḂl

×π̃C1 · · · π̃Cl−m+k
πD1 · · ·πDk

,

f̃(Ȧ)m(Ḃ)l(C)k(D)m−l+k
=

1
(π̄ · π)m+k

w̃Ȧ1
· · · w̃Ȧm

wḂ1
· · ·wḂl

×π̃C1 · · · π̃Ck
πD1 · · ·πDm−l+k

, (7.24)
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and (Ȧ)m = Ȧ1 · · · Ȧm, (C)k = C1 · · ·Ck and similarly for the other indices.
Each function f (f̃) transforms as an irreducible representation of SUL(2)×
SUR(2), with the j-values 1

2 |l − m| + k and 1
2(l + m) respectively. The

action (7.22) and the mode expansion (7.23) show clearly the emergence
of the higher spin gapless modes. In particular, it is possible to obtain
massless spin-2 excitations. The difficulty, however, is that there are many
other modes which do not all combine into a relativistically invariant theory
[10, 42]. Perhaps, some clever projection, such as the GSO projection in
string theory, may be possible.

One can formulate the Quantum Hall Effect on other spheres as well. For
S3, for example, we can use the fact that S3 ∼ SU(2)×SU(2)/[SU(2)]; this
shows that it is possible to have a constant SU(2) gauge field on S3 (which
will be proportional to the Riemann curvature of S3). Taking this gauge field
one can obtain Landau level states and an edge action [27]. If we denote the
generators of the Lie algebra of the two SU(2)’s by La and Ra, we can take
the derivatives on S3 to be proportional to La − Ra, with the SU(2) being
divided out defined by Ja = La + Ra. The Landau levels will correspond
to the Wigner D-functions of SU(2)×SU(2), with the representation under
Ja’s specifying the background field.

In the case of the CPk’s discussed earlier, the lowest Landau level cor-
responds to the Hilbert space HN of the fuzzy version of the space. This
suggests that one can utilize the construction of Landau levels on S3, and
more generally on other spheres, to get a definition of fuzzy spheres. Actu-
ally, for the three-sphere, the lowest Landau level corresponds, not to a fuzzy
S3, but a fuzzy S3/Z2 [27]; the realization of S3/Z2 is essentially identical to
our discussion in section 5. Spheres of other dimensions can be considered
using the fact that Sk = SO(k+1)/SO(k); constant fields which correspond
to SO(k) gauge fields are then possible and one can carry out a similar
analysis for the Quantum Hall Effect.

7.4. The fuzzy space – Quantum Hall Effect connection

We now return to the question of what Quantum Hall Effect has to do with
fuzzy spaces.

Fuzzy spaces are based on the trio (HN ,MatN ,∆N ). The Hilbert space
HN is obtained by quantization of the action (2.13); the wave functions
are sections of an appropriate U(1) bundle on the space M whose fuzzy
version we are constructing. MatN is then the matrix algebra of linear
transformations of this Hilbert space. The lowest Landau level for Quantum
Hall Effect on a compact manifold M , as we mentioned before, defines a
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finite dimensional Hilbert space which is identical to HN . This is clear,
since, with a background magnetic field, the wave functions are sections of
a U(1) bundle on M . Thus observables of the quantum Hall system are
elements of MatN .

We can go further and ask how we may characterize subspaces of fuzzy
spaces. A region, which is topologically a disk, may be specified by a projec-
tion operator. We assign a value 1 to the projection operator for states inside
the region and zero for states outside the region. Notice that this is precisely
what the droplet density operator does. The fluctuations of the projection
operator preserving its rank are the analogs of volume-preserving transfor-
mations. In the large n limit, they correspond to the field Φ. We may thus
regard Û as specifying the modes corresponding to different embeddings of
a fuzzy disk in the full fuzzy space [43]. Clearly this is of geometrical in-
terest. In fact, we can go a bit further with this analogy. The action for
Û , namely (7.5), is the same as the action (2.13), except that the group is
now U(N) and the invariant subgroup is chosen by the projection operator
or density matrix. The quantization of this action will thus lead to another
fuzzy space, which will correspond to the set of scalar fields (corresponding
to Φ) on the boundary of the chosen region. (For these arguments, we may
even set V̂ = 0.)

The case of the non-Abelian background is presumably related to vector
bundles rather than functions on the fuzzy space, in a way which is not yet
completely clarified. The fact that this leads to an action of the WZW type
in the large n limit is also quite interesting. From what we have said so far, it
is clear that there is a set of concepts linking fuzzy spaces and the Quantum
Hall Effect, with the possibility of a more fruitful interplay of ideas.
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