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We review aspects of the Hagedorn regime in critical string theories, from basic facts

about the ideal gas approximation to the proposal of a global picture inspired by general

ideas of holography. It was suggested that the condensation of thermal winding modes

triggers a first order phase transition. We propose, by an Euclidean analogue of the

string/black hole correspondence principle, that the transition is actually related to a

topology change in spacetime. Similar phase transitions induced by unstable winding

modes can be studied in toy models. There, using T-duality of supersymmetric cycles,

one can identify a topology change of the Gregory–Laflamme type, which we associate

with large-N phase transitions of Yang–Mills theories on tori. This essay is dedicated to
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1. Introduction

Perturbative string theory manifests several bounds. One of them is a

seemingly upper bound on the allowed value of the temperature of a string

gas –the Hagedorn temperature [1, 2]. Bounds are there to be understood

and challenged. Ian has challenged this one and has taken a peek beyond it

in his seminal 1987 work [3]. In this essay we return to discuss the possible

instabilities and tachyons emerging near the Hagedorn temperature. We do

it equipped with tools that Ian has forged in collaboration with us [4–6].

The spectrum of a finite-tension critical string in perturbation theory has

two universal components: the first is familiar from point particles, it consists

of a finite set of massless modes that include gauge fields (open strings) and

gravitons (closed strings); the second is of a stringy nature and consists of

an exponential degeneracy of states at a given high energy. It is the second

component that gives rise to a limiting temperature. For a single string of

energy ε the density of states grows very roughly as ω(ε) ∼ exp(βs ε), where

βs ∼ `s is of the order of the string length scale (we set `s = 1 in the following

and measure all dimensionful quantities in string units). Its entropy is

S(ε) = log ω(ε) ∼ βs ε , (1.1)

and its effective temperature is obtained through the relation

1

T
=

∂S

∂ε
∼ βs . (1.2)

We see that this temperature is approximately bounded by the constant

Ts = 1/βs, called the Hagedorn temperature. Essentially all the energy

pumped into the system is utilized to create the large number of new particles

becoming available as the energy increases, instead of increasing the energy of

the particles already present at lower energy. Thus keeping the temperature

fixed.

Field-theoretical entropies, such as those of each of the massless modes,

scale in d spatial dimensions as Ed/(d+1). Hence, the highly excited strings

dominate any thermal state beyond string-scale energy densities. Since the

entropy is approximately independent of the energy, the resulting specific

heat seems infinite. In fact it turns out that small corrections to (1.1) can

drive the system either into a stable phase of positive specific heat or to an

unstable one of negative specific heat.

A limiting temperature was detected in several types of systems. His-

torically, it was first observed in the dual theory of hadrons and the first

physical interpretation of Hagedorn’s “limiting temperature” was offered in
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the QCD theory of hadrons. The answer in QCD is certainly dramatic: it

was suggested that instead of being an actual limiting temperature its pres-

ence suggests a change in the relevant degrees of freedom in terms of which

the system is relatively simple. A change resulting in a phase transition from

composite objects to their constituents [7,8]. The Hagedorn temperature in

hadronic systems is related to a “deconfinement” transition in which the

hadrons liberate their quark-gluon constituents. Once the degrees of free-

dom are expressed in terms of the field theory of quarks and gluons there

is no bound on the temperature; it can be raised indefinitely. This QCD

analogy has been a recurrent theme when thinking about the “fundamental

strings” of quantum gravity and their possible “true constituents”. This was

the problem Ian tackled. The advent of the AdS/CFT correspondence [9]

has made specific models amendable to a non-perturbative analysis, allowing

to reformulate (and sometimes answer) these old questions. By a twist, a

physical picture arises that resembles QCD very closely, and links to gravity

and ten-dimensional physics by the magic of holography [10].

We start this essay in section 2 by introducing, in order of appearance,

the cast of degrees of freedom relevant for each appropriate energy scale.

We paint with large brush strokes the dependence of the temperature on the

energy of each set of degrees of freedom, and we find that the system crosses

the limiting temperature protected by a black hole armor. In section 3 we

review the more detailed high energy behavior of the spectra of various types

of strings. This is illustrated using a simple and useful geometrical picture:

that of random walks. Particular attention is paid to the dependence of

the spectra on the large-distance properties of the background geometry. In

sections 4 and 5 an Euclidean picture of the physics around the Hagedorn

temperature is discussed. The physical significance of the thermal tachyon

discovered by Ian is addressed, and its stringy features are underscored. The

conclusion that this tachyon seems to be more of a book keeping device than

a physical particle is deconstructed. Instead, a very physical Euclidean pic-

ture emerges; the transition monitors a change in the topology of spacetime

enforced by the nucleation of black holes. The manifestation of the tachyon

is a specialization of the mechanism envisaged by Ian. We finish in section 6

with a discussion of a toy model in which T-duality goes a long way towards

solving a similar problem, involving a dynamical topology change.

This review is centered around the system of ten-dimensional critical

strings at finite temperature. Generalizations of these questions to more

exotic backgrounds of particular interest, such as LST [11] and PP waves

[12], have emerged recently. We will not discuss these issues here, and the
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interested reader may consult [13] and [14] for results and lists of references.

2. String thermodynamics: the big picture

The first two characters in the cast of constituent ingredients, out of

which the gravity cocktail is composed, are the massless modes with field-

theoretical entropy of order Ed/(d+1) and the highly-excited strings with

entropy proportional to their energy. Here we are assuming that the spatial

volume, V , is finite, the string coupling is sufficiently small, gs � 1, and the

local spacetime geometry is approximately flat Rd+1 over the length scales

of the box of volume V = Ld. The simplest string background with these

properties is a spatial toroidal compactification with d dimensions of size L,

9−d dimensions of string-scale size, and a very small string coupling, so that

we can measure energies with respect to the flat time coordinate, at least

to the extent that gravitational back reaction can be neglected. Maximizing

the entropy at a given total energy among these two components, one finds

the temperature dependence on the energy, T (E) = (∂S/∂E)−1. This is

shown in figure 1.

T ( E )

EE
s

T
s

Figure 1. The microcanonical temperature function T (E) = (∂S/∂E)−1 for a string gas in the

two-component approximation. For energies 0 < E < Es below the string-scale threshold, with

Es = ρsV , and ρs = O(1) in string units, the temperature grows as T ∼ E1/(d+1), dominated by

the massless modes. It gets saturated at T ≈ Ts by the highly excited strings. The dotted line

represents the sensitivity to small interaction effects that can perturb the Hagedorn plateau either

way, into a regime of positive specific heat (with dT (E)/dE > 0) or a negative one.

In this approximation, a temperature plateau seems to emerge. Moreover,

the “Hagedorn band” is not sensitive to the number distribution of strings,

i.e. the result is the same whether we assume that a single string carries

all the available energy, or rather the energy is distributed among various

strings (provided all of them carry enough excitation energy to be in the

Hagedorn regime).
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Figure 2. The temperature function in the three-component approximation. Black hole domi-

nance of the density of states at very high energies implies a phase of negative specific heat, starting

at Eg ∼ 1/g2
s (in string units), corresponding to the nucleation of small black holes of size `s, that

subsequently grow as the temperature drops. The Jeans energy EL ∼ Ld−2/g2
s represents the

limit beyond which back-reaction effects cannot be neglected on the scale L at the finite-volume

box. We have also included the low-energy cutoff at energies of order 1/L because the standard

scaling T ∼ E1/(d+1) only applies for energies above the gap of finite-volume excitations.

Corrections to this rough picture depend on the details of the interac-

tions. This is a characteristically difficult problem, since we are in a regime

with large breaking of supersymmetry where no standard approximations

are available. For the case d > 2, a qualitative picture confirms what is

expected from the principle of “asymptotic darkness” [15], which states that

black holes dominate the extreme high-energy regime of theories that incor-

porate gravity (in three spacetime dimensions or less, “asymptotic darkness”

arguments require special care, since localized energy sources affect asymp-

totic conditions for the vacuum). String theory is no exception in this regard,

having its own correspondence principle [16–18]. In particular, the entropy

of Schwarzschild black holes in d dimensions scales as

S ∼ E (g2
s E)

1
d−2 ,

and eventually dominates over the Hagedorn degeneracy for g2
sE > 1. At

this point the Hagedorn plateau must end and drop to lower temperatures

T (E) ∼ E1/(2−d), which is a phase of negative specific heat for d > 2. In

fact, this phase cannot be continued to arbitrarily high energies because the

black hole eventually grows to the size of the box. This threshold coincides

with the Jeans length entering inside the box, and corresponds to an energy

EL ∼ Ld−2

g2
s

. (2.3)

The bound E < EL implies that no thermodynamic limit (large volume with

constant energy density) is possible in these systems, since EL/V → 0.
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An exit out of this tight corner is provided by an appropriate infrared

regularization. An interesting model for a “box” is obtained by replacing

flat space by Anti-de Sitter space, AdSd+1 (c.f. [19]). Consistent string back-

grounds exist with AdS factors, the simplest one being the extensively stud-

ied AdS5 × S5 background of type IIB strings. In such a space, the gravita-

tional redshift effectively confines finite-energy excitations within a distance

of order R, the radius of negative curvature. Black holes larger than R exist

but have new features, the most important being their positive specific heat.

The Bekenstein–Hawking entropy of these black holes scales as

S ∼ (E R)
d−1

d , (2.4)

exactly like a conformal field theory (CFT) in a (d − 1)-dimensional box of

size R. One may attempt to consider this as an embodiment of “asymptotic

darkness”: a string system whose black holes have only a field-theory type

entropy will not be able to posses more than field-theory entropy at high

energies. Assuming that the cast of characters is complete, we can draw a

global phase diagram, as in figure 3, that sums up our general knowledge of

the Hagedorn regime in critical string theory [5, 20–22].

We see that the standard ten-dimensional Hagedorn phase is always a

bounded transient, to be exited at high energies by a black hole phase. If

the string coupling is too large, for a given ratio R/`s, the Hagedorn plateau

is not even present, as the black holes form and drop the temperature before

reaching Ts. On the other hand, at very weak coupling, gs < 1/N , one has

R < `s and the ten-dimensional spacetime is strongly curved. In this case it

is better to describe the system in dual Yang–Mills variables. The large black

hole goes over the quark-gluon plasma phase, whereas the ten-dimensional

Hagedorn regime goes over the four-dimensional glueball regime (thus we

are back to the dual models). In this situation, the fate of the Hagedorn

plateau must be analyzed in Yang–Mills perturbation theory [23] (c.f. figure

5).

We can draw the microcanonical temperature function by cutting the

phase diagram at fixed string coupling, within the limits N−1 < gs < N−9/17.

The new branch of AdS black holes allows to extend the function T (E)

beyond the Jeans energy to indefinite energies [20, 24]. The temperature

also rises indefinitely, as shown in figure 4. Actually one can read off figure

4 the phase structure of the system as a function of the temperature. It

has a first-order phase transition with a latent heat of O(g−2
s ) and a critical

temperature Tc ∼ 1/R. In this case, a large black hole nucleates much

before the temperature can reach the Hagedorn domain. Thus, the Hagedorn
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Figure 3. The phase diagram of quantum gravity in AdS5×S
5 with N units of Ramond–Ramond

flux, according to the AdS/CFT correspondence. A ten-dimensional weakly-curved description

only arises for R/`s ∼ (gsN)1/4 � 1. In this case, the Hagedorn regime is bounded by black hole

and massless graviton phases. It only exists for sufficiently weak string coupling, gs � N−9/17.

At very weak couplings, gs < 1/N , one must use four-dimensional descriptions based on the Yang–

Mills degrees of freedom, whereas at strong coupling, gs > 1, the diagram mirrors itself by the

action of S-duality.

regime is a superheated phase which is either unstable or weakly metastable

to decay into the large black hole phase, which engulfs all the space occupied

by the hot string gas.

In the larger picture that we are describing, the details of the Hagedorn

plateau at weak coupling are not very important. The Hagedorn tempera-

ture is approximately maximal, and only accessible by means of superheated

states. However, in situations where the string coupling can be taken very

small at fixed `s, the Hagedorn transient can be enlarged, and it is inter-

esting to work out the finer details of the hot string gas. In figures 6 and

7 we depict the two main qualitative scenarios, corresponding to a weakly

metastable Hagedorn phase and a locally unstable Hagedorn phase, respec-

tively. It turns out that boundary conditions and finite-size effects start

playing an important role even in the ideal gas approximation. This is not

very surprising, since highly excited strings are “long”, macroscopic states,

that are sensitive to the large-scale structure of spacetime. This form of

UV/IR connection is the source of many subtleties in string thermodynam-

ics. Some of them will be described in the following section.
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Figure 4. The complete microcanonical temperature function for thermal AdS spaces, in the

four-component approximation. In addition to the gravitons, heavy strings and small black holes,

we now include large AdS black holes. When small Schwarzschild black holes grow to size R, at

energies ER ∼ N2/R, their specific heat becomes positive and the temperature can grow without

bound with T ∼ E1/d, corresponding to the dual CFT in d dimensions. A Maxwell construction

(in the thick line) shows that the Hagedorn plateau is only accessible to superheated states. A

first-order phase transition at Tc ∼ 1/R nucleates very large black holes of mass M ∼ N2R3T 4
c ,

directly out of the massless graviton phase.

T ( E )

E
1/ R

Ts

E
R

Figure 5. At very weak coupling gs ∼ 1/N , the system matches the perturbative regime of Yang–

Mills theory and several hierarchical windows of the system shut down. The ten-dimensional

description becomes strongly coupled and standard geometrical intuition breaks down. The string

energy Es that signals the beginning of the Hagedorn plateau becomes of the same order as the

finite-size gap of the gauge theory Egap ∼ 1/R, so that the phase of ten-dimensional graviton

entropy disappears. The plateau ends at ER ∼ N2/R, the energy of the phase transition into

the Yang–Mills plasma. This threshold coincides with Eg , and the phase of ten-dimensional black

holes with negative specific heat also disappears. Instead, the details of the plateau must be

worked out in Yang–Mills perturbation theory in the ’t Hooft coupling gsN < 1.

3. Ideal gas of long strings

In this section we review, in rather picturesque manner, some well-known

features of string thermodynamics in the free approximation. We start by

introducing an intuitive geometrical picture for a highly excited string as

a random walk in target space. The large entropy factor corresponding to
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Figure 6. The fine structure of a weakly metastable Hagedorn plateau. The Hagedorn tempera-

ture Ts is strictly limiting in this region and the specific heat on the approximate plateau is large

and positive, becoming locally unstable for E > Eg . Finite-size effects imply this type of behavior

for an ideal gas of closed strings.

T ( E )

E
s

T
s

E
g

E
R

Figure 7. The fine structure of a locally unstable Hagedorn plateau. In this case Ts is first crossed

at E ∼ Es and then approached from above in the regime Es � E � Eg . Local instability sets

in at E ∼ Es. The Hagedorn temperature is still approximately maximal in the plateau region.

This behavior appears in the ideal gas approximation for sufficiently large dimensionality, provided

finite-size effects can be neglected.

the shape of the random walk in space explains why highly energetic strings

dominate the thermodynamics in spite of their large energy. In addition,

the random walk picture becomes very convenient to calculate and interpret

the leading corrections to (1.1). In the approximation of free strings, these

corrections are determined by finite-size effects.

3.1. Random Walks

Consider a highly excited closed string represented as a random walk in

target space. The energy ε of the string is proportional to the length of the

random walk. The number of those with a fixed starting point thus grows

as exp(βs ε), explaining the bulk of the entropy of highly energetic strings.

Since the walk must close on itself, this overcounts by a factor of roughly the

volume of the walk, denoted Vwalk = W . Finally, there is a factor of V = Ld

from the global translation of the walk in a volume V , and a factor of 1/ε
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because any point in the string can be a starting point. The final result is

ωcl(ε) ∼ V · 1

ε
· eβsε

W (ε)
. (3.5)

There are two characteristic limiting cases. The volume of the walk is of order

εd/2 when it is well-contained in d spatial dimensions (this corresponds to

L � √
ε), whereas it saturates at order V when it is space-filling (L � √

ε).

Hence, we find a density of states per unit volume

ωcl(ε)/V ∼ eβsε

ε1+d/2
(3.6)

in d non-compact dimensions, and

ωcl(ε) =
eβsε

ε
(3.7)

in a compact space that contains completely the highly-excited string states.

In this case the formula (3.7) gives the exact leading term of the density of

states, including the proportionality constant.

The random walk picture is very geometrical and general. For example,

it shows that these densities are largely independent of spacetime topology

and only depend on the degree of “containment” of the random walk on the

available volume.

As an example of its generality, we can also derive the corresponding en-

tropies for highly excited open strings in a standard Dp–Dq sector. In this

case, we have the same leading exponential degeneracy for random walks

with a fixed starting point on the Dp-brane. Fixing the endpoint of a par-

ticular point of the Dq-brane divides by a factor of the total random walk

volume W . Since endpoints can move in the part of each brane occupied by

the walk, we have a further degeneracy factor

(WNNWND) · (WNNWDN) ,

where N and D refer to Neumann and Dirichlet boundary conditions. Finally,

the overall translation of the walk in the excluded NN volume gives a factor

VNN/WNN. The final result is

ωop(ε) ∼
VNN

WNN
· WNN+ND · WNN+DN · eβsε

W
∼ VNN

WDD
eβsε . (3.8)

We see that the density of states is only sensitive to the volume of the random

walk in the DD directions. Again, we have two qualitatively limiting cases:
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if the random walk is well-contained in the d⊥ directions with DD boundary

conditions we have LDD = L⊥ � √
ε and WDD ∼ εd⊥/2 so that

ωop(ε)/VNN ∼ eβsε

εd⊥/2
. (3.9)

On the other hand, if the walk is filling the DD volume we find

ωop(ε)/VNN ∼ eβsε

VDD
. (3.10)

These densities can also be obtained as equilibrium distributions that

solve Boltzman equations for interacting random walks (c.f. [25]). We may

summarize the results by the parametrization

ω(ε) ∼ f · eβsε

ε1+γ
, (3.11)

where f = V‖/V⊥. Here V‖ is the volume available to the center of mass

motion of the walk and V⊥ is the transverse volume in DD directions (we

set V⊥ = 1 in string units when the DD directions are noncompact, or we

have closed strings). The exponent in (3.11) is γ = −1 for space-filling

open random walks and γ = 0 for space-filling closed random walks. For

open random walks that are well-contained in d⊥ directions we have γ =

−1 + d⊥/2.

These finite-size effects induce a negative logarithmic correction to the

entropy of a highly excited string, which in turn gives it a negative spe-

cific heat. Hence, long strings have a tendency to break the equipartition

of energy, which would flow into one single long string. This also breaks

extensivity. Consider two uncoupled subvolumes of the gas, each with its

own single dominating long string. Once brought together there can be only

one longest string violating extensivity.

3.2. The full string gas

In normal systems, the thermodynamic or infinite-volume limit is a useful

formal tool in the study of the phase structure. In the case of strings, their

extended nature puts into question usual assumptions about extensivity of

the thermodynamic functions, and the whole issue of the thermodynamic

limit must be re-examined by working at finite volume from the outset.

However, some heuristic rules of thumb can be envisaged without calculation.

Consider an ensemble of long closed strings with total available energy E.

If all this energy flows to a single long string, the random walk acquires size

E1/2 in string units. The condition for the walk to be well-contained is thus
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E1/2 ≤ L. A thermodynamic limit of large L with constant energy density

ρ = E/Ld is consistent with this condition only when 1 < ρ ≤ L2−d, which

requires d ≤ 2 (the first inequality follows from the condition of long-string

dominance over the massless modes). Hence, we obtain d = 2 as the critical

(spatial) dimension separating string gases with “normal” thermodynamical

behavior from those that have important finite-size effects.

A convenient formalism to discuss the transition from the single long

string to a gas of long strings is to obtain the full density of states Ω(E)

from a formal partition function:

Z(β) = Tr exp(−β HSFT) ≡
∫ ∞

0
dE Ω(E) e−βE , (3.12)

where HSFT denotes the second-quantized Hamiltonian of the full string

field theory and the trace is over the physical Hilbert space of the full string

theory. To leading order in perturbation theory, HSFT is the direct sum of the

free-field Hamiltonians for each particle degree of freedom of the single-string

Fock space. The inverse “temperature” β defines a consistent canonical

ensemble only for β > βs. Indeed, above the Hagedorn temperature, single

string states corresponding to long random walks cause (3.12) to diverge.

Still, if Z(β) is defined by analytic continuation in the complex β plane, we

can write an integral formula for Ω(E) as the inverse Laplace transform

Ω(E) =

∫

Cβ

dβ

2πi
eβ E Z(β) , (3.13)

where the contour Cβ is parallel to the imaginary axis and to the right of all

singularities of Z(β). The entropy of the string gas is S(E) = log Ω(E) and

is determined by the singularities of Z(β), upon evaluation of the integral

(3.13) by contour deformation [5, 26].

Although Z(β) can be evaluated explicitly in the one-loop approxima-

tion [27], we follow here a more heuristic route. In estimating Z(β) near the

Hagedorn singularity, we can assume Maxwell–Boltzman statistics, because

the dominating long strings are macroscopic, and thus they behave quasiclas-

sially. We may then write Z(β) = exp z(β), where z(β) is the single-string

partition function. It is related to the single-string density of states by the

Laplace transform

z(β) =

∫ ∞

0
dεω(ε) e−β ε . (3.14)

By direct calculation, we find that the behavior of z(β) near the Hagedorn
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singularity β = βs is given by

z(β) ∼ f (β − βs)
γ [log(β − βs)]

δ , (3.15)

where δ = 1 if γ is a non-negative integer and δ = 0 otherwise. We see

that the Hagedorn densities (3.11) are associated to critical behavior as a

function of the formal canonical temperature 1/β, with a critical exponent

given by γ, as in (3.11).

One can evaluate the integral (3.13) in various approximations, depend-

ing on the different dynamical regimes of energy and volumes. Whenever the

saddle-point approximation is applicable, one finds an equivalence between

canonical and microcanonical ensembles, with positive and large specific

heat. A necessary condition for this is that γ ≤ 1, ensuring that the canon-

ical internal energy E(β) ∼ ∂β z(β) diverges at the Hagedorn singularity.

Looking at the values of γ as a function of the dimensions, we see that sta-

ble canonical behavior is to be obtained for closed strings in low-dimensional

thermodynamic limits, d ≤ 2, or open strings with d⊥ ≤ 4 noncompact DD

dimensions, i.e. Dp-branes with p ≥ 5 and noncompact transverse dimen-

sions. In all these cases, the energy satisfies the usual laws of equipartition

in terms of the individual strings.

In the cases that a saddle-point approximation is not available, one can

either evaluate the integral exactly in special marginal cases (in particular

for γ = 0), or find a complementary approximation (see [5,26] for a summary

of cases). For example, in certain situations one can perform an expansion

in powers of the single-string partition function,

Z(β) ≈ Z(βs) [1 + z(β) − z(βs)] + O
(

|z(β) − z(βs)|2
)

.

In this case, one finds single-string dominance with negative specific heat.

The paramount example of this behavior is that of Dp-branes with p < 5 in

ten non-compact dimensions. Naively, closed strings with d > 2 also belong

to this category. However we noticed before that the thermodynamic limit

of closed strings is sensitive to finite-size effects precisely in this regime of

dimensions, so that the large-volume limit must be studied with due atten-

tion to these boundary effects. Similarly, open random walks with energy

E > L2
⊥ are also subject to finite-size effects.

This situation can be illustrated by considering the energy distribution

of single long strings in the gas [5, 26]. The number of states with a long

string of energy ε, at fixed total energy E, is proportional to

D(ε,E) =
ω(ε)Ω(E − ε)

Ω(E)
. (3.16)
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In systems where the finite-size effects can be neglected there is a tendency

for the energy to be carried dominantly by a single long string, as in figure

8, whereas the energy is uniformly distributed when the long strings are

constrained by the available volume, c.f. figure 9.

ε D

1

C
v

<  0

E

(ε , E )

ε

Figure 8. Single-string energy distribution for a total energy E, in systems where the random

walks are well-contained and with large co-dimension. The first peak corresponds to the energy in

massless modes. The area below it represents the energy deposited in these modes, of order ρsV .

The second peak corresponds to a single long string that captures E − ρsV of the energy. This

situation corresponds to an unstable Hagedorn phase, as in figure 7.

ε D

C

1 ε ε 
L

> 0
v

v

( ε , E )

E ε

Figure 9. Single-string energy distribution for systems with a very “dense packing” of random

walks in the allowed volume. The initial peak of the massless modes decays to a plateau that

starts at ε = εL ∼ L2, the energy of volume-saturating random walks. The plateau continues up

to energies εv ∼ E − ρsV . This situation corresponds to a locally stable Hagedorn phase, as in

figure 6.

Systems with close-packing of random walks (high energy in a fixed vol-

ume) have γ = −1 for open strings and γ = 0 for closed strings. In the

first case, the saddle point approximation applies and we have a gas of open

strings with canonical behavior, positive specific heat and entropy of the

form

Ω(E)open ∼ exp
(

βsE + C
√

E
)
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with some constant C. The case of closed strings is slightly more involved.

The leading singularity at very high energy and finite volume V = Ld is

always a simple pole of the partition function at the Hagedorn singularity,

Z(β) = (β − βs)
−1 · Z(β)regular . (3.17)

This pole alone produces a multistring density

Ω(E)closed ∼ exp (βsE + ρsV ) , (3.18)

with ρs = O(1) in string units. Hence, the specific heat is still infinite in this

approximation. The contribution of the subleading singularities turns the

thermodynamics into a weakly limiting behavior with positive specific heat

and exponentially suppressed corrections to the linear entropy law. This

conclusion can be anticipated by the study of the energy distribution of

single long strings. Calculating the distribution function D(ε,E) from (3.7)

and (3.18) one finds D(ε,E) ∼ 1/ε, so that the energy distribution εD(ε,E)

is flat for ε > L2, suggesting equipartition and positive specific heat.

It is interesting to notice that, on volumes of the order of the string scale,

the entropy in open strings grows as

S(E)open ∼ βsE + C
√

E ,

whereas closed strings are marginally limiting, with

S(E)closed ∼ βsE − C ′ E16 e−ηE ,

where C,C ′ and η are O(1) constants in string units. This means that pri-

mordial cosmology scenarios which start with a “small” universe (c.f. [28]),

are very sensitive at the possible presence of D-branes in the primordial

ingredients, since open strings dominate the density of states in these cir-

cumstances [5, 29].

4. The thermal scalar

The critical behavior apparent in equation (3.15) begs for a representation

in terms of the dynamics of light modes but, what light modes could possibly

have a bearing on this situation, since we are looking at extremely massive

string states from the beginning?

An interesting answer can be obtained by a formal detour. We first notice

that the random walk in spatial dimensions is the same as the configuration

space of a path integral for a relativistic particle in Euclidean space. In this

picture, ε is proportional to the length of the walk, and (3.14) is a Schwinger

representation of a random world-line of length ε.
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Let us consider first the case of a closed random walk and write (3.15)

using (3.14) and (3.5),

log Z(β) ≈ z(β) ∼ V

∫ ∞

0

dε

ε

e−(β−βs)ε

W (ε)
. (4.19)

For the case of a well-contained walk we have

W (ε)−1 ∼ ε−d/2 ∼
∫

ddk

(2π)d
e−εk2

so that the complete expression (4.19) is just a Schwinger proper-time rep-

resentation of a one-loop determinant for a scalar field in d dimensions [30],

log Z(β) = −neff

2
Tr log

[

−∇2 + m2
eff(β)

]

Rd , (4.20)

where the effective mass m2
eff ∼ (β−βs) is indeed vanishing at the Hagedorn

temperature. We have parametrized the normalization of the partition func-

tion by the number neff , an effective number of components of the thermal

scalar.

We see that the critical behavior of very long strings can be formally

parametrized by the dynamics of a light scalar in d Euclidean dimensions.

In the ideal-gas approximation considered here, the random walk is identified

with the Feynman path of the light scalar particle in Euclidean space.

β

λ

β
s

..

.

..

.

Figure 10. The eigenvalue spectrum of the operator −∇2+m2
eff(β) in the vicinity of β ≈ βs. As β

decreases, there is a lowest eigenvalue that vanishes at β = βs. For a finite box of unit size in string

units, the eigenvalue spacing is of O(1) and subleading singularities appear below βs separated by

O(1) intervals. For a finite box of size L � `s, there are associated bands of momentum modes

with spacing of order 1/L2. In the limit L → ∞ the bands become quasicontinuous.
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For random walks in finite volume, the spectrum of the operator −∇2 is

gapped with characteristic scale 1/L2, so that the momentum integrals are

irrelevant for β − βs � 1/L2, leading to a purely logarithmic free energy

for β sufficiently close to βs. In this case the basic canonical singularity for

closed strings in finite volume takes the form

Z(β)sing ∼ 1

(β − βs)neff/2
. (4.21)

Agreement with (3.17) requires neff = 2, i.e. the thermal scalar can be

considered as a complex field. An explicit stringy construction in the next

section will confirm this conclusion. The opening of d dimensions in the

limit L → ∞ corresponds to a dense set of poles separated by a distance

of O(1/L2) in β-space, accumulating at β = βs and transforming the pole

singularity at βs into a cut of the form (3.15).

D1

D0

Figure 11. The random configurations of a long string in space are identified with the random

paths of of an Euclidean field χ. Here we show a long open string between D1 and D0 branes or,

equivalently, a contribution to the propagator of the thermal scalar.

The effective thermal scalar description also explains the critical behavior

of open strings on D-branes. The geometry of the random walk suggests that

the relevant quantity is now the propagator between boundary states:

log Z(β)pq ∼
〈

Dq
∣

∣

∣

1

−∇2 + m2
eff(β)

∣

∣

∣
Dp

〉

, (4.22)

where D-brane boundary states project onto the zero-momentum sector in

NN directions, and absorb any momentum in the DD directions. Hence, the

momenta flowing through the propagator are only those in the DD directions,

explaining the factor of ε−d⊥/2 in the number of states’ densities.
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4.1. Stringy origin of the thermal scalar

The thermal scalar formalism operates in the spatial Euclidean space.

However, being formally a path-integral representation of a canonical parti-

tion function, note that the thermal circle S1
β of period β does not feature

explicitly in the formalism. In fact, it turns out that the thermal scalar is

an effective description in which the thermal circle has been integrated out,

and the thermal scalar is one of the light “degrees of freedom” that remains

when β ≈ βs. As we shall see now, one can “integrate in” the information

regarding S1
β, and the result is rather surprising.

To argue this point in the simplest example, consider the one-loop free

energy of bosonic open strings. The generalization to superstrings is straight-

forward and brings no new conceptual issues. At this level we can consider

such a free energy as the sum of free energies for each physical particle in

the open-string spectrum, so we have an expression of the form

log Z(β)op = −1
2 Trop log

[

−∂2 + M2
]

Xβ
(4.23)

where the trace sums the spectrum of the operator −∂2 + M2, over all

the open-string fields. The kinetic operator −∂2 is defined on the thermal

manifold Xβ = S1
β ×Rd as

−∂2 = −∂2
τ −∇2 ,

where τ is a coordinate on S1
β and −∇2 is the standard Laplacian on Rd.

Passing to a Schwinger proper-time representation and isolating the discrete

eigenvalues of −∂2
τ = 4π2n2/β2, we get contributions of the form

log Z(β)op = 1
2

∫ ∞

0

dt

t

[

· · ·
∑

n

e−2πt(4π2n2/β2+... )

]

. (4.24)

In this formula and the rest of the section, we pay no attention to the

ultraviolet divergences at small Schwinger parameter, since the β-dependent

part of the partition function is finite. To this end, we adopt the prescription

of subtracting the contribution of the vacuum energy from log Z(β).

In a world-sheet path-integral picture, we have a one-loop vacuum dia-

gram of open strings, the annulus with modular parameter t. The momen-

tum modes in the thermal circle can be transformed into winding modes of

the string world-sheet around the thermal circle by Poisson resummation in

the index n, resulting in terms of the form

1√
t

∑

`

e−β2`2/8πt . (4.25)
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We can see that ` is a winding number by constructing the embeddings of

the annulus that wrap ` times on the thermal circle, τ = `βσ2/t, with action

S` =
1

4π

∫ π

0
dσ1

∫ 2πt

0
dσ2

(

∂τ

∂σ2

)2

=
β2`2

8πt
,

so that we recover (4.25) as a semiclassical sum
∑

` exp(−S`). A further

change of variables s = 1/t, represents the modular transformation to the

closed-string channel, in which we see a tree-level cylinder diagram of closed

strings with modular parameter s. The closed strings carry now winding

modes around the thermal circle. Detailed inspection of these manipula-

tions in the complete expression above shows that all powers of s can be

exponentiated in the proper time integral so that one finds [31]

log Z(β)op ∼
∫ ∞

0
dsTrcl

∑

`

exp
[

−π

2
s

(

−∇2 + M2
` (β)

)

]

, (4.26)

which has the form of a proper-time representation of a propagator, just like

(4.22). The trace Trcl runs now over the whole tower of closed-string states.

The crucial point is the emergence of effective mass terms proportional to

β2, i.e. we have

M2
` =

β2`2

4π2
+ . . . ,

which can be interpreted as winding modes of closed strings on S1
β . The

lightest of these winding modes, corresponding to ` = ±1, can be assem-

bled into a complex scalar field χ. Now, since the thermal circle breaks

supersymmetry, the spectrum of the operator M 2
` in these winding sectors

is not guaranteed to be positive definite, but has actually a negative lowest

eigenvalue −|M0|2. Defining βs = 2π|M0| we have an effective mass

m2
eff(β) =

β2 − β2
s

4π2
,

as required for the thermal scalar. Hence, we see that the stringy origin of the

thermal scalar is in the thermal winding modes of the closed-string sector.

The critical behavior arises because this thermal scalar becomes massless at

β = βs.

4.2. Is the thermal scalar “physical”?

The parametrization of long-string critical behavior in terms of an ef-

fective thermal scalar poses the question of the physical interpretation of

these degrees of freedom. In the path-integral picture they arise naturally
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as closed-string winding modes around the thermal circle. However, the

Hamiltonian interpretation of these modes is not immediate, and therefore

its physical status remains somewhat unclear.

In open-string sectors modular covariance (open-closed string duality)

provides an answer to the previous question. The closed-string winding

modes in the closed-string channel are dual under Poisson resummation

of the ordinary momentum modes of open strings in the crossed channel.

Hence, the physical Hamiltonian only has open-string modes and no states

of the field χ are visible among the physical open-string spectrum.

On the other hand, the answer is less obvious in the closed-string sector.

The one-loop diagram of closed strings has two independent winding modes,

one for each of the cycles of the worldsheet torus. One set of winding modes

can be interpreted as a Poisson dual of standard momentum modes on S1
β.

However, another set of winding modes remains and we still need to find a

Hamiltonian interpretation for those. In such a Hamiltonian interpretation,

they would appear as “timelike” winding modes, a rather mysterious notion.

The resolution of this paradox is again related to modular invariance.

Following the “empirical” reasoning of the previous section, we start from

the physical Hamiltonian picture, i.e. we consider the thermal free energy in

the ideal gas approximation as given by the sum of free energies for all field

degrees of freedom in the spectrum:

log Z(β) = log TrSFT e−β HSFT = −
∑

f

Tr(f) log
(

1 − e−β ωf

)

, (4.27)

where Tr(f) runs over the momentum and spin degrees of freedom of each

field in the string spectrum. Standard manipulations yield an expression in

terms of determinants on the Euclidean manifold Xβ = S1
β ×Rd,

log Z(β) = − 1
2

∑

f

Tr log
[

−∂2 + M2
f

]

Xβ
, (4.28)

where now the trace runs over the spectrum of the kinetic operator on the

Euclidean manifold Xβ. In a Schwinger representation,

log Z(β) = 1
2

∫ ∞

0

dτ2

τ2

∑

f

Tr exp
[

−π

2
τ2 (−∂2 + M2

f )Xβ

]

. (4.29)

Now we notice that 1
2 (−∂2 +M2) = L0 + L̄0, with L0 the chiral world-sheet

Hamiltonian of the string theory. Introducing a level-matching constraint

δ(L0 ,L̄0) =

∫ 1/2

−1/2
dτ1 e2πiτ1 (L0−L̄0) ,
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we can write a formal expression

log Z(β) = 1
2

∫

S

d2τ

τ2
2

τ2 TrCFT q L0 q̄ L̄0 , (4.30)

where q = e2πiτ , with τ = τ1 + iτ2. Equation (4.30) resembles the string

world-sheet partition function, except for the fact that the integration do-

main S : τ > 0, − 1
2 < τ1 < 1

2 does not coincide with the fundamental

domain of the modular group F : |τ | > 1, − 1
2 < τ1 < 1

2 . In addition, the

trace only includes physical modes on Rd that were already traced over in

the statistical sums (4.28) and (4.29), i.e., there are momentum modes on

S1
β, but no winding modes. In particular, this implies that the integrand

cannot be modular invariant.

It turns out that these two facts essentially cancel one another. One can

trade the summation over thermal winding modes by an extension of the

integration region from the fundamental domain F to the strip S (c.f. [32]).

The basic identity is

∑

(`,`′)6=(0,0)

∫

F

d2τ

τ2
2

f(τ, τ̄) e
− β

4πτ2
|`′+τ`|2

=
∑

6̀=0

∫

S

d2τ2

τ2
2

f(τ, τ̄) e
− β

4πτ2
`2

,

(4.31)

where f(τ, τ̄) is modular invariant. The restriction in the winding sums in

(4.31) ensures that the vacuum energy, or β → ∞ limit, is subtracted, a

necessary condition for the theorem to hold. Equivalently, we can use the

normal-ordered HSFT in (4.27), although in the case of superstrings this

term vanishes from the outset. Thus, modular invariant expressions always

have two sets of thermal winding modes, but “Hamiltonian” representations

automatically unwrap one of these sets. The remaining one can be dualized

into standard momentum modes on S1
β, as in the previous subsection.

There are some subtleties that we have chosen to hide. For example, the

identity (4.31) must be used for β > βs, due to convergence problems that

can affect the analytic structure of log Z(β) [33].

The conclusion is that the thermal scalar does not have a strict physical

interpretation in terms of the particle degrees of freedom of the original

thermal gas. Rather, it is a formal device which reconciles the subtleties of

stringy modular invariance with the rules of effective field theory.

5. Tachyon dynamics and the Hagedorn transition

We have seen that the canonical formalism just below the Hagedorn tem-

perature, 0 < β − βs � 1, involves an effective light field whose quanta are
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topological winding modes that lack a direct Hamiltonian interpretation. We

can write an effective action for static and spatial-dependent configurations,

in the spirit of Landau’s mean-field formalism,

S[χ]eff =
β

2g2
s

∫

Rd

(

|∇χ|2 + Veff(χ∗χ) + . . .
)

, (5.32)

where

Veff(χ∗χ) =
β2 − β2

s

4π2
|χ|2 + interactions (5.33)

and the dots stand for contributions of other light degrees of freedom, such

as the ordinary massless modes of the string spectrum. A potential has been

included to account for interaction corrections. Since the critical behavior

is characterized by χ becoming massless at β = βs, the “post-Hagedorn”

regime is formally described by a tachyonic χ field. In this case, it is natural

to associate the dynamics of “tachyon condensation” with a phase transition

at the Hagedorn temperature. This “dynamics” remains somewhat formal,

since the interpretation of the effective action (5.32) as a thermal effec-

tive potential is only valid for static configurations. Therefore, the “rolling

down” along the tachyonic potential is not to be seen as a process in real

time. Rather, we just compare the free energies of static configurations with

different values of |χ|2, averaged over Rd. These static backgrounds, being

off-shell, can be seen as building a renormalization-group flow on the string

world-sheet.

It turns out that the picture of a “tachyon roll” down an unstable po-

tential is separated from the perturbative phase 〈|χ|2〉 = 0 by a first-order

phase transition. The authors of [34] noticed that the interaction of certain

gravitational moduli with the thermal scalar induce an unstable quartic term

in the effective potential. The full low-energy effective action on Rd includes

the ten-dimensional dilaton and graviton fields coming from the dimensional

reduction on S1

Seff ∼ β

g2
s

∫

Rd

e−2φ
√

|g|
[

−R − 4(∂φ)2 + |∂χ|2 +
β2gττ − β2

s

4π2
|χ|2 + . . .

]

(5.34)

where the term gττβ
2 represents the effect of fluctuations in the proper

length of the thermal circle (see figure 12). Since this is interpreted as a

local inverse temperature, (5.34) incorporates the effect of local temperature

fluctuations in the mean-field approximation.

Writing gττ = 1 + σ and expanding the σ dependence in a weak-field

approximation, we have a tree-level coupling of the form σ χ∗ χ which is not
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S
β

1

R
d

τ

Figure 12. The substitution β2 → β2gττ has the effect of including local temperature fluctuations

on Xβ .

suppressed by derivatives or by powers of β − βs. This coupling is real, so

that integrating out the σ field at tree level gives a negative-definite quartic

coupling for χ of the form

Veff ∼ − β

2g2
s

〈

χ∗χ
∣

∣

∣

1

−∇2

∣

∣

∣
χ∗χ

〉

. (5.35)

This term is non-local because the field σ is massless. It is infrared diver-

gent when evaluated on constant χ configurations. However, a finite-volume

regularization with a gap in the spectrum of ∇2 renders it well-defined. The

resulting picture is represented in figure 13. The effective potential describes

a first-order phase transition occurring slightly below the Hagedorn temper-

ature, when the thermal scalar perturbative vacuum 〈|χ|2〉 = 0 is still locally

stable.

V

χ  * χ< >

eff

Figure 13. The qualitative form of the thermal scalar potential for β > βs.

5.1. AdS regularization and Euclidean black holes

The Atick–Witten transition proceeds by nucleation of a domain with

〈|χ|2〉 6= 0, followed by a “roll” down the effective potential, a classical pro-
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cess that could perhaps be described in terms of world-sheet renormalization-

group flows, in analogy with similar processes in the decay of D-branes [35]

and tachyonic orbifold singularities [36].

The particular endpoint of the condensation process depends on the

mechanism of stabilization of the potential (5.35). This should be related

to the details of the finite-volume regularization, but we can expect in any

case that the means to resolve this problem remains beyond the weak-field

methods that lead to (5.35). The related question of what physical inter-

pretation should we assign to the thermal scalar condensate 〈|χ|2〉 becomes

especially acute in view of the considerations of the previous subsection on

the “formal” nature of the thermal winding modes.

In order to answer these questions, even at the heuristic level, we must

go back to the physical picture of section 1. The main lessons of the micro-

canonical approach are the following:

(i) The naive infinite volume thermodynamical limit is inconsistent with

the instabilities of gravity. Even the mild finite-size effects of free long strings

are important given the marginal instability of the Hagedorn regime. This

means that the mean-field approximation based on the thermal scalar effec-

tive action on Xβ = S1
β × Rd must be supplemented with an appropriate

infrared cutoff.

(ii) Using AdS spaces as an infrared regulator, we have non-perturbative

physical intuition in terms of the thermodynamics of the dual CFT, specified

at short distances by a gauge field theory. The Hagedorn gas of long strings

becomes a metastable superheated state.

(iii) The microcanonical picture of the first order phase transition in AdS-

regularized spaces involves black hole nucleation, with latent heat of order

1/g2
s (c.f. figure 4).

Let us consider then the AdS regularization of a ten-dimensional string

gas in the standard AdS5 × S5 background of type IIB string theory. The

metric takes the form

ds2 = −
(

1 +
r2

R2

)

dt2 +

(

1 +
r2

R2

)−1

dr2 + r2 dΩ2
3 + R2 dΩ2

5 , (5.36)

with R4 = gsN in string units and N the quantum of RR flux on S5. At

a non-perturbative level, this system is defined by the quantum mechanics

of SU(N) super Yang–Mills theory on a three-sphere of radius R and with

Yang–Mills coupling g2 = gs. For gsN � 1, the metric is approximately flat

on scales small compared to the radius of curvature R. A thermal ensemble
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defined with respect to the time variable in (5.36) has local temperature

T (r) =
T (0)

√

1 + r2/R2
.

Hence, on scales `s � r � R we have a macroscopic quasi-flat region with

gas at temperature T ≈ T (0). The gravitational redshift freezes the tem-

perature on scales larger than the radius of curvature, and we see that AdS

works like a finite box of size R as far as thermodynamics is concerned. The

Euclidean manifold describing this ensemble is Xβ, obtained from (5.36) by

the standard Wick rotation t → iτ , followed by the periodic identification

τ ≡ τ + β, with β = 1/T (0). This manifold looks locally like S1
β × R9 on

scales r � R. In particular, if β ≈ βs, we have a regularized version of the

standard thermal manifold with light thermal winding modes localized on

the region r < R (thermal winding modes supported at r � R have mass

proportional to β(r) = β
√

1 + r2/R2 � βs).

The reasoning of Ref. [34] can be applied to type IIB strings on Xβ

and one expects a first-order phase transition towards a background with

non-vanishing values of the thermal scalar 〈|χ|2〉 6= 0. Now, in order to

understand the geometrical interpretation of this condensation process, we

can simply look at the endpoint of the decay in the dual CFT. This should

be the thermal equilibrium state at the corresponding temperature. Since we

have T ∼ Ts � 1/R in the decay of the superheated “Hagedorn” states, the

endpoint is the plasma phase of the CFT with entropy of O(N 2) = O(g−2
s ).

In the gravity description, this is the large AdS black hole at temperature

T � 1/R [20].

The Euclidean manifold corresponding to this endpoint of the decay is

the Euclidean section of the AdS black hole with metric

ds2 =

(

1 +
r2

R2
− M

Cr2

)

dτ2 +

(

1 +
r2

R2
− M

Cr2

)−1

dr2 + r2 dΩ2
3 + R2 dΩ2

5 ,

(5.37)

where C = 3Vol(S3)/16πGN and M is the mass

M = C

(

r4
+

R2
+ r2

+

)

.

The horizon radius r+ is that of the larger of the solutions of the following

equation

β =
2πR2r+

2r2
+ + R2

,
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the smaller solution r− corresponds to a smaller black hole with negative

specific heat. In the regime of interest for us, β � R, we have r+ ≈ πR2/β.

X
β

bh
X

X ( r
c

)

r = 0

r = r
c

r = r
+

Figure 14. A cartoon of the flow between the original thermal AdS space, with condensing winding

modes in the cylinder region r � R, and the final Euclidean AdS black hole, which does not support

winding modes. A set of interpolating metrics can be interpreted physically as off-shell black holes

(c.f. [20,21]).

The manifold Xbh has topology R2 × S3 × S5, which can be interpreted

as a “capping” of Xβ that removes the flat cylinder region r � R. This

capping can be seen as a progressive effect if we consider manifolds X(rc)

that interpolate between Xβ and Xbh. One such set of manifolds is given by

the Euclidean rotations of off-shell black holes, each of which has a metric of

the form (5.37), but with a horizon parameter rc unrelated to the Euclidean

time period β. In this case, there is a conical singularity at r = rc that should

be smoothed out by α′ corrections in the string theory. The geometrical

picture (figure 14) is very similar to that of non-supersymmetric orbifold
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Ι ( r )

r
r

−
r

+
c

c

Figure 15. The Euclidean action of off-shell black holes with varying mass and fixed AdS tem-

perature.

decay [36, 37].

The Euclidean action of these off-shell black holes reads

I(rc) = β M(rc) − S(rc) = C

[

β r4
c

R2
+ β r2

c −
4 r3

c

3

]

(5.38)

and is depicted in figure 15. Its shape is very similar to that of the ther-

mal scalar potential depicted in figure 13. In fact, we propose that the

description in terms of the thermal scalar condensate matches, in the sense

of a string/black-hole correspondence principle, the flow of capped manifolds

X(rc) with the value of the condensate 〈|χ|2〉 roughly identified with the ex-

tension of the capping, rc. According to this hypothesis, the function (5.38)

would be roughly related to Veff of Eq. (5.35) by

I(rc) ∼ β R9 Veff .

This also suggests that the first-order transition of Ref. [34] is related to the

semiclassical black hole nucleation process studied in [38].

One consequence of this line of argument is that, upon removing the

infrared regulator in the original Xβ manifold, i.e. by sending R → ∞ at

fixed β and fixed `s, the stable endpoint manifold Xbh recedes to r+ → ∞
and becomes locally flat. Hence, in some sense the endpoint of the Hagedorn

decay of a hot ten-dimensional space is a Euclidean, supersymmetric R10
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background (c.f. [20]).

Finally, it was proposed [20,21] that the excluded volume in the quasi-flat

region, Voleff ∼ R9 − r9
c can be used as a measure of the number of the de-

pleted degrees of freedom, providing a concept of “local central charge” that

characterizes the irreversibility of the renormalization-group flow, analogous

to similar concepts in the theory of boundary flows [39].

6. Topology change and winding modes

We have argued that the χ condensate is not to be interpreted in terms of

“particles” in the vacuum, but rather as an order parameter for a topology-

change process, in which part of the spacetime is removed by a “bubble of

nothing” similar to that described in [40] (see figure 16). This relation be-

tween tachyon condensation and dynamics of topology change has appeared

in other, more controlled contexts, such as the physics of D-brane annihi-

lation (figure 17) [41]. The common phenomenon is that a topologically-

supported string becomes tachyonic. Up to identifications, the string is

embedded in the target space manifold as an interval, i.e. locally a copy

of R. The condensation can be envisaged as a process by which the string

“fattens up” into a cylinder by the transition

R → Sd−1 ×R , (6.39)

in such a way that the interior of Sd−1 becomes an empty hole in spacetime.

Hence, we have a wormhole that grows and “eats up” the original manifold

until infrared effects stabilize it (such as negative curvature of AdS in our

case). Locally in Euclidean spacetime, the flop has the form

Rd × S1 −→ Sd−1 ×R2 . (6.40)

In this topological jump, a non-contractible S1 that supported the tachyonic

winding modes becomes contractible, so that the winding modes can be

unwrapped in the new geometry. This is entirely similar to the behavior of

open strings in the reconnection process of D-brane annihilation, including

the “fattening” process in (6.39) (c.f. figures 16 and 17).

6.1. A toy model on supersymmetric cycles

Our geometrical interpretation of the Hagedorn transition is mostly based

on physical considerations in the light of the AdS/CFT correspondence. It

would be interesting to obtain a more explicit derivation of the equivalence

between thermal winding condensation and the topological jump (6.40). In
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R d

S 1

S
d−1

Figure 16. The bottom picture is a local rendering of the basic flop responsible for the Hagedorn

transition: R
d × S

1 −→ S
d−1 × R

2, that represents the condensation of many thermal winding

strings (top picture). In these drawings, opposite points in the top and bottom planes are identified,

together with points reflected about the plane of symmetry of the throat with Sd−1 sections.

this respect, the maximal violation of supersymmetry by the high temper-

atures is of no particular help (see, however [42]). In addition, the winding

modes are massless at β = βs ∼ `s, far from the boundaries of the moduli

space of S1 compactifications. This means that T-duality on the thermal

circle S1
β (c.f. [43]) is of limited use in elucidating the dynamics involved,

since this dynamics occurs close to the self-dual point. A related system in

which these difficulties can be partially tamed is defined by a variation of

the previous AdS/CFT background [4, 44, 45] (see also [46]).

Consider the type IIB D3-brane background, with the AdS factor in

Poincaré coordinates and large r → ∞ asymptotics

ds2 −→ r2

R2

(

dτ2 + dx2 + d~y 2
)

+
R2

r2
dr2 + R2 dΩ2

5 , (6.41)
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Figure 17. In D-brane annihilation, the condensation of tachyonic strings stretching between the

brane and the antibrane can be depicted semiclassically as the reconnection of both Dp-branes. The

reconnection generates a throat that is unstable to growth; this throat is nothing but the original

stretched string in the “BIon” picture of Ref. [41], in which the string is locally homeomorphic to

R× Sp−1.

where τ is compactified with length β, with supersymmetry-breaking spin

structure, whereas x is compactified with length L, with supersymmetry-

preserving spin structure. The coordinates ~y span non-compact R2. The

dominant background with these boundary conditions is the black D3-brane

in the near-horizon limit, which differs from (6.41) by the substitutions

dτ2 −→ h(r) dτ 2 , dr2 −→ dr2/h(r) ,

with h(r) = 1 − (r0/r)
4 and r0 = πR2/β. This background has topology

R2×R2×S1×S5, the radial coordinate is restricted to r ≥ r0, and it supports

winding modes on the circle parametrized by x. In the limit β → ∞, or

r0 → 0, the winding modes on circles at small r become massless, and we

may ask the question of the what effective dynamics resolves this singularity.

In this case, the dynamics of light winding modes at r → 0 can be trans-

formed into a more intuitive large-volume effect by standard T-duality on

the circles at fixed r. Hence, at r ≈ rs = R/L the metric is matched to the

T-dual

ds2
smeared =

r2

R2

(

h(r) dτ 2 + d~y 2
)

+
R2

r2

(

dr2

h(r)
+ dx̃ 2

)

+ R2 dΩ2
5 . (6.42)

Now x̃ is identified with period 2π/L and the proper size of the S1 fibers

grows as r → 0. The T-duality transformation allows us to use the super-

gravity of standard momentum modes in the T-dual background (6.42) to

elucidate the dynamics of light winding modes in the original metric. This

T-dual metric is exactly the near-horizon limit of the so-called “smeared”
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D2-brane solution. This is the metric generated by a D2-brane, averaged

over the x̃ coordinate. We can also consider the localized D2-brane solution,

with the same asymptotic conditions, which breaks translational invariance

in the x̃ direction and has topology R2 ×R2×S6. Explicit inspection shows

that the Euclidean action of the localized solution dominates at sufficiently

small r0, leading to a first-order phase transition, since both backgrounds

are locally stable at the transition point (they both have positive specific

heat with respect to the temperature 1/β).

Thus, we have a transition on Gregory–Laflamme type [47], between lo-

cally stable backgrounds, with a basic topological jump given by the flop

S1 × S5 −→ S6 .

We see that the non-contractible cycle supporting the original winding modes

again disappears and is replaced by a contractible geometry, along the lines of

our general scenario in the last section. We can think of the transition as the

result of winding-mode condensation, because the breaking of translational

invariance in x̃ is equivalent to the condensation of momentum modes in

the background (6.42), which are exactly the winding modes of the original

vanishing cycle.

The interpretation of these geometrical transitions in the dual gauge the-

ory is interesting. They are large-N phase transitions that characterize the

effect of a finite-size toroidal compactification in the thermodynamics of the

gauge theory. At weak coupling, this is just the change in the scaling of

the entropy from S ∼ T 3 to S ∼ T 2 as the temperature drops below the

threshold TL ∼ 1/L (see figure 18).

7. Conclusion

We have discussed some, but by no means all, systems, which have a

Hagedorn ridge. What was common to all the systems discussed was that

for them the ridge is just a transient one passes as one increases their energy.

We have described various components which each play in their turn a role in

defining the thermodynamical properties of strings. In particular a variety

of black holes and black strings turn out to best represent the degrees of

freedom at very high energy.

We have discussed both broad and detailed features of the Hagedorn

ridge. Ian’s work and many following ones imagine that spacetime melts

away as one reaches the end point of the ridge. The separation into per-

turbative world-sheet physics (i.e. a string picture) and target space (i.e.

a geometry in which the strings propagate) becomes questionable. While
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T

g
s

N

1

1 / L

YM
4

YM
3

D2   localized

D2

D3

smeared

Figure 18. Phase diagram of the D3-brane theory as a function of the ’t Hooft coupling gsN and

the temperature, with a compactified direction of length L (c.f. [4]). At weak coupling gsN < 1 we

have the Yang–Mills gas descriptions in four or three dimensions, with the standard threshold for

finite size effects at LT ∼ 1. At strong coupling, gsN > 1 we have the AdS dual description given

by the black D3-brane metric at high temperatures. At lower temperatures we have a smooth

transition to the smeared black D2-brane metric and then a topological transition to the localized

black D2-brane metric. The dotted lines denote correspondence lines between perturbative Yang–

Mills descriptions and supergravity descriptions, whereas full lines denote thresholds for finite-

size effects on the thermodynamic functions. The localization transition is of first order in the

supergravity approximation. The thermodynamic functions calculated in the classical gravity

approximation do not change across the T-duality transition (dashed line). The supergravity

backgrounds to the left of the T-duality transition are dominated by modes that are interpreted as

light winding modes form the point of view of the original D3-brane metric. More general phase

diagrams, including effects of large-N nonlinearities appear in [48].

these are perhaps yet to be uncovered phases of gravity, their properties, as

consistent world-sheet theories possessing a total vanishing Virasoro central

charge, are yet to be elaborated on.

In this essay we brought up a milder form of the disappearance as well

as topological transmutation of chunks of spacetime but not all of it. The

nucleation of black holes has become important at the edge of the Hagedorn

ridge. Portions of space-time have been expelled as these black holes stabi-

lize, they cause a topology change and in some cases even lead all the way

to flat ten dimensional supersymmetric space-time. There may yet be vistas

to be discovered and bumps to be negotiated as one traverses the ridge. We

miss Ian’s guidance for these future ventures.
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