
September 11, 2004 12:3 WSPC/Trim Size: 9.75in x 6.5in for Proceedings cohen

QCD FUNCTIONAL INTEGRALS FOR SYSTEMS WITH
NONZERO CHEMICAL POTENTIAL

THOMAS D. COHEN ∗

Department of Physics, University of Maryland

College Park, MD 20742 USA

E-mail: cohen@physics.umd.edu

This paper reviews some recent progress on QCD functional integrals at nonzero chem-

ical potentials. One issue discussed is the use of QCD inequalities for this regime. In

particular, the positivity of the integrand of particular Euclidean space functional in-

tegrals for two-flavor QCD with degenerate quark masses is used to demonstrate that

the free energy per unit volume for QCD with a baryon chemical potential µB (and

zero isospin chemical potential) is necessarily greater than the free energy with isospin

chemical potential µI = 2µB
Nc

(and zero baryon chemical potential). This result may

be of use in model finite density systems. A corollary to this result is a rigorous ab

initio bound on the nucleon mass. The second major issue addressed is the so-called

“Silver Blaze” problem: the fact that at zero temperature and chemical potentials less

than some critical value the free energy remains as that of the vacuum. This is puzzling

in the context of a functional integral since a chemical potential affects the functional

determinant of the Dirac operator and any nonzero µ changes every eigenvalue of the

Dirac operator compared to the µ = 0 value. The isospin Silver Blaze problem is solved

through the study of the spectrum of the operator γ0(D/ + m). The status of the baryon

Silver Blaze problem is briefly discussed.

∗ Work supported in part by the U.S. Department of Energy under grant DE- FG02-93 ER-40762.

101



September 11, 2004 12:3 WSPC/Trim Size: 9.75in x 6.5in for Proceedings cohen

102 Thomas D. Cohen

Table of Contents

1 Introduction 102

2 QCD Inequalities For QCD at Nonzero Chemical Poten-
tial 105
2.1 A Brief Review of QCD Inequalities . . . . . . . . . . . . . 105
2.2 A QCD Inequality for Free Energies at Nonzero Chemical

Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3 A Bound on the Nucleon Mass 110

4 The Silver Blaze Problem 113
4.1 The Isospin Silver Blaze Problem . . . . . . . . . . . . . . . 113
4.2 The Baryon Silver Blaze Problem . . . . . . . . . . . . . . . 118

References 120

1. Introduction

The problem of QCD at nonzero density is important both phenomenologi-
cally and theoretically. Unfortunately, it is a problem of formidable difficulty.

There is no known analytical way to attack the problem in terms of a
convergent systematic expansion except at very high density. In the very
high density regime one can use the fact the system is weakly coupled to
deduce the form of an interaction kernel between quarks which gives rise to
a gap equation yielding color superconductivity [1, 2]. Unfortunately, this
regime is only known to be valid at exponentially high densities. Accordingly
it is doubtful whether this regime is relevant either in astrophysics or in
laboratory experiments.

One might hope to learn about the system via numerical simulations of
lattice QCD [3]. Here, too, is a problem. The standard Monte Carlo al-
gorithm relies on a functional with a positive definite measure. Typically
finite densities are achieved via a chemical potential and the chemical poten-
tial generally yields a functional determinant which is not positive definite
and this notorious fermion sign problem spoils the Monte Carlo approach.
One way to avoid this is to concentrate on the case of QCD with an isospin
chemical potential rather than a baryon one. This has the virtue of hav-
ing a manifestly real and positive measure in the functional integral [4].
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Numerical simulations have been done for this system. [5, 6] Unfortunately,
this problem is of little interest phenomenologically since it is relevant to no
known physical circumstance either in astrophysics or in a doable terrestrial
experiment. There has been recent progress in ways to treat systems with
finite baryon chemical potentials. However, these approaches are restricted
to the regime of high temperature and low density. While this regime is
certainly of some interest and the techniques may be suitable for reaching
the QCD critical point (which is certainly of interest) the techniques are not
suitable for the interesting regime of relative cold matter which is of real
astrophysical interest.

Thus, for much of the regime of interest one is compelled to resort to
model building. Clearly it is of interest to see whether there are any new
analytically approaches to this class of problems which can provide new
insights. Such insights may be of use in furthering theoretical understanding.
They also may serve to constrain model building.

This paper reports on two related new developments based on formal
properties of the QCD functional integrals at nonzero chemical potentials.

The first is based on the techniques of QCD inequalities [7]. The key
insight is that the functional integral for QCD with a finite baryon chemical
potential differs from QCD with a finite isospin chemical potential only by a
phase. This in turn lets one bound the free energy for QCD with a nonzero
baryon chemical potential (and zero isospin chemical potential) by the free
energy for QCD with a nonzero isospin chemical potential (with zero isospin
chemical potential) [8]. This result is of interest theoretically and may be
of importance in constraining model building—since the isospin chemical
potential case may be simulated on the lattice, one has a calculable bound
which models must not violate to be consistent with QCD. The method also
has a surprising spin-off—it provides a rigorous bound on the mass of the
nucleon.

The second development discussed concerns the so-called “Silver Blaze”
problem [9]. This problem is named after the famous Arthur Conan Doyle
story of that name. In this story Sherlock Holmes used the “curious incident”
of a dog doing nothing in the night time as a key clue. In the context of
QCD at nonzero chemical potential, the problem arises when one tries to
understand the behavior of QCD at zero temperature and small chemical
potential via the analysis of functional integrals. We know, of course, that
at zero temperature the physical system is unaffected by a chemical potential
which is less than some critical value. (For the case of an isospin chemical
potential the value is mπ; for the case of a baryon chemical potential it
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is the energy per nucleon of infinite nuclear matter.) Of course, from the
phenomenological perspective this not surprising in the least—until one has
a chemical potential equal to the lightest energy per particle number (of the
appropriate type) in the spectrum of the system, then at zero temperature
the system will remain in its vacuum state. From the point of view of the
functional integral, however, this is a curious incident indeed. The chemical
potential enters the problem through the functional determinant which is the
product of eigenvalues of the Dirac operator. The inclusion of any nonzero
chemical potential alters all of the eigenvalues. This leads to the natural
expectation that the nonzero chemical potential will affect all functional
determinants and thus all functional integrals and thereby all observables.
Clearly this does not happen; the question is simply“why not?”

It can legitimately be asked why one should bother trying to understand
this problem. This is, quite literally, trying to understand nothing. The
significance, however, is that if one wants to ever develop a method based on
functional integrals to understand why something happens when the critical
chemical potential is exceeded, one has to understand why nothing happens
below. The baryon Silver Blaze problem remains unsolved. However, the
isospin Silver Blaze problem was solved last year providing new insights into
the physics of pion condensation [9].

A word about notation and language. For simplicity of presentation, this
paper explicitly discusses the case of QCD with two degenerate flavors (u and
d). Everything goes through without change if one includes any number of
heavy flavors so long as the chemical potentials associated with these flavors
is zero. Thus the phrase “baryon chemical potential” should be taken to
mean “the part of the baryon chemical potential associated with the light
nonstrange quarks.”

In the following section the use of QCD inequalities to constrain QCD at
finite baryon chemical potential will be discussed. Following this there will
be a short section exploiting the result to rigorously constrain the nucleon
mass directly from QCD. The final section is devoted to the Silver Blaze
problem. The treatment in sect. 2 and 3 is largely based on ref. [8] and
the discussion borrows heavily from that work, while the work in the final
section is principally from ref. [9]. The discussion here, however, is more
expansive and considerably more accessible.
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2. QCD Inequalities For QCD at Nonzero Chemical
Potential

2.1. A Brief Review of QCD Inequalities

QCD inequalities are an ideal method to learn some qualitative features of
QCD in a rigorous way directly from the theory. Nussinov [10] developed a
precursor to the approach with a demonstration that bounds could be placed
on various hadronic quantities for a large class of models which were inspired
by QCD. The approach itself emerged shortly thereafter with the realization
by Weingarten [11] and Witten [12] that analogous bounds could be obtained
directly from QCD itself. The key tool to deriving these was the Euclidean
space functional integral representations of physical quantities. The method
has an undeniable appeal in that one can deduce certain qualitative features
of QCD from first principles even while being unable to fully solve the theory.
Of course the method is quite limited. One gains qualitative as opposed to
quantitative information, and that being only for particular observables. The
information gleaned from them is important, however. One role they serve is
simply to supplement the understanding obtained from lattice simulations.
They also give us an analytic means to understanding some features of QCD
which are both observed in the physical world and which can be seen to
emerge from lattice studies. As seen here, QCD inequalities can also provide
insight and phenomenologically relevant constraints for certain properties
of QCD that are not tractable on the lattice using standard Monte Carlo
algorithms. The QCD inequality approach is now more than 20 years old and
has been reviewed recently [7]. In this subsection a few relevant features will
be quickly reviewed so the the results are comprehensible; for more details
the reader is directed to see ref. [7].

Before proceeding it is worth noting that the resulting inequalities are
not derived with full mathematical rigor. The results cannot strictly be
called theorems. However, by the standards of physicists they are quite
rigorous; they use only the most vanilla flavored assumptions typically made
by physicists. The approach implicitly assumes that the QCD exists as a
theory, that it is legitimate to use functional integrals to compute hadronic
quantities from the underlying quantum field theory, that the standard Wick
rotation to Euclidean space from Minkowski space is permitted, and the like.
But no additional dynamical assumptions specific to QCD are made.

The key to QCD inequalities is almost trivially simple. One begins in
the standard way by relating a physical quantity of interest to a Euclidean
functional integral over all possible gauge field configurations. Now suppose
a second interesting quantity is found whose functional integral has the fol-
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lowing feature: the integrand for the second quantity is greater than or equal
to the integrand of the first quantity for every gauge configuration. If one
finds such a pair of quantities, it is readily known that the second functional
integral is necessarily bigger than the first. Since the two functional integrals
are related to physical observables, one immediately derives bounds on the
physical quantities.

A bound on the free energy at fixed baryon chemical potential is the focus
of this section. In fact, thermodynamically intensive quantities such as free
energy densities are not typically studied via QCD inequalities. The method
is more commonly applied to the the study of correlation functions which are
then used to bound the masses of particles. There is one important example
from the past, however, where the approach used intensive quantities: the
demonstration by Vafa and Witten [13] where the vacuum energy for QCD
with a θ term has an absolute minimum at θ = 0. In fact, this Vafa–Witten
paper [13] is the subject of some considerable controversy [14]. However, the
controversy concerns the extension of this argument to conclude that parity
cannot be spontaneously broken. The underlying demonstration that the
vacuum energy has a minimum θ = 0 is clearly correct. The Vafa–Witten
proof will be discussed next as it provides a template for the bound on the
free energy density of QCD at fixed baryon chemical potential.

The derivation by Vafa and Witten is both simple and elegant. The
functional integral for the partition function is given by

Z(θ) =
∫
D[A]

∏
i=flavors

det
(
D/+mi

)
e−SY M + iθν , (1)

where det(D/+mi) is the functional determinant for a particular flavor and
is known to be both real and non-negative [11]. The Euclidean space Yang-
Mills action is denoted by SY M , and the topological winding number is
denoted by ν. Consider what happens when one sets θ to be nonzero. The
only effect of doing this is to include a pure phase factor eiθν relative to
the θ = 0 case. Now the rest of the integrand is real and non-negative
and the real part of this phase factor is always less than or equal to unity.
(We can ignore the imaginary part since we know on physical grounds that
it will integrate to zero.) Thus, even without being able to compute the
functional integral explicitly one can deduce that the functional integral for
the partition function with nonzero θ is smaller than the partition function
with θ = 0. But the partition function has a well-known physical meaning:
Z(θ) = e−V E(θ) where V is the four-dimensional volume and E(θ) is the
vacuum energy as a function of θ. Thus, the bound on the partition function
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implies that E(θ) > E(0).

2.2. A QCD Inequality for Free Energies at Nonzero

Chemical Potential

In this section, a derivation quite analogous to that of Vafa and Witten
discussed above is presented. As noted in the introduction, the explicit
problem discussed will be for the of two flavor QCD with degenerate quark
masses at a nonzero chemical potential. As was also noted in the introduction
the generalization to the problem of addition flavors is quite straightforward.

Like the Vafa–Witten case, the starting point is an appropriate free en-
ergy density. We begin by considering QCD at fixed temperature and a
baryon chemical potential, GB(T, µB). The free energy is related to the
grand partition function ZB(T, µB) in the usual way,

GB(T, µB) = − (βV3)−1 log
(
ZB(T, µB)

)
, (2)

where V3 is the (three-dimensional) volume of the system while β is the
inverse temperature. The next step is to express this grand partition function
as a functional integral. For QCD with two degenerate flavors this is given
by

ZB(T, µB) =
∫
d[A]

(
det

(
D/+m− µB

Nc
γ0

) )2
e−SY M . (3)

In the preceding equation Nc is the number of colors (3 for the physical
world), the functional determinant is taken for one quark flavor. Tempera-
ture is treated in the standard way via the imposition of boundary condi-
tions: the gluon fields are subject to periodic boundary conditions in time
A(t+β) = A(t) with β = 1/T ; the fermions in the functional determinant are
subject to antiperiodic boundary conditions. Note that while the functional
determinant is for a single flavor, it comes in squared reflecting the presence
of two flavors in the system. Finally a notational issue should be considered.
The chemical potential is for the baryon number (not for the quark number).
The fact that the chemical potential is for the baryon number necessitates
the factor of 1

Nc
seen in Eq. (3).

This functional integral cannot be simulated on the lattice via standard
Monte Carlo methods. The difficulty is, of course, the fermion sign problem
which arises from the functional determinant. The key feature about the
inclusion of a nonzero chemical potential is that the functional determinant
is, in general, not necessarily real or positive. However, from the perspective
of the lattice, what is a major problem from the perspective of QCD inequal-
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ities becomes a major opportunity. In particular, it allows one to place an
upper bound on the partition function,

ZB(T, µB) ≤
∫
d[A]

∣∣∣∣ det
(
D/+m− µB

Nc
γ0

)∣∣∣∣2 e−SY M . (4)

The inequality seen above is clearly quite analogous to the Vafa–Witten
case in equality and stems from the identical reason—a phase factor in an
otherwise positive definite integrand will always lower the integral relative
to an integral with a phase factor of unity.

Of course, as written, inequality (4) is of little interest. While the left-
hand side has a clear physical interpretation, the right-hand side at present
does not. The insight which enables the approach to be fruitful is that the
right-hand side can also be related to a physically meaningful quantity. In
particular, it is quite straightforward to see that the right-hand side can
easily be related to the free energy density of QCD with an isospin chemical
potential [4]. An isospin chemical potential term enters the QCD Lagrangian
with the form µI qγ0

τ3
2 q. The functional integral for the appropriate grand

partition function ZI(T, µI) = exp (−β V3GI(T, µI)) is

ZI(T, µI) =
∫
d[A] e−SY M det

(
D/+m− µI

2
γ0

)
det

(
D/+m+

µI

2
γ0

)
. (5)

The expression has two functional determinants—one for each flavor—and
they have opposite signs in their µI terms which encodes the fact that up
and down quarks have opposite values for I3.

The next steps involve some trivial results of linear algebra,

γ5

(
D/+m+

µI

2
γ0

)
γ5 =

(
−D/+m− µI

2
γ0

)
= (D/+m− µI

2
γ0)† . (6)

The final equality is based on the fact that D/ is anti-Hermitian (in Euclidean
space) but the unit operator and γ0 are each Hermitian. The cyclic prop-
erty of the determinant means that one can express the second functional
determinant in Eq. (5) as det(D/+m+ µI

2 γ0) = det
(
γ5(D/+m+ µI

2 γ0)γ5

)
.

This fact along with Eq. (6) gives

det
(
D/+m+

µI

2
γ0

)
=

[
det

(
D/+m− µI

2
γ0

)]∗
. (7)

Using Eq. (7) along with Eq. (5) allows one to deduce that

ZI(T, µI) =
∫
d[A]

∣∣∣ det
(
D/+m− µI

2
γ0

) ∣∣∣2 e−SY M . (8)
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Note that this expression is of the same form as the right-hand side of Eq. (4).
Thus we see that inequality (4) together with Eq. (8) yields a useful inequal-
ity,

ZI

(
T,

2µB

Nc

)
≥ ZB(T, µB) . (9)

This inequality for the partition functions along with the standard relation-
ship of the free energy to the partition function implies that

GB(T, µB) ≥ GI

(
T,

2µB

Nc

)
. (10)

Inequality (10) is the principal result of this section.
As discussed above, although the results in this paper are derived for

two flavor QCD, they can be generalized trivially. It should be immediately
clear that the argument goes through without change for QCD with two
degenerate light flavors and any number of additional heavy flavors. The only
modification is that the chemical potential term must be understood as being
the chemical potential associated with the up and down quarks and not the
full baryon chemical potential. The reason it goes through is straightforward.
The various functional integrals in this more general case include functional
determinants for the heavy flavors. However, since, as noted above, the
chemical potential only affects the light flavors, these additional functional
determinants are real and non-negative. Because the inequalities depend
only on the fact that various terms in the functional integrals are real and
positive, the presence of these extra functional determinants do not alter
the preceding inequalities. It is worth noting that this more general case is
significant: in nature QCD has two light quarks which are nearly degenerate
and have additional heavy flavors.

There is another scenario in which the inequalities hold. Suppose one
considers the general case and looks at the full baryon chemical potential
(i.e., a chemical potential coupled to all flavors of quarks) . Suppose further
that one is working in a regime in which the sγ0s = cγ0c = bγ0b = tγ0t = 0.
In such a regime, the total baryon number in fact comes from up and down
quarks so the previous derivation holds. It should be noted that such a
regime actually occurs. In particular it happens at zero temperature if one
works below the critical chemical potential for strangeness condensation.

It is useful to consider how inequality (10) may prove useful. Recall that
standard Monte Carlo methods fail for QCD at finite baryon chemical po-
tential and low temperatures. Moreover, it is generally believed that weak
coupling techniques valid at very high densities which lead to nonperturba-
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tive phenomena in a manner very similar to conventional BCS theory [1, 2]
are thought to work only at extraordinarily high densities. Thus for the fore-
seeable future all studies of phenomenological significance for relatively cold
dense matter will of necessity by based on simplified models [2, 15] rather
than QCD. There is nothing wrong with using simplified models; virtually
all of the theory of traditional nuclear physics has been made from the per-
spective of simplified models and not QCD. On the other hand, models need
to be constrained in order to be useful. Empirical data is one way to con-
strain model building. To the extent possible, though, one ought to constrain
models directly from QCD. Inequality (10) may prove very useful for this
purpose. While one may have to model the left-hand side of the inequality,
the right-hand side is amenable to lattice QCD simulations. The reason for
this is precisely the same reason the inequality was derivable in the first
place: namely, the integrand of the functional integral for ZI is manifestly
real and non-negative [4]. Indeed preliminary lattice studies have been done
for this quantity both for quenched QCD [5] and for full QCD [6]. These
studies have been done on rather small lattices and it is not clear just how re-
liable they are. However, lattice calculations will undoubtedly improve with
time and eventually may provide important constraints on model building
through inequality (10).

3. A Bound on the Nucleon Mass

The topic of this section is off of the main line discussed in this article.
However, it is worth pursuing since a significant result for the nucleon mass
emerges naturally as a corollary to inequality (10). As will be seen, the
bound is not very stringent, but it is still of interest because it is a direct
result of QCD. Moreover, it provides a solution to a very old problem. Nussi-
nov originally derived a bound in the context of QCD-inspired models: the
nucleon mass must be greater than or equal to 3mπ

2 [10]. Weingarten, in his
seminal paper introducing QCD sum rules, attempted to place a bound on
the nucleon as being larger than some multiple of the pion mass [11]. This
attempt, unlike that of Nussinov, directly used QCD. However, the attempt
failed—the method was only valid for QCD in a world of six or more de-
generate light flavors. But this certainly does not correspond to the real
world. Weingarten also suggested an alternative approach which did not
require six degenerate flavors. However, this method depended on plausible
but unproved assumptions about the behavior of the quark propagator in
background gauge potentials. Nussinov and Sathiapalan [16] were able to
derive a QCD-based bound that MN > Nc mπ

2 . Their derivation did not rely
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on ad hoc assumptions about the quark propagator, and it holds for two
degenerate flavors. However, the derivation only works in the large Nc limit
of QCD. Therefore, prior to ref. [8] there were no known rigorous bounds on
the nucleon mass from QCD.

One particular remarkable fact about the bound on the nucleon mass ob-
tained in ref. [8] is that it is based on thermodynamic arguments. The usual
way masses are bounded in QCD inequalities is via the study of Euclidean
space correlation functions.

The derivation begins with the observation that inequality (10) is valid
at any temperature and thus applies at T = 0. The zero temperature system
has remarkably simple thermodynamic properties: the system is in a single
quantum state (that is to say, thermal fluctuations are completely absent).
The quantum state is simply the one that minimizes the G = H − µN ,
where H is the Hamiltonian, G is the appropriate free energy and µ is
the appropriate chemical potential (either isospin or baryon); N = V3ρ is
the associated particle number. The chemical potential serves to select the
quantum state by altering the free energies of the various quantum states
according to the particle number. Assuming the spectrum has a gap, an
increase in the chemical potential from zero (at zero temperature) will do no
nothing until it reaches a critical value where the free energy of a quantum
state other than the vacuum drops below the vacuum state. Below this
critical value the density must be zero at zero temperature. Note that it is
precisely due to the existence of such a critical chemical potential that the
Silver Blaze problem arises.

The critical chemical potentials can be defined by the following relations:

GB(T = 0, µB) = 0 for |µB| < µc
B ,

GB(T = 0, µB) < 0 for |µB| > µc
B ,

GI(T = 0, µI) = 0 for |µI | < µc
I ,

GI(T = 0, µI) < 0 for |µI | > µc
I . (11)

Inequality (10) along with the relations defining the critical chemical poten-
tial (11) imply that

µc
B ≥

Nc µ
c
I

2
. (12)

Now inequality (12) is specified in terms of a critical chemical potential
and we want a relation on the nucleon mass. How can we relate the two? The
answer is straightforward: µc

B is bounded from above by the nucleon mass.
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This can be seen rather trivially from a variational argument. Focus on a
quantum state that we know is an eigenstate of the Hamiltonian: a single
nucleon at rest. The free energy of this state is known. The energy is MN

while the baryon number is unity, thus the free energy is GB = MN −µB. It
is obvious that the free energy of this state is less than zero when µB ≥MN .
This means that there exists a state of lower free energy than the vacuum
whenever µB ≥ MN . Of course, it is logically possible that there are states
of lower free energy than the vacuum for some value µB less than the nucleon
mass implying a critical chemical potential of less than MN . Indeed, that
is what happens in nature. Extrapolations of the masses and densities of
finite nuclei (while removing Coulomb effects) to an infinite system [17] lead
to the conclusion that in the absence of Coulomb effects, bound infinite
nuclear matter forms. Since it is bound the energy per particle is less than
that of isolated nucleons. The transition to infinite nuclear matter is first
order at zero temperature; just below µc

B the system has zero energy and
zero density, while just above the system has nonzero energy and nonzero
density. Thus µc

B = MN − B where B is the binding energy per nucleon
of infinite nuclear matter. For the present purpose the essential observation
is that regardless of whether µc

B is equal to or less than MN , it cannot be
greater,

µc
B ≤MN . (13)

Inequalities (12) and (13) together yield a bound on the nucleon mass,

MN ≥
Nc µ

c
I

2
. (14)

Inequality (14) is a principal result of this section. We have succeeded in
bounding the nucleon mass from below by another physical observable.

As written, inequality (14) is of limited use. We have no direct way
to measure or compute µc

I without further assumptions, although we do
have strong theoretical grounds for believing that µc

I = mπ. We can, how-
ever, turn the inequality around to make a rigorous statement which can be
checked. Recall that µc

I is the energy per unit isospin of the state in QCD
with the lowest energy per unit isospin. We can name this state X and
denote its mass mX and isospin IX so that µc

I = mX
IX

. Inequality (14) can
then be written as

MN ≥ NcmX

2 IX
, (15)

where X is some state which exists in QCD. This is a sharp prediction of



September 11, 2004 12:3 WSPC/Trim Size: 9.75in x 6.5in for Proceedings cohen

QCD Functional Integrals for Systems with Nonzero Chemical Potential 113

QCD that can be checked. TakingX to be the pion we see that the inequality
is satisfied by more than a factor of 4.

4. The Silver Blaze Problem

4.1. The Isospin Silver Blaze Problem

Let us now turn to the Silver Blaze problem. For simplicity of presentation
we consider QCD with two degenerate light flavors. In this section we will
consider the theory at zero temperature and a nonzero but small chemical
potential (either for baryon number or isospin or a combination thereof). For
concreteness let us start the discussion for the case of an isospin chemical
potential (at zero baryon chemical potential). While this problem is not
particularly interesting phenomenologically, it raises many general questions
which have analogs in the more general case and has the virtue of being
solved [9].

Phenomenologically this system is well understood at low chemical poten-
tial [18]. The system remains in the vacuum state with zero energy density
and isospin density for all |µI | less than mπ, which serves as the critical
point. At the critical point there is a second-order phase transition. The
state above the transition is a pion condensate. It is very easy to explain
this behavior in terms terms of eigenstates of QCD. The µc

I—the critical
value of µI—is simply the energy per unit isospin for the state of the sys-
tem with the smallest energy per unit isospin. For this system it is a pion
at rest. However, while this interpretation is trivial the connection to the
QCD lagrangian remains quite obscure; we have no simple way to obtain the
eigenstates starting directly from QCD.

The point of the present study is to try to understand what is going on in
terms of a Euclidean space functional integral formulation of the theory. The
reason for doing this is twofold. In the first place, Euclidean space functional
integrals are a general, powerful, theoretical tool. Secondly, lattice QCD is
formulated in terms of them.

The zero temperature limit introduces subtleties. Thus it is simpler to
work at finite (but small) temperature at the outset and then consider the
limit as T →∞ at an appropriate later stage. The key quantity of interest
is the free energy. It is given by GI(T, µI) = E − TS − µII3 (where E, T ,
S and µI are the energy, temperature, entropy density, isospin and chemical
potential, respectively). To help keep things well defined, we work in a
finite (but large) box with a volume denoted by V . The infinite volume
(thermodynamic) limit V can be taken at the end of the day. In this limit
it is natural to express results in terms of intensive quantities such as the
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energy density, the free energy or isospin density. The free energy is related
to the grand partition function in the standard way: ZI(TµI) = e−βG(T,µI)

(where β = 1/T ). As seen in Subsect. 2.2 the grand partition function can
be represented as the following functional integral,

ZI(T, µI) =
∫
d[A]

∣∣∣det
(
D/+m− µIγ0

2

)∣∣∣2 e−SY M . (16)

The essential issue is how the chemical potential influences the free energy.
From the functional integral expression it is clear that the chemical potential
influences the free energy through the functional determinant of the Dirac
operator and only through the functional determinant. We do not know
too much about this determinant. But one thing we do know is that the
determinant is simply the product of the eigenvalues of the Dirac operator
det

(
D/+m− µIγ0

2

)
=

∏
j λj where

(
D/+m− µIγ0

2

)
ψj = λjψj .

This is at the crux of the Silver Blaze problem. If we knew nothing else,
it would be natural to assume that for any given gauge field configuration,
the eigenspectrum of the Dirac operator with µI = 0 differs from the eigen-
spectrum with any nonzero µI . Indeed, it is naturally to expect that every
eigenvalue is would be different. The reason for such an expectation is sim-
ply the lack of any known reason why the eigenvalues should not depend on
µ. Again, in the absence of any other knowledge, one would also naturally
assume then that for every gauge configuration, the functional determinant
with nonzero µI would differ from the functional determinant µI = 0. Since
all functional determinants appear to depend on µI it is also natural to con-
clude that ZI(T, µI) must depend on µI for any nonzero µI . Nothing about
this expectation seems to depend in a critical way on the temperature; it
would seem to hold at T = 0. Thus one has a natural expectation that at
T = 0 any nonzero chemical potential would alter the free energy. Obviously
this expectation is completely wrong. At T = 0 the free energy is exactly
equal to its vacuum value whenever |µI | < mπ. The Silver Blaze problem
is about how to understand the “curious incident” of nothing happening to
the free energy for the entire regime |µI | < mπ in the context of a functional
integral treatment.

The insight needed for the solution of the isospin Silver Blaze problem is
that instead of focusing on the eigenspectrum of the Dirac operator, D/+m,
one should instead focus on the eigenspectrum of the γ0 times the Dirac
operator. Why is this of interest? To begin with, note that product rule for
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determinants implies that

det
(
D/+m− µIγ0

2

)
=

det
(
γ0

(
D/+m− µIγ0

2

))
det (γ0)

= det
(
γ0

(
D/+m− µIγ0

2

))
(17)

where the last equality exploits the fact that det (γ0) = 1. Actually this
is a bit of a swindle since the matrices are infinite but it indicates why γ0

times the Dirac matrix may be of interest. A more legitimate way to express
things can be found using some simple linear algebra,

det
(
D/+m− µIγ0

2

)
= det (D/+m ) exp

{
−1

2

∫ µI

0
dµ′I tr

1

γ0(D/+m)− µ′
I
2

}
.

(18)
This indicates that a knowledge of the eigenvalues of γ0 times the Dirac
operator at various values of the chemical potential will enable one to find
the relevant trace and to do the integral to find the determinant of interest.

The details of how to characterize these eigenstates and compute the
determinant are given in detail in Refs. [9, 19]. Most of these technical
details are omitted here but a few of the salient results will be noted.

The first important result is that the anti-periodic boundary conditions
on the eigenstates in the trace along with the hermiticity properties of the
various operators imply that the eigenfunctions of γ0(D/+m)−µ′

I
2 are arranged

into families which can be denoted by two indices; an index j representing an
“intrinsic” eigenstate, and an index n representing a phase factor indicating
which anti-periodic solution one is studying,

|ψjn+1〉 = e
i2πt

β |ψjn〉 , λjn = εj −
µ′I
2

+ i

(
φj

β
+

(2n+ 1)π
β

)
. (19)

The eigenvalue of the operator λjn has a real and an imaginary part. To
uniquely specify this decomposition a condition on the phase needs to be
imposed. Here we take the condition that −π ≤ φj < π.

The form of Eq. (19) should look familiar. Apart from the phase factor
φj it is of the same form as for free noninteracting fermions. Of course, in
the case of a noninteracting particle, εj has a simple interpretation: it is the
energy of a mode. Thus we will denote εj (the real part of eigenvalue) as a
quasi-energy. These quasi-energies are fundamentally different from energies
in some essential ways. In the first place they depend on the background
gauge field configuration. Moreover we have no analytic expressions for
them.
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The trace can be done in two parts: summing over the quasi-energies,
and parameterizing the imaginary parts parameterized by the index n. The
sum over n is the analog of a typical Matsubura sum [20] and can be done
explicitly. Straightforward algebra then yields

det
(
D/+m− µIγ0

2

)
det (D/+m )

= exp
(
− i

∑
j

φj θ(εj)θ(|µI | − 2εj)
)

× exp
( β

2

∑
j

θ(εj) θ(|µI | − 2εj) (|µI | − 2εj) +O
(
e−βΛ

))
, (20)

where the fact that we are ultimately interested in the zero temperature limit
has been used to obtain θ functions from hyperbolic tangents which emerge
from the Matsubura sum. At this stage we will take the zero temperature
limit and neglect the exponentially suppressed terms. Note, however, that
this is making the assumption that the quantity of interest, the free energy
at nonzero chemical potential, is smooth in the zero temperature limit.

The theta functions in Eq. (20) gives an obvious hint as to how the isospin
Silver Blaze problem may be solved. They imply that at zero temperature
the functional determinant for any gauge configuration is precisely equal to
its µI = 0 value unless |µI |

2 is greater than the quasi-energy of the minimum
positive quasi-energy mode. Thus, if there is a gap in the quasi-energy
spectrum for a given field configuration, then at least for that configuration
nothing happens until the gap is reached.

However, this is not sufficient to resolve the Silver Blaze problem by itself.
A full resolution requires that a gap in the spectrum exists for the config-
urations that contribute with nonzero weight to the functional integral at
zero temperature. One needs a formal way to specify this and it is naturally
given in terms of a spectral density ρ̂(ε) given by

ρ̂(ε) ≡
∑

j

δ(ε− εj) , (21)

where εj is the jth quasi-energy (for a given configuration). Using the Mat-
subura sum and generic properties of the propagator, a very useful expression
is obtained for the spectral density [9],

ρ̂(ε) =
1
2β

∂

∂ε
tr

[
(γ0(D/+m)− ε)−1 + ((−D/+m)γ0 − ε)−1

]
+O

(
e−βΛ

)
.

(22)
Next let us introduce a notation to indicate averaging over gauge configura-
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tions,

〈Ô〉T,µI
=

1
ZI(T, µI)

∫
d[A] Ô

∣∣∣det
(
D/+m− µIγ0

2

)∣∣∣2 e−SY M . (23)

We can define the minimum relevant positive quasi-energy, εmin: 〈ρ̂(ε)〉0,0 = 0
if and only if |ε| < εmin.

With these notational preliminaries in place, the isospin Silver Blaze prob-
lem is resolved provided that two conditions are satisfied:

i) 〈ρ̂(ε)〉0,µI
= 〈ρ̂(ε)〉0,0 for all µI < 2εmin ,

ii) εmin =
mπ

2
.

It is easy to see that these two conditions do indeed resolve the problem. If
one uses the relation of the free energy in terms of ZI along with Eqs. (16)
and (21) then

∂G(0, µI)
∂µ

= 2
∫ µI

2

0
dε 〈ρ̂(ε)〉0,µI

. (24)

This means that at zero temperature and |µI | < mπ and if these two condi-
tions are true, the free energy will be independent of µI and thus equal to
its vacuum value. This in turn means the expectation value of the isospin
vanishes.

The validity of these two conditions can be established given one basically
innocuous assumption—that there is no first order phase transition for T = 0
and |µI | < mπ. This assumption is highly plausible from first principles
and is known to be true in nature. Condition i) can then be established
using straightforward methods which are detailed in ref. [9]. Condition ii)
is a bit more interesting. The trick is to study the charged pseudoscalar
susceptibility χ+

ps =
∫

d4x〈J−(x)J+(0)〉 (with J+ = dγ5u). The key point
is that it is expressible as a functional integral; using similar techniques to
those discussed above, one obtains

χ+
ps(T, µI) =

1
V

∫
dε

〈ρ̂(ε)〉T,µI

(
1 +O

(
e−βΛ

))
|2 ε− µI |

. (25)

Thus χ+
ps will diverge when µI

2 reaches the smallest value of ε for which
〈ρ̂(ε)〉0,µI is nonzero. Condition i) then implies that this occurs at εmin.
Phenomenologically, in the absence of a first order transition, χ+

ps diverges
in the infrared when the chemical potential reaches the mass of the lowest
excitation with these quantum numbers, namely, mπ. This completes the
demonstration.
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4.2. The Baryon Silver Blaze Problem

The baryon Silver Blaze problem is far more interesting. The problem is how
can one use a functional integral formulation to understand how it happens
that for µB < MN −B (where B is the binding energy for nucleon of nuclear
matter ) the system is unchanged from its vacuum. In the first place it is of
much greater phenomenological importance than the isospin case. After all,
it is at the crux of understanding infinite nuclear matter from QCD. It is also
of far more interest theoretically than its isospin cousin. The isospin Silver
Blaze problem is resolved in a direct way: all of the functional determinants
in the configurations which matter are unchanged from their vacuum values.

Can the baryon Silver Blaze problem be resolved in a similar way? The
answer depends on the regime in which one works. First consider a regime
in which 0 < µB < 3mπ/2. In this regime the derivation given for the
isospin Silver Blaze problem applies; all of the gauge configurations which
contribute have a functional determinant identical to that of the vacuum.
We note that there is a paradox associated with the baryon Silver Blaze
problem which applies in this regime. From Sect. 2 we see that GB

(
T, µB) ≥

GI(T, 2µB
Nc

)
and that this holds at any temperature including T = 0. The

origin of this inequality was simply the phase of the functional determinant.
Naively one would expect this phase factor to differ from unity for all gauge
configurations since all eigenvalues of the Dirac operator are complex. This
in turn leads to an expectation that the inequality should not be saturated,
and that GB(T = 0, µB) ≥ GI

(
T = 0, 2µB

3

)
for all µB. But in the present

regime this does not happen. Both GB and GI are the vacuum value and,
hence, they are equal. Why was the expectation wrong? The derivation in
the isospin Silver Blaze problem neatly explains this.

Consider Eq. (20). Note that there are theta functions for the quasi-
energies contributing to the phase factor. These are precisely the same
theta functions as those for contributions to the magnitude of the func-
tional determinant. Thus, the fact that the configurations which matter to
the functional integral have their magnitudes unchanged from their vacuum
value in this regime (the resolution of the isospin Silver Blaze problem) also
implies that the phases of the functional determinant are unchanged for the
relevant configurations. This explains why in this regime GB = GI rather
than being less.

Next let us turn to the regime 3mπ/2 < µB < MN − B. In this case it
is clear that the nature of the solution of the Silver Blaze problem is qual-
itatively different from the isospin case. To see this let us again return to
Sect. 2. Recall that the fundamental reason why an inequality was derived
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in that case was because the integrand for the free energy with a baryon
chemical potential differs from the integrand for the free energy with the
appropriate isospin chemical potential only due to a phase factor. Now in
this kinematic regime we know phenomenologically that GB(T = 0, µB) is
at its vacuum value while GI

(
T = 0, 2µB

3

)
is below the vacuum value due to

pion condensation. Pion condensation implies that the functional determi-
nants of gauge configurations that contribute are altered from their vacuum
value. The only way the baryon chemical potential can leave the free energy
unaltered is because of the phase factors. However, this implies a very large
conspiracy—the entire effect of the magnitude of the functional determinants
increasing must be exactly compensated by averaging over the phases. This
phenomena is clearly qualitatively quite distinct from the behavior respon-
sible for the isospin Silver Blaze problem.

What is the origin of this conspiracy? At the present time this is un-
known. A pessimistic view is that answering this question is tantamount
to solving QCD analytically and, hence, is intractable. An optimistic view
is that the issue may become clear if one can find a suitable reorganization
of the problem. After all, the isospin Silver Blaze problem also looked in-
tractable until it was realized that the key was to express things in term of
the eigenvalue of γ0 times the Dirac operator rather than the Dirac opera-
tor itself. Where should we look for hints about how such a reorganization
might be accomplished? Although we do not really know, there are some
obvious sources for inspiration. One is the region just above 3mπ/2 = µB. In
this region the relevant configurations have functional determinants slightly
larger than at µB = 0 which must be canceled by the phase effects during
averaging. Since the functional determinant is small one may be able to de-
rive analytic expressions on the necessary conditions for cancellation which
in turn may give a clue as to how things should be organized. The second
place to look is in the large Nc limit of QCD. A diagrammatic analysis in
the large Nc limit suggests that effects linking the functional determinant
for the up quarks with the functional determinant for the down quarks is
suppressed by 1/Nc. Thus one expects that in the large Nc limit the criti-
cal chemical potential for the up quark charge and the down quark charge
are identical. Clearly this does not happen as it implies the critical baryon
chemical potential is just Nc/2 times the isospin chemical potential which
clearly fails in the chiral limit. Therefore, understanding the breakdown of
the large Nc approximation for these quantities may well provide a clue.
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