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Quantum fluctuations generate in three-dimensional gauge theories not only radiative

corrections to the Chern–Simons coupling but also non-analytic terms in the effective

action. We review the role of those terms in gauge theories with massless fermions and

Chern–Simons theories. The explicit form of non-analytic terms turns out to be depen-

dent on the regularization scheme and in consequence the very existence of phenomena

like parity and framing anomalies becomes regularization dependent. In particular we

find regularization regimes where both anomalies are absent. Due to the presence of

non-analytic terms the effective action becomes not only discontinuous but also singular

for some background gauge fields which include sphalerons. The appearance of these

types of singularity is linked to the existence of nodal configurations in physical states

and tunneling suppression at some classical field configurations. In the topological field

theory the number of physical states may also become regularization dependent. An-

other consequence of the peculiar behavior of three-dimensional theories under parity

odd regularizations is the existence of a simple mechanism of generation of a mass gap

in pure Yang–Mills theory by a suitable choice of regularization scheme. The generic

value of this mass does agree with the values obtained in Hamiltonian and numerical

analysis. Finally, the existence of different regularization regimes unveils the difficulties

of establishing a Zamolodchikov c-theorem for three-dimensional field theories in terms

of the induced gravitational Chern–Simons couplings.

∗ I am one of the very fortunate persons who had deep scientific and vital resonances with Ian

Kogan. Still under the effect of the tragedy, in June 2003, I promised to Ian and to myself to finish

a joint paper which we had outlined a few weeks before. There is an old Spanish popular aphorism

telling that lo que no puede ser, no puede ser, y además es imposible (what cannot be, cannot

be, and furthermore it is impossible!). Now I better understand the meaning of the tautological

aphorism, without Ian’s resonances I will not be able to accomplish my promise. I am sorry, Ian.
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1. Introduction

In 2+1 dimensions the number of degrees of freedom of massive and massless

relativistic particles is the same. This peculiar behavior permits a smooth

transition from massless to massive regimes in the same theory without

the need for extra fields. In gauge theories this transition can be simply

achieved by the addition of a Chern–Simons term to the ordinary Yang–

Mills action [1]. For the same reasons there is no protection against the

existence of radiative quantum corrections which either generate or suppress

the topological mass.

The special character of the Chern–Simons term and its peculiar transfor-

mation law under large gauge transformations require the quantization of its

coupling constant k ∈ ZZ when the gauge group is compact. The constraint

arises in the covariant formalism as a consistency condition for the defini-

tion of the Euclidean functional integral due to the special transformation

properties of the Chern–Simons action under large gauge transformations

[1]. In the canonical formalism it appears as a necessary condition for the

integration of Gauss law on the physical states [2][3]. Both interpretations

are based on non-infinitesimal symmetries and therefore the quantization

condition cannot be inferred from perturbative arguments. However, un-

expectedly the perturbative contributions of quantum fluctuations do not

seem to change the integer nature of the Chern–Simons coupling constant in

most of the standard renormalization schemes [4]–[10]. From a pure quan-

tum field theory point of view this behavior is bizarre because in the absence

of perturbative symmetry constraints there must always exist regularization

schemes where the effective values of the coupling constants of marginal local

terms are arbitrary. Indeed, such regularization schemes exist but require a

fine tuning of the leading ultraviolet behavior of parity even and parity odd

terms of regulators [10].

The perturbative quantum corrections are not the only contributions of

quantum fluctuations. There exist additional contributions to the effective

gauge action which cannot be obtained in perturbation theory because they

are not analytic in the gauge fields. The presence of such non-analytic con-

tributions in one-loop approximation is more evident in the case of regu-

larizations which do not preserve the integer value character of the effec-

tive Chern–Simons coupling. They appear as necessary to compensate the
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anomalous transformation law of Chern–Simons terms under large gauge

transformations. The role of those terms is crucial to understand the finite

temperature behavior of gauge theories in 2 + 1 dimensions [13]–[16]. They

are similar to the well known non-analytic terms which appear in the η–

invariant of the spectral asymmetry [11] of the operator ∗dA + dA∗ induced

by the changes of signs in the spectral flow [12].

The study of non-analytic terms of the effective action and their physical

implications is the main goal of our analysis. The discontinuities associ-

ated with these terms yield singularities which in the case of Chern–Simons

theory seem to be mere artifacts of perturbation theory. The origin of the

singularities is the same as in ordinary gauge theories in the presence of

massless quarks in the fundamental representation. In this case the singu-

larities do have a simple physical origin, the existence of zero-modes of the

Dirac operator.

The main result of this paper is the proof that this kind of non-analyticity

is regularization dependent which provides a further support to the claim

that different renormalization methods define in fact different physical the-

ories. The perturbative corrections to the Chern–Simons coupling constant

can also be different and depend on the regularization method but those dif-

ferences can be compensated in general by the choice of different renormaliza-

tion schemes. However, the presence of different non-analytic contributions

cannot be changed by the choice of appropriate renormalization schemes.

In some way this provides a physical meaning to the non-perturbative con-

straint that requires the coupling of Chern–Simons counterterms to take an

integer value. The meaning of the restriction is that the analytic behavior

of the effective partition function cannot be changed by the renormalization

scheme and provides a novel physical role to the choice of regularization

method.

The parity anomaly and the framing anomaly have a common origin in

the existence of odd quantum effects. Because of their dependence on the

regularization method it is possible, thus, to find some regularization regimes

where both anomalies are absent.

Finally, the regularization dependence of these phenomena is also re-

sponsible for the failure of simple attempts to define a Zamolodchikov’s c-

function in terms of gravitational Chern–Simons terms in order to generalize

Zamolodchikov’s c-theorem to three-dimensional theories.
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2. Chern–Simons theory

In the limit of infinite topological mass the gauge theory reduces to a Chern–

Simons topological theory [17] governed by the action

k SCS(A) =
k

4π

∫

M
Tr

(
A ∧ dA +

2

3
A ∧ A ∧ A

)
, k ∈ Z ,

where the coupling constant k must be an integer for compact groups to

have a consistent quantization.a Let us consider SU(N) gauge field theories

for simplicity.

The theory is also super-renormalizable in this topological limit. In the

Hamiltonian formalism divergences appear in the normalization of physical

states and the hermitian product of the Hilbert space [19]. The removal

of these divergences generates a shift in the renormalized Chern–Simons

coupling constant kR = k + N . In the covariant formalism the propagator

is very singular because of the large gauge symmetry of the theory caused

by its topological character. In perturbation theory one way of improving

the UV behavior of the propagator without breaking gauge invariance is by

introducing higher derivative regulating terms into the classical action, e.g.

SΛ(A) = SCS(A) + S+
R (A) ,

S+
R (A) =

λ+

Λ

∫

M
TrFµν(A)

(
I +

∆A

Λ2

)m

Fµν(A) ,

where ∆A = d∗AdA+dAd∗A is the covariant laplacian. For large enough values

of the exponent m there are no UV superficial divergences in diagrams with

more than one loop. However, one-loop divergences need an extra Pauli-

Villars regularization [20]. The resulting one-loop effective action has no

divergences even after the removal of the ultraviolet regulator Λ → ∞. The

renormalized perturbative effective action is of the form

Γpert(AR) = ΓR(AR) + iΓI(A
R) ,

ΓI(A
R) = kR SCS(A

R) , (2.1)

with kR = k + N . The first non-trivial contribution to ΓR(AR) arises from

the four point function [21].

a A generalization for non-compact gauge groups is straightforward [18].
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The Hamiltonian approach yields similar results, but this coincidence is

not based on general symmetry principles. Thus, it should be possible to

find a regularization where the renormalization of k is not a simple shift of

k by N units. Indeed, there exist other gauge invariant regularizations, e.g.

[10],

SΛ(A) = SCS(A) + S−

R (A) ,

S−

R (A) =
λ−

Λ2

∫

M
Tr εασµ Fαν(A)

(
I +

∆A

Λ2

)n

Dσ
A

(
I +

∆A

Λ2

)n

Fµν(A) ,

which after removing one-loop divergences yield an effective action like (2.1),

but without radiative contributions to the effective value of the coupling

constant kR = k. Even more general regularizations can be conceived, e.g.

SΛ(A) = SCS(A) + S+
R (A) + S−

R (A) .

In that case the result b depends on the relative weights λ− > 0 and λ+ > 0

of S+
R and S−

R

kR =





k + N if m > 2n + 1/2 ,

k + 2N
π arctan λ+

λ−

if m = 2n + 1/2 ,

k if m < 2n + 1/2 .

In these very general regularization schemes the radiative corrections to

the coupling constant present three different regimes which depend on the

interplay between the ultraviolet behaviors of parity even terms S+
R of the

regularized action and the parity odd terms of S−

R .

In the first regime the leading ultraviolet terms are parity even. The ef-

fective Chern–Simons coupling constant gets shifted by N ( k → k+N), due

to one-loop gluonic radiative corrections. The third regime is characterized

by an ultraviolet behavior dominated by parity odd terms and the absence

of radiative corrections to k. In the transition regime parity even and parity

odd terms have the same ultraviolet behavior and the quantum corrections

to k can take any real value which depends on the relative coefficients of the

leading terms of parity even and parity odd interactions.

b If λ− < 0 the results are slightly different [10].
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The phenomenon can be pictorially understood by looking at the way the

shift of kR is generated. In fact,

kR = k +
2N

π

∫
∞

0

dΦ

1 + Φ2
= k +

N

π
arctan Φ(∞)

and the behavior of

Φ =
λ+p(1 + p2)m

1 + λ−p2(1 + p2)2n

is dictated by the form of SΛ(A).

m = 2n + 1/2 

m > 2n + 1/2 

m < 2n + 1/2 

(p) φ

λ  / λ 

0
p0 p 

+ −

Figure 1. Behavior of the function Φ for different regularization regimes.

The actual value of the effective coupling constant can always be modified

by a different choice of renormalization scheme because the Chern–Simons

term is local and can be added as a counterterm. However, as pointed out

in the previous section, the behavior of the Chern–Simons term under large

gauge transformations requires that the bare coupling constant k be an inte-

ger number otherwise the quantum theory will be inconsistent, e.g. the func-

tional integral will be ill defined. Such a constraint is a pure non-perturbative

requirement, because large gauge transformations map small fields into large

gauge fields and, therefore, they are genuine non-perturbative symmetries.

In consequence, although in perturbation theory any local BRST invariant

counterterm is valid, only counterterms which preserve the non-perturbative



September 11, 2004 11:56 WSPC/Trim Size: 9.75in x 6.5in for Proceedings asorey

566 M. Asorey, D. Garcia-Alvarez and J.L. López

consistency condition can be added to the bare action. The condition im-

poses a very stringent constraint on counterterms which have to preserve

the integer valued character of the bare coupling constant k. In particu-

lar, if the effective value of kR is not an integer, one cannot reduce the

physical behavior of the system to the standard integer valued case by a

consistent renormalization. Thus, the first and third regularization schemes

are generic and equivalent from the physical point of view but the transition

regime m = 2n + 1
2 cannot be reduced to any of the other two regimes by

the choice of a different renormalization scheme. In fact, the regime defines

a new and different theory.

In the generic case there is a correspondence of Chern–Simons states and

the primary fields of rational conformal field theories [17]. In the transition

regime the corresponding two-dimensional theory will be non-rational. In

this sense, the transition regularization really defines a new type of theory.

3. Parity Anomaly

The existence of different regimes in the regularization of Chern–Simons

theory opens new possibilities for the analysis of the parity anomaly.

This insight is further supported by the existence of a straightforward

connection between one-loop corrections of Chern–Simons theory and the

determinant of a massless fermion in the adjoint representation [22]. Indeed,

the second variation of the Chern–Simons term and the corresponding ghost

terms in a covariant Landau gauge yields an operator ∆A which is equivalent

to the square of the Dirac operator (D/
ad

A )2 for adjoint fermions,

∆A =

(
∗dA dA

d∗A 0

)
≈ (D/

ad

A )2 . (3.1)

Therefore,

detD/
ad

A = e−
1
2
Γ[1](A).

The effect of the existence of different regularization regimes is more intrigu-

ing because gauge invariance seems to be broken in the transition regime.
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Indeed, three different regimes can be generated by regularizing the Dirac

operator in the following way,

D/Λ
A = D/A + λ+

D/2
A

Λ

(
I +

D/2
A

Λ2

)m

+ λ−

D/3
A

Λ2

(
I +

D/2
A

Λ2

)2n

,

with λ± > 0 and the corresponding Pauli-Villars regulators. In that case

the effective Chern–Simons coupling behaves in a similar way to the case of

pure Chern–Simons theory,

kR =





N if m > 2n + 1
2 ,

2N
π arctan λ+

λ−

if m = 2n + 1
2 ,

0 if m < 2n + 1
2 .

If the fermions are in the fundamental representation of SU(N) the result is

analogous,

kR =





1
2 if m > 2n + 1

2 ,

1
π arctan λ+

λ−

if m = 2n + 1
2 ,

0 if m < 2n + 1
2 .

Although the Pauli-Villars regularization method used here is completely

gauge invariant also under large gauge transformation, gauge invariance un-

der those transformations seems to be broken in the first two cases because

the effective Chern–Simons term is not invariant. The puzzle is solved by

noticing that the analytic perturbative radiative corrections do not exhaust

all quantum corrections to the effective action. In fact, gauge invariance

requires that the full radiative corrections must have a non-analytic coun-

terpart which permits the recovery of full gauge invariance. Indeed,

Γ(AR) = ΓR(AR) + iΓI(A
R) with ΓI(A) = kR SCS(A) + h(A) ,

where h(A) has a non-analytic dependence on A. However, in that case

parity symmetry is not preserved at the quantum level because SCS(A) is

not invariant under parity symmetry whereas as it will be shown later h(A)

is parity invariant. This fact bears on the origin of the parity anomaly of

three-dimensional massless fermions.

However, what is really intriguing is that in the third regime, m < 2n +

1/2, there is no parity anomaly because kR = 0 and the theory is at the same



September 11, 2004 11:56 WSPC/Trim Size: 9.75in x 6.5in for Proceedings asorey

568 M. Asorey, D. Garcia-Alvarez and J.L. López

time invariant under global gauge transformations. This means that in fact,

contrary to the common wisdom, the parity anomaly is not an unavoidable

physical phenomena in a gauge invariant framework. A similar result is

obtained with standard regularizations and infinite number of Pauli-Villars

fields or lattice regularizations [23][24]. The results are reminiscent of those

obtained by Slavnov [25] for the cancellation of the SU(2) global Witten’s

anomaly in four-dimensional theories with chiral fermions in the fundamental

representation [26]. The main difference between both results is that the

Slavnov method requires an infinite number of Pauli-Villars regulating fields

to cancel the anomaly in a gauge invariant way, whereas in this case a very

simple UV modification of fermionic interactions yields a similar effect with

a finite number of Pauli-Villars fields.

In the transition regime parity is also broken but the coefficients of the

terms responsible for this phenomenon are different from those of the case

where m > 2n + 1/2. The ambiguity in the appearance or not of the parity

anomaly suggests that the effect looks more like a spontaneous symmetry

breaking than a genuine anomaly breaking. Perhaps the phenomenon is

nothing but a simple example of a more general feature on the breaking

mechanism of discrete symmetries in three dimensions.

4. Mass gap in Yang–Mills theory

Indeed, the same phenomenon arises in the analysis of pure Yang–Mills the-

ory

S(A) =
1

2g2

∫

M
Tr|F (A)|2. (4.1)

Using a similar regularization method which includes parity odd regulating

terms and Pauli-Villars fields a Chern–Simons term can be induced in pure

Yang–Mills theories. The infrared behavior is dominated by the Yang–Mills

term (4.1) which is parity even. The leading UV terms might be either a

parity even term of the type S+
R (A) or a parity odd term like S−

R (A). The

general result is

kR =





0 if m > 2n + 1
2 ,

−2N
π arctan λ+

λ−

if m = 2n + 1
2 ,

−N if m < 2n + 1
2 .



September 11, 2004 11:56 WSPC/Trim Size: 9.75in x 6.5in for Proceedings asorey

Non-analyticities in three-dimensional gauge theories 569

In the first case no Chern–Simons coupling is generated whereas in the third

case there is a non-trivial Chern–Simons radiative contribution with a coef-

ficient kR = −N . Both results follow from the behavior of the flow displayed

in Fig. 1. In the third case the non-trivial Chern–Simons term generates a

topological mass

m =
g2N

2π

which is in agreement with the actual value of the mass gap in pure Yang–

Mills theories [27][28]. The generation of a Chern–Simons term in the pure

Yang–Mills theory points out the instability of the renormalization group

flow. Moreover, it points toward a possible mechanism of generation of a

mass gap in pure Yang–Mills theory. In this regime the theory is massive but

parity symmetry is broken unlike the standard regime of Yang–Mills theory.

In the transition regime the theory gets a mass which depends on the

relative weights of the leading parity even and parity odd terms.

5. Non-analytic contributions

The existence of non-analytic contributions to the imaginary part of the

effective action Γ
[1]
I (A) = kR SCS(A) + h(A) of massless fermionic determi-

nants has been known since the discovery of the spectral asymmetry and

index theorem [11][29]. In the present case they are pointed out by the ex-

istence of Chern–Simons terms with non-integer coefficients [30][31]. The

Pauli-Villars regularization method preserves gauge invariance and the only

way to ensure the gauge invariance of the final result is by admitting the

existence of a non-analytic contribution in h(A) which transforms as

h[Ag] = h[A] + 2πkRn (5.1)

under large gauge transformations.

The fermionic determinant D/A is expected to have an analytic depen-

dence on A but the effective action is the logarithm of this determinant. The

existence of a zero in the determinant induces a singularity in the effective

action. Thus, the effective action ΓA diverges for (nodal) gauge configura-

tions with fermionic zero modes. Every zero of an analytic function has

an integer degree, which is measured by the discontinuity of the imaginary
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part of the corresponding logarithm. Thus, if the fermionic determinant

has an analytic dependence on the background gauge field, the only possi-

ble discontinuities at a nodal configuration must be by integer multiples of

π depending on the order of the zeros. For the simple zeros the value of

the discontinuity through any continuous path of gauge fields crossing the

nodal field is π. For double zeros the discontinuity is 2π and so forth. If the

trajectories of fields correspond to paths of three dimensional gauge fields

induced by four-dimensional gauge fields with non-trivial topological charge

q it can be shown from the index theorem that the total discontinuity along

the trajectory will be equal to 2πq [26].

The regularized value of the fermionic determinant in the transition

regime has an imaginary component of the effective action which under-

goes non-integer discontinuities. This fact signals an extra degree of non-

analyticity (no holomorphy) of the determinant in the transition regime and,

thus, indicates that the transition regime is radically different from the other

regimes. It has a completely different new physical behavior which in any

case cannot be interpreted in pure analytic terms.

Moreover, because of the parity symmetry of the Dirac operator, if A

is a nodal gauge field its transformation under parity AP is also a nodal

configuration which implies that the singularities are invariant under parity

transformation. Thus, the whole non-analytic component h(A) is parity

preserving, i.e.

h[AP ] = h[A] . (5.2)

The true source of parity symmetry breaking has a perturbative origin; the

induced Chern–Simons term. Although the Chern–Simons radiative cor-

rections can removed by a local counterterm, gauge invariance under large

gauge transformation is broken if kR /∈ IR. Therefore the theory cannot be

parity invariant and gauge invariant at the same time in this case. Only in

the case kR = 2πn can both symmetries be simultaneously preserved.

In other words, because of the hermiticity of D/A all eigenvalues are real.

Thus, the only source of imaginary terms in the effective action comes from

negative eigenvalues −1 = eiπ . Now at nodal points one positive eigen-

value becomes negative or one negative eigenvalue becomes positive. Thus,

generically, h(A) has a π discontinuity at configurations with fermionic zero
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modes. In the case of fermions in the adjoint representation, there is a level

crossing at nodal points between eigenvalues becoming positive and eigen-

values becoming negative (see Fig. 2). This explains why in that case the

singularities of the effective action do not have any physical effect.

k

k−1

k+1

h[A]

λ

λ

λ

3π

2π

π

−2π

−3π

−π

Figure 2. Spectral flow and singular behavior of the effective action of a fundamental fermionic

determinant

In all gauge invariant regularizations the non-analytic term of the effective

action h(A) is proportional to kR − k as a consequence of gauge symmetry.

This means that the effective counting of zero-level crossings becomes regu-

larization dependent.

In order to illustrate the phenomenon let us consider a lower dimensional

example; a fermionic quantum rotor under the action of a magnetic flux

[13][32]. In one dimension the equivalent of the Chern–Simons action is

k Scs = k

∫
A = k ε

and the fermionic determinant of D/A = dθ + Aθ is given exactly by [32]

detD/A = e−Γ(A) ,

with

Γ(A) = − log
(∣∣∣cos ε

2

∣∣∣ + i 2π kR Frac

(
ε

2π
+

1

2

)
− iπkR

)

= − log

[∣∣∣cos ε

2

∣∣∣ + i 2π kR

(
ε

2π
− Int

(
ε

2π
+

1

2

))]
,

(5.3)
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with the renormalized coupling constant

kR =





1
2 if m > 2n + 1/2 ,
1
π arctan λ+

λ−

if m = 2n + 1/2 ,

0 if m < 2n + 1/2 ,

depending on regularization parameters m,n and λ+, λ−. Int(x) and Frac(x)

denote, respectively, the integer and fractional parts of x. The effective

action (5.3) is gauge invariant for any value of these parameters. The Chern–

Simons term of the imaginary part of the effective action kR Scs = kR ε is

compensated by a non-analytic component

h(A) = −kRπ

[
2 Int

(
ε

2π
+

1

2

)]
(5.4)

which is parity invariant but transforms under global gauge transformations

in a way that compensates the anomalous transformation of the Chern–

Simons part. Notice that the whole imaginary part of Γ(A) is proportional

to kR in all regularization regimes.

In fermionic determinants the interpretation of singularities in terms of

nodal configuration is quite natural. However, in Chern–Simons theory the

divergence of ΓA at one-loop order is more intriguing because there is not an

a priori reason for the singularities. In the Schrödinger representation phys-

ical states are described by functionals of gauge fields which as pointed out

in [33][34] in Chern–Simons theory vanish at certain nodal configurations.

It is therefore not unreasonable that the effective action of the theory could

diverge at some classical configurations which might be related to nodes of

the vacuum state. In general, this type of singularity indicates a suppression

of tunneling. One can identify some configurations where the one-loop effec-

tive action diverges. In fact, it is easy to show that there is a discontinuity

of h(A) at the sphaleron gauge field on S3. This is a gauge field which is a

saddle point of Yang–Mills action, i.e. it satisfies the Euclidean Yang–Mills

equations and the Bianchi identity

DAF (A) = D∗

AF (A) = 0 . (5.5)

It is given explicitly by

[Asph]j =
4R

(x2 + 4R2)2

(
4Rεa

jkx
k − 2xaxj + [x2 − 4R2]δa

j

)
σa
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for SU(2) gauge fields (R is the radius of the S3 sphere). The proof that

Asph is a nodal point follows from equations (5.5) which imply that ∗F (A)

is a zero mode of the operator ∆A which generates the one-loop corrections

of the Chern–Simons theory (3.1). There exists a similar phenomenon for

massless fermions in the adjoint representation. The sphaleron is a nodal

configuration of the corresponding determinant with the same spectral flow.

Now, since the fermions are in the adjoint representation, two levels cross

the zero level at the sphaleron configuration (see Fig. 3).

AA A vacsph
φ

λ −

λ +

0 0

λ −

+λ

Figure 3. Spectral flow of the fermionic determinant in the adjoint representation.

In this case the fermionic determinant detD/A has the same properties

that the vacuum state of 3 + 1 dimensional gauge theories at θ = π and the

discontinuity of h(A) at sphaleron configurations on S3 is a physical prop-

erty which encodes the tunneling suppression due to the effect of massless

fermions [35].

The dependence of the fermionic determinant on the background gauge

field contributes to the understanding of the role of singular contributions

in the effective action. The existence of zero modes determine the existence

of discontinuities in the imaginary part of the effective action. In the real

part the singularities are more severe. At nodal configurations the real part

of the effective action becomes infinite signaling the failure of perturbation

theory and the vanishing of the corresponding determinant. The analysis

of the physical role of these singularities in Chern–Simons theory and its

possible survival at higher orders in the coupling constant 1/k is an open

problem.
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In order to obtain a better physical picture of the transition regime let

us analyze the case of pure Abelian Chern–Simons theory for which

Scs =
kR

4π

∫
A ∧ F (A) . (5.6)

Although in general there is no quantization condition for the coupling con-

stant kR, in the presence of magnetic monopoles in M = S1×T 2, consistency

requires its quantization.

In temporal gauge and with flat gauge fields the effective action (5.6)

reduces to

Scs = kRπεij

∫
aiȧj

and can be quantized as the quantum Hall effect in the dual torus T̂ 2 with

magnetic charge kR ∈ ZZ. The number of physical states is finite and equals

the value of the magnetic charge kR [36]. This explains why kR should be

quantized.

In the transition regime a massless fermion induces an effective action

with kR /∈
�

and extra non-analytic terms in the imaginary part. In order

to analyze the physical effect of these terms let us consider a slightly different

action with a similar basic behavior

Scs = kRπεij

∫
Frac(ai) ȧj ,

with kR /∈ ZZ. The system governed by such an action is equivalent to a

charged particle moving in a torus under the action of two magnetic fields:

one uniform magnetic field with non-integer total magnetic flux kR across

the torus , and an extra magnetic field with a delta-like singularity whose

magnetic flux just cancels that of the uniform magnetic field,

F12 = kRπ [2 − δ (a1) − δ (a2)] .

Thus, the total magnetic flux is zero and gauge invariance under large gauge

transformations is restored.

The quantum system has in this case only one vacuum state. Thus,

the physical regime associated with transition regularization may be very

different from the one obtained from generic regularization schemes. This

would explain in physical terms the smooth interpolation between the two

generic regularization regimes through the transition regime.
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The fact that different regularizations of the theory give rise to different

quantum theories is not so surprising. One simple but paradigmatic exam-

ple is topological quantum mechanics on a Riemann surface Σ of genus h in

the presence of a magnetic field A with magnetic charge k [33]. In standard

Hamiltonian formalism the quantum Hamiltonian is trivial (H = 0), corre-

sponding to a topological theory, and the dimension of the space of quantum

states is finite and given by dimH0
k = 1 − h + k, for k > h − 1. However, if

the theory is regularized by means of a metric dependent kinetic term,

L(x, ẋ) =
1

2Λ
gij ẋ

iẋj + Aiẋ
i ,

the Hamiltonian becomes HΛ = Λ
2 ∆g

A, and the topological limit Λ → ∞ is

governed by the ground states of HΛ. The quantum Hilbert space of the

topological field theory obtained by this method can have a dimension lower

than 1−h+k, depending on the symmetries of the background metric g of the

regularization [33]. In particular, this is the case when the metric g breaks

the degeneracy of the ground state of the covariant Laplacian ∆g
A. The

standard result is obtained by choosing only metrics which are compatible

with the magnetic field B = dA, in the sense that they give rise to a Kähler

structure on Σ.

6. A c–theorem in three-dimensions

The existence of different regimes in the ultraviolet regularization of Chern–

Simons theory also has relevant implications for the induced gravitational

interactions. Although the Chern–Simons action is metric independent the

quantum corrections generate a finite gravitational Chern–Simons term,

Scsg =
κ

4π

∫ [
εµνσRµνabω

ab
σ +

2

3
ωb

µaω
c
νaω

a
σc

]
. (6.1)

This term which gives rise to a metric independent effective action can be

canceled by the introduction of a local counterterm. But then a framing

anomaly is generated as a physical effect of the theory [10]. The novel effect

is that this anomaly also becomes dependent on the regularization regime

as does the parity anomaly.

The induced gravitational Chern–Simons term was conjectured to be of

the form κ = c/24, where c is the central charge of the conformal theory
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associated with the Chern–Simons theory [37]. In the present case, c =

k(N2 − 1)/(k + N). In perturbation theory, this means that

κ =
N2 − 1

24

∞∑

n=0

(
−

N

k

)n

.

However, as anticipated κ depends on the choice of regularization regime.

The one-loop contribution

κ
[1]
R =





N2−1
24 if m > 2n + 1/2 ,

N2
−1

12π arctan λ+

λ−

if m = 2n + 1/2 ,

0 if m < 2n + 1/2 ,

agrees with the expected value κ = (N 2 − 1)/24 only if m > 2n + 1
2 . The

vanishing of κ in the regime with m < 2n+ 1
2 was first anticipated by Witten

[37]. In this scheme a second order perturbative calculation was carried out

in Refs. [38], and the result seems to agree with the standard case. In the

transition regime κ depends on the weights λ+ and λ− of the parity odd and

parity even regulators and does not correspond to any previously expected

behavior.c In this case there is a relation between the value of κ and the

renormalized Chern–Simons coupling constant kR [10],

κ =
(kR − k)(N2 − 1)

24N
.

The above results suggest that this relation holds for the three regimes. It

would be very interesting to investigate if the property also holds beyond

one-loop approximation.

Other types of gravitational terms like Einstein or cosmological constant

terms can also be generated in the effective action, but they present linear

or cubic UV divergences which need to be renormalized leaving an extra

ambiguity in the actual values of the corresponding renormalized couplings.

Metric independence requires the cancellation of both couplings. But the

same gravitational Chern–Simons term also contains some hidden Einstein

and cosmological terms when the gauge field is written in terms of the vier-

bein and the spin connection [39]. The different values of the renormalized

c If the scalar laplacian were considered instead of the vector laplacian the result for the transition

regime would be different.
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gravitational Chern–Simons constant also adds an extra source of metric

dependence. Although the induced Chern–Simons term can be removed by

a choice of renormalization scheme, its non-analytic counterpart cannot and

in fact yields an extra frame dependent contribution. Only the third regime

provides a fully consistent metric independent theory without parity and

framing anomalies.

This connection between the renormalization of the Chern–Simons cou-

pling and the induced gravitational Chern–Simons coefficient and its relation

to the central charge of the associated conformal theory suggests a possi-

ble extension of Zamolodchikov’s c-theorem to three-dimensional systems.

Topological Chern–Simons theories would correspond to two dimensional

conformal theories and the interpolating regularized topologically massive

theories will generate a flow from one theory with one Chern–Simons cou-

pling to another with a different one. A c-theorem would establish the ex-

istence of a monotone function along this renormalization group flow which

will coincide with the coupling of gravitational Chern–Simons term at topo-

logical fixed points. One natural candidate for Zamolodchikov’s c-function,

can thus be defined in terms of the induced gravitational Chern–Simons term

which is identical to κ at the pure Chern–Simons theories and varies along

renormalization group trajectories. A concrete proposal based on a version

of the Zamolodchikov theorem formulated in Ref. [40] can be established

from the following spectral representation of the stress tensor correlators,

〈〈
Tαβ(x)Tµν(0)

〉〉
odd

= −
1

192π

∫
d3x

eip.x

(2π)3/2

∫
∞

0
dλ

λ c(λ)√
p2 + λ2

×
[
εµσα pσ(pνpβ − δνβ) + ενσα pσ(pµpβ − δµβ)

+ ενσβ pσ(pµpα − δµα) + εµσβ pσ(pνpα − δνα)
]
.

(6.2)

c(λ) emerges as a natural candidate for a Zamolodchikov c-function for three-

dimensional theories. Unfortunately, c(λ) cannot be universally monotone

for the same reasons as the similar spectral representation of the flow of

the effective k coupling cannot be monotone in all regularization regimes of

pure Chern–Simons theory (see Fig.1).d This negative result does not ex-

clude the existence of another extension of the c-theorem to 2+1 dimensional

d This observation was made by Ian Kogan and one of us (M.A.).
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theories. It merely points out that the spectral representation of the gravi-

tational Chern–Simons term is not a good c-function. On the other hand for

purely bosonic theories there are not axial Chern–Simons like interactions

which could generate a simple way of describing the irreversibility of the

renormalization group flow.

7. Discussion

The presence of non-analytic terms in the effective action is fundamental for

the right physical description of Chern–Simons theory and massless fermions

in 2+1 dimensions. The existence of such contributions is pointed out by

the appearance of different perturbative corrections in different gauge invari-

ant regularizations. The discontinuities associated with those non-analytic

terms signal the presence of physical singularities associated with the zeros

of the partition function in some backgrounds. The appearance of nodal

configurations is also related to the suppression of quantum tunneling. For

massless fermions nodal contributions are associated with the existence of

fermionic zero modes. However, the structure of singularities and disconti-

nuities depends on the regularization regime and makes possible the physical

differences between the corresponding theories. In regularizations with tran-

sition regimes the nature of the singularities associated with non-analytic

terms suggests a non-holomorphic behavior of the effective partition func-

tion in terms of classical fields. It is remarkable that it is possible to find

gauge invariant regularization regimes where there are no parity and framing

anomalies. This suggests that those anomalies can be better understood as

spontaneous symmetry breaking phenomena rather than genuine anomalies.

In some toy models it has been shown that the transition regularizations

keep constant the number of physical states. It would be very interesting to

analyze the behavior of the number of physical states of the Chern–Simons

theory in the transition regime and verify if it is dramatically reduced as

in the toy model. Finally, it is pointed out why the extension of Zamolod-

chikov c-theorem to three-dimensional theories is an interesting, and still

open, problem.
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10. M. Asorey, F. Falceto, J.L. López and G. Luzón, Nucl. Phys. B 429, 344 (1994).
11. M. Atiyah, V. Patodi and I.M. Singer, Math. Proc. Comb. Phil. Soc. 77, 43 (1975);

ibid 78, 405 (1975).
12. A.V. Redlich, Phys. Rev. Lett. 52, 18 (1981); Phys. Rev. D 29, 2366 (1984).
13. G. Dunne, K. Lee and Ch. Lu, Phys. Rev. Lett. 78, 3434 (1997).
14. C. Fosco, G.L. Rossini and F. A. Schaposnik, Phys. Rev. Lett. 79, 1980 (1997).
15. S. Deser, L. Griguolo and D. Seminara, Phys. Rev. Lett. 79, 1976 (1997);

Phys. Rev. D 57, 7444 (1998).
16. R. Jackiw and Y.S. Pi, Phys. Lett. B 423, 364 (1998).
17. E. Witten, Commun. Math. Phys. 121, 351 (1989).
18. D. Bar–Natan and E. Witten, Commun. Math. Phys. 141, 423 (1991).
19. K. Gawedzki and A. Kupiainen, Phys. Lett. B215 (1988) 119; Nucl. Phys. B 320,

649 (1989).
20. A. Slavnov, Theor. Math. Phys. 33, 210 (1977).
21. M. Asorey and F. Falceto, unpublished (1990).
22. G. P. Korchemsky, Mod. Phys. Lett. A 6, 727 (1991).
23. T. Kimura, Prog. Theor. Phys. 92, 693 (1994).
24. R. Narayanan and J. Nishimura, Nucl. Phys. B 508, 371 (1997).
25. A. Slavnov, Phys. Lett. B 415, 390 (1997).
26. E. Witten, Phys. Lett. B 117, 324 (1982).
27. D. Karabali and V.P. Nair, Nucl. Phys. B 464, 135 (1996); Phys. Lett. B 379, 141

(1996); Int. J. Mod. Phys A 12,1161 (1997).
28. M. Teper, Phys. Lett. B 311, 223 (1993); O. Philipsen, M. Teper and H. Wittig,

Nucl. Phys. B 469, 445 (1996); M. Teper, Phys. Rev. D 59, 014512 (1999).
29. M. F. Atiyah and I. M. Singer, Ann. of Math. 87, 485, 546 (1968); ibid 93, 1, 119,

139 (1971); M. F. Atiyah and G. B. Segal, Ann. of Math. 87, 531 (1968).
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