EDMS NO. 2133542

REFERENCE

REV.

1.5

CMS-CE-ES-0004

Date: 2020-03-09

Working document on Specification

HGCROC3

ABSTRACT:

This document is a working document to detail the specification for the HGCROC3.

- Description not differing from the HGCROC2 is in blue.
- New description for HGCROC3 is in black
- Think unclear or in process of change are in red

DOCUMENT PREPARED BY:	DOCUMENT TO BE REVIEWED BY:	DOCUMENT TO BE APPROVED BY:
P. Aspell	P. Aspell	P. Aspell
C. De La Taille	D. Barney	P. Bloch
F. Dulucq	P. Bloch	C. De La Taille
M. Noy	P. Dauncey	K. Gill
D. Thienpont	A. David	J. Virdee
S. Extier	C. De La Taille	
M. El Berni	J. Hirschauer	
A. Lobanov	A. Lobanov	
	M. Mannelli	
	J. Manns	
	M. Noy	

DOCUMENT SENT FOR INFORMATION TO:

2133542 1.5 DRAFT

Page 2 of 58

Available to the CMS HGCal Community for internal use only. Not for distribution outside of the community.

REFERENCE EDMS NO. REV. VALIDITY

CMS-CE-ES-0004 2133542 1.5 DRAFT

Page 3 of 58

HISTORY OF CHANGES

REV. NO.	DATE	PAGES	DESCRIPTIONS OF THE CHANGES
1.0	2019-03-27	n	Data content and Trigger functions added
1.2	2020-13-02	n	-
1.3	2020-03-03	n	-
1.4	2020-03-03	n	-
1.5	2020-03-09	60	Insert relevant information from HGCROCv2 datasheet
	I		I

3

4

REFERENCE EDMS NO. REV. VALIDITY

CMS-CE-ES-0004 2133542 1.5 DRAFT

Page 4 of 58

TABLE OF CONTENTS

5	1. HGCROC3: architectural overview	6
6	1.1. Analog front-end	7
7	1.1.1. Preamplifier	8
8	1.1.2. Input DAC (leakage current compensation)	10
9	1.1.3. Shapers	14
10	1.1.3.1. Optimisation of the « ADC range »	15
11	1.1.4. Discriminators	18
12	1.2. Mixed-signal blocks	21
13	1.2.1. 10bits ADC and Align Buffer	21
14	1.2.2. TOT and TOA TDCs	23
15	1.3. Digital blocks	25
16	1.3.1. Data path	27
17	1.3.1.1. TOT compression	28
18	1.3.1.2. Data Path Content	28
19	1.3.1.3. Frame Description	29
20	1.3.2. Trigger path	30
21	1.3.2.1. Disabling channel	30
22	1.3.2.2. Trigger path content	30
23	1.3.2.3. Charge Linearization Block	30
24	1.3.2.4. ADC Charge Processing	31
25	1.3.2.5. TOT Charge Processing & Selection of ADC value or TOT.	31
26	1.3.3. Trigger Cell Sums	32
27	1.3.3.1. Frame description	34
28	1.3.4. Digital parameters	36
29	1.3.5. Description of the operating modes of the chip	36
30	1.3.5.1. Start-up sequence	36
31	1.3.5.2. RAM1 to RAM2 operation	37
32	1.3.5.3. RAM2 to SerDes State-Machine	38
33	1.3.5.4. Definition of the Time Tag Counters	38
34	1.3.5.5. Definition of the Reset	39
35	1.4. Interfaces blocks	40
36	1.4.1. Fast command	40
37	1.4.2. I2C	40
38	1.4.3. Output E-links	42
39	1.5. Ancillary blocks	44

2133542 1.5 DRAFT

Page 5 of 58

40	1.5.1. PLL and clocks distribution	44
41	1.5.2. Bandgap and voltage references	45
42	1.5.3. Calibration circuit	46
43	1.5.3.1. Strobe pulse length	47
44	1.5.4. Monitoring	48
45 46	2. Packaging, I/Os and powering scheme	49 51
47	2.2. Pin List	51 52
40	3. ASIC parameters	56
49	3.1. I2C Addressing	57
50 51	4. Measurements of HGCROCv2 for inputs for HGCROCv3 spe 58	cifications
52	4.1. Power consumption: RUN mode vs. SLEEP mode	58
53	4.2. Power consumption: HD vs. LD	58

Page 6 of 58

1. 1. HGCROC3: architectural overview

56

58

55

57 The general block diagram for HGCROC3 is shown in Figure 1.

Phase C1k 40M PLL Fast commands Shifter L 1 comm.port B x R st 🗲 Clock and control path Readout path 72 x L1 decoding SH A D C Н L 1 trig ge re d М Latency H 1 Data TOT тот event М re ad o ut A C ircular encoding M M manager manager FIFO N B uffer 2 x D ata TOA link DAQ path Digital Trigger 7 bits Charge Linearization Σ T runc atio n readout C o m p res s io n manager (4 or 9) Trigger path 4x Trigger er channel 16x/8x trigger cell unit link DAC Bandgap Slow control C alibration T o T / T o A Voltage comm.port iniection threshold s References Slow control path

59

⁶⁰ Figure 1: The block diagram for the HGCROC3 ASIC

Most of the blocks and functionality of V2 remains unchanged for V3. The main changes are regarding the digital processing of the DAQ path like the L1 triggered event FIFO, the hamming coding and encoding. For simplicity, the Circular Buffer in the figure above will be called RAM1 and the L1 triggered event FIFO will be called RAM2. Every Control and Command's Modules will be triplicated with TMRG tool. Data encoded inside RAM1 and RAM2 with Hamming. The chip handles 72 channels + 4 channels for common mode subtraction + 2 special calibration channels.

The figure below shows how the charge measurement is provided: in the preamplifier's linear region, the charge is given by the ADC, typically up to 100 MIP. When the preamplifier saturates, the Time-Over-Threshold (TOT) is used to give the charge. The figure below shows how ADC and TOT data combine to give the charge information.

72

67

73 Figure 2: Graphical representation of the individual ADC and TOT charge components.

validity 2133542 1.5 DRAFT

Page 7 of 58

As the LSB are not equal for "ADC range" and "TOT range", a linearization step is needed in the trigger path:
 in the non-linear region of the TOT, a plateau value is applied as shown in the figure below.

76

- ⁷⁷ Figure 3: Graphical representation of how the ADC and TOT charge components combine in the TP.
- ⁷⁸ 1.1. Analog front-end
- 79 80

The front-end may be divided in three main sub-parts:

- 81 The preamplifier which converts the input charge coming from the silicon diode to an output 82 voltage. It must provide the first amplification of the signal with the best noise performance. In the 83 linear part of the amplifier, the feedback capacitors and feedback resistors provide the gain and the 84 shape of the output signal which is send to the shaper. From the saturation and above, the feedback 85 discriminator triggers and provides the charge measurement by using the "Time Over Threshold" 86 technique (TOT). Another discriminator allows to give the timing information. The preamplifier can 87 be calibrated by injecting a voltage step through two channel-wise selectable capacitors (0.5pF and 88 8pF).
- The shaper part is composed of three stages: a Sallen-Key filter, a RC² filter and a unity gain amplifier to drive the ADC. The shaping time can be adjusted over +/- 20% to compensate for process variations and ensure out of time pileup below 20%.
- 92 The two discriminators providing the TOT and TOA (Time of Arrival) pulses, each one sent to a dedicated TDC.
 93

Page 8 of 58

 $_{96}$ In order to accommodate the C4 bump bonding pattern, the layout was done in order to fit in 120 μm

⁹⁷ height and avoid sensitive analog electronics below the bumps. Four channels fit between two rows of pads

98 and the slow control, common to 4 channels, is placed below the pads.

99

106

107

108

109

	<u>q</u> ndo	ir 🛞 - ii	grade	ve de pav	d erde egr	le - de	
gnade							
ghdq		in (g vaa				
「「「「」」							

In addition to the 72 readout channels, there are 4 channels for common mode subtraction and 2 channels
 for MIP calibration. The common mode channels are similar to the regular channels except they stop at the
 ADC (there are not TDCs). They do not enter the trigger path but are read out in the data path.

- 103 In the following sections, more details are given for each block.
- 104 *1.1.1* **1.1.1.** Preamplifier
- 105 The preamplifier is DC coupled to the input and provides three outputs:
 - Outpa connected to the **shaper** and the **TOT discriminator**. Its DC operating point is the same than the preamplifier input (160 200 mV).
 - outCf_pa connected by default to the **TOA discriminator**. Its DC operating point is around outpa + Vgs (~ 500 mV).

A 8b-DAC is connected to the preamplifier input to absorb the leakage current coming from the sensor.
 More on this below.

112 The purpose of the preamplifier is to convert the input charge to a voltage output with the best

signal-to-noise ratio and a gain adapted to the MIP signal. It must also provide a "short" signal duration to

REFERENCE EDMS NO. REV. CMS-CE-ES-0004

VALIDITY 2133542 1.5 DRAFT

Page 9 of 58

114 mitigate the Out-of-Time pileup effect at the shaper output. To meet all these requirements, the gain and

115 the time constant must be adjustable (these parameters are global, not channel-wise). In the table below,

116 all the possibilities are described:

Rf (Ω)	25K, 50K, 66.66K, 100K	In parallel, these resistors provide 15 values to be adjusted with the Cf and Cf_comp values to get a decay time constant around 10 ns.
Cf (fF)	50, 100, 200, 400	Combined with the Cf_comp capacitors, provide the gain of the preamplifier.
Cf_comp (fF)	100, 200	Same purpose than Cf capacitors, but connected differently to improve the preamplifier stability. From gain point-of-view can be considered in parallel with Cf capacitors.

117

- 118 The following plot shows the preamplifier response to a 10 fC input charge for different choice of gain. The 119
- feedback resistor is adjusted so that the Rf*Cf product is constant and so the "duration" of the signal. As can
- 120 be seen in Fig. 4, an undershoot appears for the highest preamp gain.

121

122

Figure 4 Preamplifier response to a 10 fC input charge for different choice of gain.

- 123 Changes in HGCROC3:
- 124 Remove unused timing part to increase the speed and the phase margin
- 125 1. Remove the common source transistor and resistor
- 126 2. Remove the current source to save 200 uA
- 127 3. The decoupling capacitors are used to filter vbi_pa (already in V2)
- 128 4. The level shifter for negative pulses is kept but not used
- 129 Minimum transistor size is M16 7/0.13 (negative polarity switch).

130

Page 10 of 58

131 1.1.2. Input DAC (leakage current compensation)

The parallel noise can be reduced by sqrt2 by filtering the current mirror. A 10 pF is taken from vbi_pa to vb_inputdac to filter the noise. The maximum leakage compensation is increased from 10 uA to 50 uA. The DAC is raised from 5 bits to 8 bits by adding a low noise DAC for 5, 10 and 20 uA made with resistors.

- 1- Replace all 60/0.13 CMOS switches by 3/0.13 NMOS to reduce leakage
 - Replace 50/0.5um current mirror for leakage current inversion by 5/0.5 to reduce capacitance on input
- 3- Removes 3/0.15 NMOS cascodes
 - 4- Add 3 bits connected to respectively 50k, 100k and 200k to vdd_dac
 - 5- The dac polarity is now common to all channels

142 The figure of the new architecture is shown below. The main changes are the 10pF to filter the noise from 143 the master current source, and the 3 resistors to achieve better noise performance at higher leakage 144 current as shown in simulations below.

145 146

135

136

137

138

139

140

141

149

validity 2133542 1.5 DRAFT

Page 11 of 58

150 The figure above shows the total noise (series and parallel) with 47pF sensor capacitance as a function of 151 the leakage current. The figure below shows the leakage noise contribution itself.

152

- The leakage noise in HGCROC-v2 is higher than the blue curve Rdac=0 above: by filtering the input DAC with the 10pF, it follows the N=2 curve. By adding the R-based 3-bits DAC, the leakage noise does not follow the N=2 shape over the full leakage current range but is lowered in-between N=2 and N=1 shapes.
- 156 157

158

159

160

- New measurements are requested: noise w.r.t. the sensor capacitance with all ADC ON, 1 ADC ON, pure analog
- Further simulations: larger resistor to improve the leakage noise performance, in particular around the 5 to 15 uA range.
- 162 In the table below, all the parameters concerning the preamplifier are described.

validity 2133542 1.5 DRAFT

Page 12 of 58

Preamplifier parameters

Name	# bits	I2C Sub-block / sub-address	Description
Inputdacpol	1	Channel-wise	Leakage current Input-DAC polarity
Inputdac<8:0>	5	Channel-wise	Leakage current Input-DAC Value (0 μA default; 50 μA max.)
Probe_pa	1	Channel-wise	Preamplifier output probe
LowRange	1	Channel-wise	0.5pF injection cap
HighRange	1	Channel-wise	8pF injection cap
Channel_off	1	Channel-wise	"1" = preamplifier input tied to ground
Trim_vbi_pa<5:0>	6	Global-analog	6b-DAC for preamp input stage current tuning
Trim_vbo_pa<5:0>	6	Global-analog	6b-DAC for preamp output stage current tuning
ON_pa	1	Global-analog	"1" = enable preamplifier bias
Cf<3:0>	4	Global-analog	Preamp feedback cap <u>. <0> = 50fF, <1> = 100fF, <2> =</u> 200fF, <3> = 400fF In //
Cf_comp<1:0>	2	Global-analog	Preamp feedback comp. cap. <u><0> = 100fF, <1> = 200fF</u> In //
Rf<3:0>	4	Global-analog	Preamp feedback Res.
Neg	1	Global-analog	"1" = negative input polarity (Default)
Calib_dac<11:0>	12	Voltage references	Calibration DAC value
IntCtest	1	Voltage references	Selection of the Calibration DAC
ExtCtest	1	Voltage references	Selection of the external pulse test

164

167

The two following plots show respectively the preamp gain as a function of the feedback capacitor (with feedback R adjusted so that R*C is constant) and the nominal feedback resistor value for a given Cf value.

As the MIP value is depending on the sensor thickness and the irradiation, the preamplifier gain must be programmable in order to adjust the ADC range to 100 MIPs. The table below summarises the gain specifications.

VALIDITY

2133542 1.5 DRAFT

Page 13 of 58

171

thickness	MIP		Noise		LSB	ADC range	ADC range	MIP	Noise
	e-	fC	e-	fC	fC	fC	MIP	ch above ped	LSB
120um	9000	1,4	2000	0,3	0,4	320	222	3,6	0,8
120um	9000	1,4	2000	0,3	0,2	160	111	7,2	1,6
120 irrad (worse 3000 fb-1)	6000	1,0	2600	0,4	0,1	80	83	9,6	4,2
200um	15000	2,4	2500	0,4	0,4	320	133	6	1,0
200 um	15000	2,4	2500	0,4	0,4	320	133	6	1
200 irrad (worse)	6000	1,0	3000	0,5	0,1	80	83	9,6	4,8
300 um	20000	3,2	2000	0,3	0,4	320	100	8	0,8
300 irrad (worse 3000fb-1)	10000	1,6	2200	0,4	0,2	160	100	8	1,8
300 irrad (worse 3000 fb-1) high gain	10000	1,6	2200	0,4	0,1	80	50	16	3,5

172 The table below gives the nominal Cf and Rf values for a given ADC range.

ADC range	Cf	Cf_comp	Rf	Comment
80 fC	200 fF	0	50K	Typical value! Can be more or less
	"0100"	"00"	"0100"	adjusted in practice!
160 fC	200 fF "0100"	200 fF "10"	33.33K "0101"	Default slow control values
320 fC	400 fF	300 fF	16.66K	Typical value! Can be more or less
	"1000"	"11"	"1100"	adjusted in practice!

173

The preamp gain settings showed above are typical to get the specified ADC range, but since the feedback capacitors can be set from 50 fF to 750 fF and more and the feedback resistor from 11.7K to 100K, there are more possible combinations reaching the specifications. **The Annexe B describes all the combinations of Rf** and Cf (TBD, for now cf V2 datasheet).

Since the preamplifier converts an input charge to an output voltage, its behaviour over the entire chargedynamic must be well known and characterized. That can be divided in three steps:

- The linear mode: the preamplifier provides an output amplitude proportional to the input charge. It
 is able to provide linear amplitude over ~300mV dynamic range¹ (see red curves in the following
 plot). The ADC is used to measure the charge in this region which is named ADC range.
- The non-linear mode: this mode occurs in-between the linear and the saturated modes when the preamplifier is no longer linear but not still fully saturated. It is in this region that the TOT threshold has to be set in order to optimize the ADC range linearity. The preamplifier non-linear mode leads to the non-linearity of the TOT in the beginning of the TOT range, but the pile-up limitation is expected to be the best in this region (see violet and blue curves in the following plot and red curves in the next). The non-linear mode occurs for an output amplitude between 500 and 600mV.
- The saturated mode: it occurs for an output amplitude above 600mV (see yellow and greens curves in following plot). In this region, the preamplifier pulse width is proportional to the input charge and so well suited to use the Time-over-Threshold technics. The drawback is the undershoot of the preamplifier signal leading to incorrect charge measurement in the next bunch crossing. The

¹ The linear dynamic range is limited to 300mV because the first stage of the preamplifier is composed of four serial transistors needed to get a large open loop gain (90dB) what implies the first stage output amplitude is limited by a cascode transistor's V_{DS} - V_{DS-SAT} voltage.

VALIDITY 2133542 1.5 DRAFT

Page 14 of 58

193 undershoot is due to the fact that in saturation the preamplifier is in open loop and consequently 194 slower to recover its normal behaviour.

195

196

- 198 1.1.3. Shapers 1.1.1
- 199 The shaper is divided in three stages:
- 200 A Sallen-Key (S-K) shaper, gain 2 • 201
 - A RC² shaper, gain 2

2133542 1.5 DRAFT

Page 15 of 58

• Then a buffer to drive the ADC

It is a 4th order RC shaper with the peaking time typically set around 23ns (shaping time ~ 5ns). The purpose is to optimize the signal-to-noise ratio and use the full available dynamic range (~ 1 V). The signal must be short enough to keep the signal below 20% after 25ns (for the next bunch crossing, to limit the out of time pileup). As the gain and the decay time are given by the preamplifier feedback, the shaper has to ensure the optimal shaping time, between 20 and 25 ns. The shaping time is adjustable over 2 bits to mitigate process variations.

The user has to set the inv_vref and noinv_vref 10b-DACs to globally set the DC levels of respectively the inverter and non_inverter shapers, and so set the ADC pedestal. These 10b-DACs have typically 1mV LSB. In order to reduce the dispersion per channel, the user can play with a channel-wise trimming 5b-DAC: these 5b-DAC have typically 2 mV LSB.

- The inverter shaper output's DC level is equal to 3*(inv_vref<9:0> trim_dac<4:0>) 2*V_{inpa}
 - The non_inverter shaper output's DC level is equal to 2*V_{inpa} noinv_vref<9:0>
- With V_{inpa} the preamplifier input's DC level (~ 200 mV).
- The ADC converts the differential voltage (SH_noinv SH_inv).

217 1.1.3.1. Optimisation of the « ADC range »

We will introduce a simple circuit to automatically find out the best combination. The principle is to force one of the ADC input to 0.6V, perform a scan of the Vref DAC of the other branch and set it to the value giving the code 256 (266 in fact to have some margin), and then redo the same operation but for the other branch. By construction, this way will optimize the pedestal as well as the dynamic range.

The channel-wise pedestal trimming DAC will be raised from 5b to 6b to better improve the channel-to-channel uniformity.

225 226

214

Shaper parameters

Name	# bits	I2C Sub-block / sub-address	Description
Probe_noinv	1	Channel-wise	Non inverter shaper output probe ("1" = selected)
Probe_inv	1	Channel-wise	Inverter shaper output probe ("1" = selected)
trim_dac_inv<5:0>	6	Channel-wise	Local 6b-TrimDAC for ADC pedestal tuning
ON_rtr	1	Global-analog	"1" = enable shaper amplifiers bias
lbi_sk<1:0>	2	Global-analog	S-K amplifier input stage current
lbo_sk<5:0>	6	Global-analog	S-K amplifier output stage current
S_sk<2:0>	3	Global-analog	S-K amp Miller cap. <0> = 50fF, <1> = 100fF, <2> = 200fF
lbi_inv<1:0>	2	Global-analog	Inverter amplifier input stage current
lbo_inv<5:0>	6	Global-analog	Inverter amplifier output stage current
S_inv<2:0>	3	Global-analog	Inverter amp Miller cap. <0> = 50fF, <1> = 100fF, <2> = 200fF
lbi_noinv<1:0>	2	Global-analog	Non Inverter amplifier input stage current
lbo_noinv<5:0>	6	Global-analog	Non Inverter amplifier output stage current
S_noinv<2:0>	3	Global-analog	Non Inverter amp Miller cap. <0> = 50fF, <1> = 100fF, <2> = 200fF
lbi_inv_buf<1:0>	2	Global-analog	Inverter buffer input stage current
lbo_inv_buf<5:0>	6	Global-analog	Inverter buffer output stage current

VALIDITY 2133542 1.5 DRAFT

Page 16 of 58

S_inv_buf<2:0>	3	Global-analog	Inverter buffer Miller cap. <0> = 100fF, <1> = 200fF, <2> = 400fF
lbi_noinv_buf<1:0>	2	Global-analog	Non Inverter buffer input stage current
lbo_noinv_buf<5:0>	6	Global-analog	Non Inverter buffer output stage current
S_noinv_buf<2:0>	3	Global-analog	Non Inverter buffer Miller cap. <0> = 100fF, <1> = 200fF, <2> = 400fF
Rc<1:0>	2	Global-analog	Shaping time adjustment
Inv_vref<9:0>	10	Voltage references	Inverter shaper global reference
Noinv_vref<9:0>	10	Voltage references	Non Inverter shaper global reference

227

The following plot shows the non-inverted shaper output. The red curves correspond to the signal in the ADC range. The violet and blue curves show the response to small "TOT charges". It can be noticed the duration of the signals. Whether it remains 20% of signal in BX+1 in the ADC range (preamplifier linear mode), in the preamplifier non-linear mode, it remains less than 5%.

232

The following plot shows the non-inverted shaper output in TOT range. This TOT range is using the non-linear mode (red curves) and the saturated mode of the preamplifier (yellow and green curves). It can be noticed the undershoot in the saturated region limiting the pile-up efficiency.

236

VALIDITY 2133542 1.5 DRAFT

Page 17 of 58

237

The next figure presents the Equivalent Noise Charge (ENC) as a function of the detector capacitance. It may
 be noticed the lower performance in the low gain mode where the contribution of the parallel noise is more
 visible.

241 Clarify: HGCROC 1 or 2?

242

2133542 1.5 DRAFT

Page 18 of 58

245 1.1.4. Discriminators

246 There are two discriminators per channel, one for the TOT measurement, the other for the TOA.

The TOT discriminator is connected to the outpa output of the preamplifier (160 – 200 mV). The TOA discriminator is connected to the outCf_pa output of the preamplifier (~ 500 mV). Two global 10b-DACs allow the user to adjust the thresholds of the discriminators and two local trimming 5b-DACs allow to reduce the dispersion per channel. The 10b-DAC have typically 1 mV LSB, the trimming 5b-DAC have typically 0.5 mV LSB.

- 252 Toa_Threshold = Toa_vref<9:0> Trim_dac_toa<4:0>
 - Tot_Threshold = Tot_vref<9:0> Trim_dac_tot<4:0>

There are two external trigger inputs available; typically, in the case when the user wants to calibrate the TOT and TOA, he can send a trigger for the TOA discriminator and the other for the TOT discriminator. He can also send a trigger for a channel, and the other for a neighbouring channel.

257 The two discriminators outputs can be masked per channel as well.

The following figures shows the principle of the external trigger usage. The Trig1/2 are without effect when they are tied to 0. To send a trigger to a chosen channel, all the others must be masked.

²⁶⁰ Pull-down resistors are put on the Trig1/2 ports (comparing to V2 where this was not done).

261

253

Regarding the TOT discriminator, when it is triggered (output at 0), it enables a constant current source which discharges the preamplifier so that the duration of the preamp signal is proportional to the input charge. This current source can be adjusted over 6 bits in order to adjust the width of the TOT (nominal specification is 200ns for 10 pC).

- 266 The two discriminators outputs can be probed and looked at on a scope.
- 267

Discriminators parameters

Name	# bits	I2C Sub-block / sub-address	Description
Trim_dac_toa<4:0>	5	Channel-wise	Local 5b-DAC for TOA threshold tuning
Trim_dac_tot<4:0>	5	Channel-wise	Local 5b-DAC for TOT threshold tuning
Mask_toa	1	Channel-wise	TOA discri output mask ("1" = masked)

VALIDITY 2133542 1.5 DRAFT

Page 19 of 58

Sel_trigger_toa	1	Channel-wise	External trigger selection for TOA ("0" = Ext Trig1; "1" = Ext Trig2)
Sel_trigger_tot	1	Channel-wise	External trigger selection for TOT ("0" = Ext Trig1; "1" = Ext Trig2)
Mask_tot	1	Channel-wise	TOT discri output mask ("1" = masked)
Probe_tot	1	Channel-wise	TOT discri output probe
Probe_toa	1	Channel-wise	TOA discri output probe
ON_toa	1	Global-analog	"1" = enable TOA discri bias
ON_tot	1	Global-analog	"1" = enable TOT discri bias
Dac_itot<5:0>	6	Global-analog	6b-DAC for TOT gain tuning ("000000" = no feedback current as the original TOT architecture)
En_hyst_tot	1	Global-analog	"1" = enable the TOT discri hysteresis
Pol_trig_toa	1	Global-analog	Polarity of the TOA discri output
Tot_vref<9:0>	10	Voltage references	TOT threshold global value
Toa_vref<9:0>	10	Voltage references	TOA threshold global value

268

272

The following figure shows the TOT duration at 5 pC injected charge as a function of the constant current itot. (the specification gives 100ns TOT at 5pC)

271 Clarify/update plots for HGCROC3 if needed

273 The following figure shows the duration of the "TOT dead time" expressed in Bunch Crossing count, namely

the duration from the end of the TOT pulse up to the moment where the ADC gets the pedestal back. (to be
noticed that itot=0 corresponds to the very first design)

VALIDITY 2133542 1.5 DRAFT

Page 20 of 58

The two next figures give respectively the jitter and time walk curve as a function of the input charge.

278

279

VALIDITY 2133542 1.5 DRAFT

Page 21 of 58

282

283

²⁸⁴ 1.2. Mixed-signal blocks

²⁸⁵ 1.2.1. 10bits ADC and Align Buffer

The HGCROC3 contains a 10b SAR ADC, designed by AGH in Krakow. The ADC's vrefm reference voltage is
 tied to ground.

288

The 10 bits data provided by the ADC are sent to an Align Buffer to align them to the TOT and TOA data. Indeed, the TDCs providing the TOT measurement introduce a latency due to the duration of the TOT itself (this latency is tuneable in the TDCs). The ADC + Align Buffer have a fixed latency of 11 bunch crossings:

validity 2133542 1.5 DRAFT

Page 22 of 58

292 sampling at BC=1, ADC data available at BC=2, data at the Align Buffer outputs at BC=11 (see next 293 chronogram).

295

296

ADC parameters

Name	# bits	I2C Sub-block / sub-address	Description		
Mask_adc	1	Channel-wise	"1" = ADC clock off		
maskAlignBuffer	1	Channel-wise	"1" = AlignBuffer clock off		
Adc_pedestal<7:0>	8	Channel-wise	ADC pedestal value (use in Trigger path)		
ExtData<9:0>	10	Channel-wise	Forced ADC data (enable ExtData by SelExtADC parameter: bit 3, register 10, "Global Analog"		
Clr_ShaperTail	1	Global-analog	Force ADC to 0 for 2 BXs after the TOT to remove the undershoot		
SelRisingEdge	1	Global-analog	"1" = AlignBuffer provides data on rising edge		
SelExtADC	1	Global-analog	"1" = Forced ADC data send to the DRAM		
Clr_ADC	1	Global-analog	Force ADC to 0 when TOT signal @ 1		
Ref_adc<1:0>	2	Global-analog	Input stage current of the Ref ADC OTA		
Delay40<2:0>	3	Global-analog	Delay tuning for bits <4:0> "000" = faster conversion		
Delay65<2:0>	3	Global-analog	Delay tuning for bits <6:5> "000" = faster conversion		
Delay87<2:0>	3	Global-analog	Delay tuning for bits <8:7> "000" = faster conversion		
Delay9<2:0>	3	Global-analog	Delay tuning for bit <9> "000" = faster conversion		
ON_ref_adc	1	Global-analog	"1" = enable ADC ref OTA		
Pol_adc	1	Global-analog	ADC input swap		

297

The user can choose to force ADC data to 0 when the TOT pulse is at 1 (Clr_ADC="1"), otherwise it provides the actual ADC values.

As after a TOT the shaper returns to the pedestal after a given time, the user can also choose to force ADC
 data to 0 for two next bunch crossing after the end of the TOT pulse (Clr_ShaperTail="1").

302 The following plot shows the linearity and the INL expressed in % of the ADC range in the default 303 parameters setting.

VALIDITY 2133542 1.5 DRAFT

Page 23 of 58

305

306

307 1.2.2. TOT and TOA TDCs

One TDC block handles the TOA and TOT measurements. It was designed by the CEA IRFU group in Saclay.
 The two following tables give the specifications respectively for the TOA and the TOT.

310

TDC ToA specifications			
Resolution	about 25 ps RMS		
Range	10 bits over 25 ns		
Conversion rate	> 40 MHz (bunch clock)		
Power consumption	< 2 mW / channel		
Area	Pitch 120 µm		
Technology	TSMC 130 nm		
Temperature	-30 °C		

311

VALIDITY 2133542 1.5 DRAFT

Page 24 of 58

TDC ToT specifications				
Resolution	< 50 ps RMS			
Range	12 bits over 2-200 ns			
Min time between hits	25 ns			
Power consumption	< 2 mW / channel			
Fixed latency	12 clock periods			
Technology	TSMC 130 nm			
Area	Pitch 120 µm			
Temperature	-30 °C			

- 313
- 314
- 315 The schematic below gives an overview of the TDC circuitry.
- 316

317

- 318 More detailed explanations about circuit, functionality and configuration can be found in dedicated 319 documentation:
- HGCROC_TOA_TOT_PLL_SPECIFICATIONS.pdf describing the specifications of all parts designed by
 IRFU
- 322 TO BE INCLUDED HERE
- 323
- The following plot shows the digitized TOA time walk of HGCROC2.

VALIDITY 2133542 1.5 DRAFT

Page 25 of 58

325

327

328

VALIDITY 2133542 1.5 DRAFT

Page 26 of 58

Analog channels	 72 analog "normal" channels 4 for common mode channels 2 for calibration 	
Acquisition mode	Continuous @ Bx rate (40 MHz)	
L1 functionality	With derandomizer	
L1-Trigger rate	1 MHz?	
DAQ readout mode	 Triggered by L1A …? 	
Trigger data type	7-bit sums (4 or 9 channels)	
DAQ data type	32 bits / channels (40 words/frame)	
Trigger output port	4 x CLPS @ 1280 Mbps (2 used for 9ch sums)	
DAQ output port	2 x CLPS @ 1280 MBps	

332

333 HGCROC2 integrates 72 channels to readout

- 334 192 channels sensor with a 64-ch configuration
- 335 432 channels sensor with a 72-ch configuration
- 336 337

ADD RAM2 to this scheme

338 The document **HGROCv2_LinkSpecs_Guide.pdf** details the data path and the trigger path.

339 -> Incorporate details in this datasheet

validity 2133542 1.5 DRAFT

Page 27 of 58

340 1.3.1. Data path

- ³⁴¹ Following the Latency Manager block, the 3 pieces of channel information (ADC, TOT and TOA) are fed into
- the data path. The ADC values in the data path are without pedestal subtraction.
- 343 Common mode channels provide only the ADC data.
- 344 The figure below describes the functionality of the data path.
- 345

346

347

ADD RAM2 to this scheme

348

The figure below shows the AlignBuffer part of the DAQ path. By slow control, the user can force to send in RAM1 a programmed ADC value. Otherwise, the raw ADC data is always sent to the RAM1.

351 352

The figure below shows the chronogram of the AlignBuffer when EnAdcMask and Clr_SS_Tail = 0.

355

356 357 AlignBuffer output).

358 359

361

1.3.1.1. TOT compression

360 The TOT data are compressed from 12 bits to 10 bits. This operation is done in the digital block.

362 1.3.1.2. Data Path Content

363 The 30 bits of the Data Path content is shown in table Table 1.

364

	ADC (t-1)	ADC (t)	тот	ΤΟΑ	Charge collection	Data type
1	x	x		x (=0)	Q < TOA_thr AN	Normal
2	x	x		x	Q < TOT_thr AN	Normal
3	x		х	x	Q > TOT_thr AN	Normal
4		x	х	x		"Characteriza tion"

- 366 Table 1: The Data Content
- 367 The old confused "calibration mode" is renamed "characterization mode", it is set by slow control. The 368 specificity of this mode is to have ADC, TOA, TOT of the same event and TOT in 12 bits. It is dedicated for 369 characterization and debugging.
- 370 Two flags are added to the 30 bits in order to remove some ambiguities which can occurs in the data path:
- 371 TOT-In-Progress, Tp, (applicable for lines 1 and 2 and 4 of the table): A TOT occurred in a previous BX 1. 372 and the ADC value can be "corrupted" (saturation or undershoot)
- 373 2. TOT-Complete, Tc, (applicable in lines 3 and 4 of the table): the second 10 bits packet corresponds to 374 TOT, not ADC.

validity 2133542 1.5 DRAFT

Page 29 of 58

375 376 Note : The ADC values in the data path are without pedestal subtraction. 377 378 Tc and Tp Interpretation: 379 0b00 : The TOT is not in operation (not busy), normal behaviour with ADC data (TOT filled with 0) • 380 0b01 : The TOT is busy (integration or undershoot), Tp highlights the fact that provided ADC • 381 correspond to saturation (during integration) or undershoot (TOT filled with 0) 382 0b10 : should not appear => we only output value when TOT is busy • 383 0b11 : The TOT value is output, normal behaviour with TOT data (ADC value is between saturation • 384 and undershoot) 385 386

1.3.1.3. Frame Description

- Bx#: Value of BC on 12 bits.
- Event#: Value of EC on 6 bits, to detect if a L1 trigger was sent but related data wasn't saved (RAM2 full)
- Orbit#: Value of Orbit Counter OB on 3 bits.
- H1: Error during hamming decoding in Header.
- H2: Error during hamming decoding in CM to CH17 (1st Quarter).
- H3: Error during hamming decoding in Calib to CH35 (2nd Quarter).
- 395 The Calib channel's data content is the same than a normal channel.
- 396 The common mode channels' data content is as per below:
- 397

387

10	10b	Adc	Adc
10	<i>"</i> 00…00 <i>"</i>	CM0	CM1

- ³⁹⁸ The packet integrity is checked by the CRC (Cyclic Redundancy Check) on 32 bits data width.
- The polynomial to apply is 0x04C11DB7:

400
$$X^{32}+X^{26}+X^{23}+X^{22}+X^{16}+X^{12}+X^{11}+X^{10}+X^8+X^7+X^5+X^4+X^2+X+1$$

401 One IDLE is attached at the end of the frame.

VALIDITY

2133542 1.5 DRAFT

Page 30 of 58

402 An idle packet is continuously sent out when no L1 trigger is activated. This Idle packet is configurable by 403 slow control, the default idle word is CCCCCCC.

404

405 **1.2.1 1.3.2.** Trigger path

406 The data processing for the trigger path is composed as per below:

- 407 Charge linearization over ADC/TOT range
- Sum of 4 or 9 channels depending on the sensor
- Charge compression to fit the bandwidth

410 The figure below shows the AlignBuffer scheme.

By slow control, the user can choose to force ADC to 0 when TOT pulse = 1 and/or three more BX (for the undershoot). Then the pedestal subtraction is achieved. By slow control, the user can force to send a

413 programmed ADC value (global parameter).

414 415

- 416 1.3.2.1. Disabling channel
- By slow control, ADC and TOT data can be forced to 0 per channel. This is made in the digital block after theAlignBuffer.
- 419 1.3.2.2. Trigger path content

Following the AlignBuffer block, the 2 pieces of channel information (ADC and TOT) are fed into the trigger path. There follows a Charge Linearization block and a summing block to create Trigger Sum cells.

- 422
- 423 1.3.2.3. Charge Linearization Block

The Charge linearization block treats the ADC and TOT charge in different ways. The two paths are shown
 below. It is a scheme of principle as actually the pedestal subtraction is made in the AlignBuffer.

427

VALIDITY 2133542 1.5 DRAFT

Page 31 of 58

- 428 Figure: Charge Linearization Block
- 429 1.3.2.4. ADC Charge Processing
- 430 Referring to figure above, the ADC charge processing has 2 main steps
- 431

Step	Process name	Parameter	Action
1	Pedestal subtraction	ADC_pedestal (8 bits per channel)	If ADC0 > (ADC_pedestal + ADC_TH) then
2	Noise cancellation	ADC_TH (5 bits global per ROC)	ADC2 = ADC0 - ADC_pedestal Else ADC2 = 0

432

433 Note:

- The constants are to be measured during a calibration phase and loaded via slow control. ADC_Pedestal is a
 dc offset per channel and ADC_TH is used for a noise cut.
- 436
- 437 1.3.2.5. TOT Charge Processing & Selection of ADC value or TOT.
- 438 The TOT charge processing and selection has 4 main steps.
- 439

Step	Process name	Parameter	Actions
------	--------------	-----------	---------

2133542 1.5 DRAFT

Page 32 of 58

1	TOT pedestal subtraction	TOT_Pn (7 bits per group of 9 channels)	
2	Plateau or linear selection	TOT_THn (8 bits per group of 9 channels)	TOT1 = TOT0 - TOT_Pn Else TOT1 = TOT_THn - TOT_Pn
3	Convert time to charge (ADC units)	Multifactor (5 bits global, default value = 25)	
4	Selection between ADC and TOT		If TOT0 ≠ 0 then Charge = TOT1 x Multfactor Else Charge = ADC2

440

441

442 Notes:

TOT_pedestal, TOT_threshold and Multiplication factor are parameters to be measured during a calibration

- 444 phase and reloaded via slow control.
- TOT0 is a 12 bit value obtained from the TOT block.
- 446 TOT pedestal, defines the TOT linear fit offset.
- 447 TOT threshold defines the lower limit of the TOT linear part
- 448 Multiplication factor = Ratio between the TOT and the ADC LSB
- 449 450

Finally there is the selection between charge from the ADC or TOT.

451

many there is the selection between thatge from the ADC

452 The value of the Multiplication factor allows to linearize the ADC range and the TOT range; it is coded over 5453 bits in order to cope with the three typical gains:

- 454 31 for the 80fC ADC range
- 455 15.6 for the 160fC ADC range
- 456 7.8 for the 320fC ADC range
- 457 (The default slow control value is 25 for a theoretical 100fC ADC range.)
- 458 1.3.3. Trigger Cell Sums
- The user can define the chip to sum charge in groups or 4 or 9 channels to obtain trigger sums.
- 460 The selection between the sum by 4 (TC4) or 9 (TC9) is done by the ASIC parameter "SelTC4".

2133542 1.5 DRAFT

Page 33 of 58

* "orange" channels only when sum of 9 channels

463 Figure 5: Channel Mapping for Trigger Sums

464 The sum by 4 gives 19b (12 TOT * 5b MultFactor) and sum by 9 gives 21 bits. We are using the encoding 465 over 7 bits with 4 bits for the position of the MSB + 3 bits to give the 3 next bits after the MSB, which 466 implies a maximum number of bit of 18. Consequently for the sum by 4, the LSB is removed; for the sum by 467 9, the three LSB are removed. We now have sum words over 18 bits and the encoding follows this logic: 46

469 -Else if Qin MSB @1 is $bn \square Pos = n-2$, bits = b[n-1:n-3]

470 And so the decoding can be described as per below.

VALIDITY 2133542 1.5 DRAFT

Page 34 of 58

- 473 1.3.3.1. Frame description
- 474 The data transmission is MSB first.
- The sum by 4 or 9 is set by slow control.
- The Calibration and common mode channels are not in Trigger data.
- 477
- The figure below shows the dataframe for the sum by 4.
- 479

Trigger0	4b-Sync	7b-Trigger TC	7b-Trigger TC	7b-Trigger TC	7b-Trigger TC
	Pattern	сно-снз	сн4-сн7	сн9-сн12	сн13-сн16
Trigger1	4b-Sync	7b-Trigger TC	7b-Trigger TC	7b-Trigger TC	7b-Trigger TC
	Pattern	сн19-сн22	сн23-сн26	сн28-сн31	снз2-снз5
$\begin{array}{c} \text{Ch 0} \\ \text{Ch 1} \\ \text{Ch 2} \\ \text{Ch 2} \\ \text{Ch 3} \\ \text{Ch 4} \\ \text{Ch 5} \\ \text{Ch 6} \\ \text{Ch 7} \\ \text{Ch 8} \end{array}$	TC4	тсэ	→ Selected by SelTC4 = 1	y Slow Control I L	Bit

- 480
- 481
- 482
- The figure below shows the dataframe for the sum by 9.
- 483 484

VALIDITY 2133542 1.5 DRAFT

Page 35 of 58

# Trig-link	4 or 2
Link type / speed	CLPS @ 1280 Mbps
Possible to switch-off unused link	Yes
# bits in 1 packet (each 25ns)	32
Packet composition (see below)	During startup:1 header + 28-bit idle wordelse:1 header + 4x Trigger Cell sums
Header	4 bits « 1010 » or « 1001 » @ Bx0
Trigger Cell mapping	See next slide
Trigger cell (TC) encoding	4b Exponent + 3b Mantissa
Bits order	MSB first

488

487

489 The content of the trigger data is depending on the SelTC4 setting.

491 H is always a 4-bit "1010" except at the first bunch crossing (BXCpt=0) where it is "1001".

validity 2133542 1.5 DRAFT

Page 36 of 58

493 1.2.2 1.3.4. Digital parameters

494 The table below gives all the parameters of the digital block for the data and trigger paths, thus there are

495 two of them in the chip as there are two digital blocks for the both sides of the chip.

496	

name	# bits	comment
PIILocked	1	If available, status of PLL locked
CmdSelEdge	1	0: select fall edge for fast commands sampling (default)
SelTC4	1	1: sum by 4 / 0: sum by 9
SelRawData	1	1: send raw digitized data into RAM
IdleFrame	28	Default 28 LSB "11001100" of idle DAQ/T frame
L1Offset	9	L1 offset corresponding to L1 latency
Adc_TH	4	Threshold corresponding to noise in ADC count
MultFactor	5	TOT vs ADC ratio for linearization (default ~25)
Tot_P0,Tot_P1,Tot_P2,Tot_P3	7	TOT pedestal used in TP (common to 9 channels)
Tot_TH0,Tot_TH1,Tot_TH2,Tot_TH3	8	TOT threshold used in TP (common to 9 channels)

497 SeITCA, namely Select Trigger Cell of 4 channels, allows the user to select the sum mode: set to 1 to sum 4
 498 channels, otherwise sum by 9.

499

SelTC4	# channels used	# ch in each TC	# Daq-link @ 1,28G	# Trig-link @ 1,28G	unused channels
0	72	9	2	2	-
1 (default)	64	4	2	4	(8, 17, 18, 27) (44, 53, 54, 63)

500

501 *1.2.3* **1.3.5.** Description of the operating modes of the chip

502The hard reset pin ReHb (CMOS input, active low) reset all the chip: PLL, FastCommand block, I2C block, all503the FSM, all the counters, all the D-FlipFlops, but not the slow-control parameters.

- 504 The hard reset pin ReSb (CMOS input, active low) reset only the slow-control parameters to their default 505 values.
- ⁵⁰⁶ *1.1* 1.3.5.1. Start-up sequence
- 507 This section describes the start-up sequence of HGCROC-v3 chip.

2133542 1.5 DRAFT

Page 37 of 58

- 509 When the chip is powering on, the Power-On-Reset (POR) block applies a reset (ReHb). The POR block can 510 be disabled by a pin (Power-On disable).
- 511 By default, the slow-control parameter RUN is set to 0. 512
 - RUN = $0 \rightarrow$ SLEEP mode, StartUp Ok = 0
 - FastCommand, I2C, PLL, SerDes ON
 - Low Power mode ON 0
 - IDLE pattern in Trigger and DAQ paths 0
- 516 RAM1 writing disabled 0
 - RUN = 1 \rightarrow RUN mode, StartUp Ok = 1
 - FastCommand, I2C, PLL, SerDes ON 0
- 519 Low Power mode OFF 0
 - 0 DAQ and Trigger paths: normal operation mode
- 521 RAM1 writing enabled 0 522
- 523 Low Power mode disables the analog part of the chip: preamplifier, shaper, discriminators. But since the PLL 524 is ON, the ADC, TDC, AlignBuffer will be ON.
- 526 We will need to be able to synchronously reset some blocks (e.g. the TDC) when the chip enters in RUN 527 mode. For now, we don't know exactly how to implement this.
- 528 1.2 1.3.5.2. RAM1 to RAM2 operation
- 529 This section describes the operations between RAM1 and RAM2.
- 530 When the chip receives a L1A, the data of the event which occured to the current BX minus the 531 programmed L1 latency (typically 12.5 us or 500 BX) is written to the RAM2, EC is incremented.
- 532 To be able to handle consecutive L1A, a FIFO will be implemented which will store the address value 533 (current BX - L1 latency).
- 534

513

514

515

517

518

520

REFERENCE EDMS NO. REV. CMS-CE-ES-0004

VALIDITY

2133542 1.5 DRAFT

Page 38 of 58

- 535 What is the time taken to read from RAM1 and write to RAM2 is requested in order to know how 536 much the fifo length has to be 537
 - Why store BC and OC in RAM1 and not in RAM2?
- 538 1.3 1.3.5.3. RAM2 to SerDes State-Machine

539 This section describes the read-out operations from RAM2 to the DAQ links.

540 As long as RAM2 is not empty, the chip sends out the data. If RAM2 is empty, the chip sends out the IDLE 541 pattern.

542 As described in the two figures below, when the chip receives a Link-Reset-ROD-D fast command, it starts 543 the link reset procedure but after the completion of the current data packet. During the link reset 544 procedure, the RAM2 emptying is going on, its emptying is independent of the link resync.

549

551

552

553

1.3.5.4. Definition of the Time Tag Counters 2.

550 My comments are in red.

- Bunc Crossing counter (BC): [12b], Increment on bx (40MHz) Reset to offset on Chip-Sync, BCR Wrap • to 1 if=3564 (plus special 4b header in trig path) [programmable offset, default = 0]. Need clarification, which one of the two following statements is correct?
- When the chip receives BCR or Chip-Sync, BC is set to programmed value AND special 554 0 555 header (0x9) is added to the trigger path at current BX + programmed delay (delay on 12 556 bits)

VALIDITY

2133542 1.5 DRAFT

Page 39 of 58

Event Buffer Reset (EBR): Fast Command, reset Event Buffer, ECR, but not OC and BC. Chip must be
 ready to accept L1A in the next BX. Chip starts to send IDLE.

(
	CMS-CE-ES-0004 2133542 1.5 DRAFT					
	Page 40 of 58					
580						
	A A					
	is stopped					
581	ReHb: Resets every to default values and all SM to S0. Reset PLL in ROC.					
582 582	 Resets the FastCommand blocks, I2C block (not slow control parameters), ADC, TDC, digital 					
584	 BIOCK ReSh: Same ReHb but leaves the SC parameters programmed 					
585	 Resets only SC parameters, it seems to me safer to have two separate "reset domains". 					
586	without "overlapp" (which implies a OR in the reset path).					
587						
588						
E00						
309	1.4. Interfaces blocks					
590	1.4.1. Fast command					
591	The Fast Command stream is used to derive the 40 MHz master clock for the HGCROC.					
502	See					
593	https://indico.cern.ch/event/882853/contributions/3722675/attachments/1979350/3295476/East_Comma					
594	nds_Jan20.pdf					
595						
596	Timing diagram of each Fast Command is requested.					
597 508						
599	Some details: • Calpulseint: send STROBE nulse to the internal calibration DAC. The STROBE nulse length is					
600	programmable (6 or 7 bits counter at 320MHz). The STROBE pulse phase can be adjusted within					
601	25ns at 1.56ns step.					
602	• CalPulseExt: send STROBE pulse to the external pin SiPM_calibration. The STROBE pulse length is					
603	programmable (6 or 7 bits counter at 320MHz). The STROBE pulse phase can be adjusted within					
604	25ns at 1.56ns step.					
605 606	I he length and the phase of the STROBE pulse are set by slow-control.					
607	Sending Fast Command CalPulse{Int/Ext} does not change the data content mode.					
608						
600	1.4.2. IZC					
009	The document mockOcv2_configure_command_Guide.pdf details I2C. Include missing into here.					
610	I2C protocol is used to access ASIC parameters. Main features are given in the table below:					

2133542 1.5 DRAFT

Page 41 of 58

611

I2C	Detail	Comments
Chip addressing	4 bits	MSB of I2C first byte
Direct-access register addressing	3 bits	Register R0 to R7
"Burst" writing / reading	Yes	Accessible through R3
I2C speed	1M (max)	To be measured on HGCROCDv2
TMR	Yes	

612 The I2C circuits of the chip has 8 internal registers whose the use is described in the table below:

613

I2C @	Register	Comments
R0	ASIC parameter address (LSB)	Indirect @
R1	ASIC parameter address (MSB)	Indirect @
R2	Data	
R3	Data with auto @++	Increment indirect @ after each access
R4-R5-R6	Direct access SC-register	
R7	Status register (error, parity)	Read-only

614

- To cope with the large number of parameters, extended addressing is used:
- 512 sub_address can be addressed (B15, B14 not used and have to be set to 0)
- Each sub_address has max 32 configuration parameters
- Extended addressing realized through 2 direct access registers: R0 and R1

To write, set R/W bit to 0 and to read set R/W to 1.

623 For instance, to set a specific 8b word of the chip, the users has to write into the R0 register then R1 register

624 to select the good parameters register address, and then write the data into the R2 register.

625

Start	ChipID + R0	Read/ Write Bit	ACK/ NACK Bit	8 Bit	S ACK/ NACK Bit	Stop
Start	ChipID + R1	Read/ Write Bit	ACK/ NACK Bit	8 Bit	S ACK/ NACK Bit	Stop
Start	ChipID + R2	Read/ Write Bit	ACK/ NACK Bit	8 Bit	S ACK/ NACK Bit	Stop

The user can also write into consecutive parameters register addresses: rather to write the parameters into
 the R2 register, he has to write successively into the R3 register.

628

Start	ChipID + R0	Read/ Write Bit	ACK/ NACK Bit	8	Bits	ACK/ NACK Bit	Stop
Start	ChipID + R1	Read/ Write Bit	ACK/ NACK Bit	8	Bits	ACK/ NACK Bit	Stop

Start	ChipID + R3	Read/ Write Bit	ACK/ NACK Bit	8 Bits	ACK/ NACK Bit	Stop
Start	ChipID + R3	Read/ Write Bit	ACK/ NACK Bit	8 Bits	ACK/ NACK Bit	Stop

Start	ChipID + R3	Read/ Write Bit	ACK/ NACK Bit	8	Bits	ACK/ NACK Bit	Stop

629

630 1.4.3. Output E-links

2133542 1.5 DRAFT

Page 43 of 58

632 The output differential links are composed of a serializer and a driver compatible with the LpGBT protocol
633 (CLPS). The serializer converts parallel 32 bits words at 40 MHz to a serial train of bits send out at 1280 MHz.

New serializers without ReSyncLoad wrt HGCROCv2. ReSyncLoad will be removed and the SerDes will be
 autonomous. The internal logics will be partially triplicated.

- 636
- 637
- 638

C lk 640 C lk 640 $D out1_i$ $D out1_i$ $D out2_i$ $D out2_i$ $D out2_i$ $D out2_i$

639

640 In the table below, the electrical specifications of the driver are given.

641

Specification description	Value
Vcm (common voltage)	0,6 V
Vdiff (differential voltage)	100 to 200 mV
Pre-emphasis current	0,5 to 4 mA
Termination load	100 Ω

642 The termination load resistor must be placed outside the chip.

643 The register 5 of the "TOP" I2C sub-address allows to configure the current and the pre-emphasis of the 644 driver.

Bit	Name	Default	Description
0	EN1	"1"	Comment value of the CLDS drivers
1	EN2	"1"	(Deta/Trigger)
2	EN3	"0"	(Data/ Ingger)
3	EN-pE0	"0"	Current value of the CLDS are exampled in driver
4	EN-pE1	"0"	(Deta/Trigger)
5	EN-pE2	"0"	(Data/ Ingger)

VALIDITY 2133542 1.5 DRAFT

Page 44 of 58

6	SO	"0"	Delay value of the CLPS pre-emphasis driver
7	S1	"0"	(Data/Trigger)

645

⁶⁴⁶ 1.5. Ancillary blocks

- ⁶⁴⁷ 1.5.1. PLL and clocks distribution
- 648 The main specifications of the PLL are described in the following table:

649

PLL specifications	
Input frequency	40 MHz (LHC bunch clock)
Output frequencies	1.28 GHz and 640, 320, 160 MHz
Jitter cleaner	Low jitter < 15 ps RMS (for an
	input jitter of 30 ps RMS)
Power consumption	< 2 mW
Area	Pitch 200 µm
Technology	TSMC 130 nm
Temperature	-30 °C

650

The chip only receives the Fast-Command link made of the 320 MHz fast command and the 320 MHz clock. The FastCommand block decodes the fast command and the 40 MHz clock in phase with the LHC. This 40 MHz clock is used for the I2C block, all the FSMs, the counters, the two RAMs, the wr/rd pointers and is the PLL reference clock. Only the hard reset ReHb allows to stop or re-start this clock by resetting the FastCommand block.

REFERENCE EDMS NO. REV. CMS-CE-ES-0004

VALIDITY 2133542 1.5 DRAFT

Page 45 of 58

658 659 The PLL takes as reference clock the 40 MHz clock provided by the FastCommand block. The PLL can only be 660 reset by the hard reset ReHb. The PLL generates three clocks: clk 40M pll, clk 160M pll, clk 640M pll. 661

- Clk_40M_pll: this clock comes in a Phase Shift block to achieve the ADCs clock
- Clk_160M_pll: this clock comes in a Phase Shift block to achieve the TDCs clock.
- Clk_640M_pll: this clock comes in the SerDes of the E-links. _ 664

665 The clock distribution is described in the figure below (HGCROCv2 diagram also valid for V3?)

666

662

663

667

- 668 The shaper signal needs to be sampled to its maximum in order to optimize the signal-to-noise ratio; to do
- 669 that the phase of the 40MHz sampling clock needs to be adjustable. The phase is adjusted by steps of ~ 1.5 670 ns (640 MHz period).
- 671 Some parameters, described in the "TOP" sub-address section, allow to configure the PLL.

672 1.5.2. Bandgap and voltage references

- 673 See the document datasheet_BGP_130nm.pdf for detailed information about the bandgap.
- 674 Typically, the bandgap provides an output voltage of around 280 mV. We need to multiply this value to get a
- 675 usable voltage reference around 1 V. From the bandgap voltage, a Vbg-based current is provided as well.

677 The Vbg_1V is used to generate the upper reference voltage of the Calibration 11b-DAC, the reference
678 voltage of the ADCs, ref. voltage for the TDCs, bias and to keep the TOT insensitive to the power supply
679 variations. The ref_i reference current is used to generate the offset and the steps of the 10b-DACs.

Four global 10 bits DACs provide voltage references for the analog part: the two discriminator thresholds,
 the inverted and non-inverted references for the shaper. As the circuit is symmetrical, there are two

bandgaps and two sets of voltage references with DACs for the two right and left sub-parts.

The voltage references are fabricated from the bandgap (ref_i), the 10b DAC and the preamplifier output of
a common mode channel (channels CM<1> and CM<3>) so that the chip is not sensitive to the temperature
(see Design Review report for more detailed information).

Note that since the reference voltages are made from the preamplifier output of CM<1> and CM<3>, these
two channels are requested to be ON (the channel_off parameters cannot be set to 1 for instance for these
channels).

689 1.5.3. Calibration circuit

690 The following scheme shows the circuitry of the HGCROC-v3 calibration DAC. It is now a 12-bits DAC, the 691 offset caused by the current flowing through the bandgap and the reference voltage buffers is removed by 692 connecting the calibration DAC ground to the preamplifier grounding. Moreover, another source of offset is 693 the gate leakage current of the switches (HighRange and LowRange) into each channels. Measurements on 694 HGCROC-v2 show 7nA + 1.5nA*N_{CH ON}, with N_{CH ON} the number of enabled injection capacitances. This would 695 introduce an offset of 1.2 fC for N = 1, 10fC for N=40, it is the reason why we also reduce the size of the 696 LowRange switches (by a factor 5) in order to hopefully keep the offset lower than 1fC for N=1, 2fC for 697 N=40.

698

Assuming the 12b-DAC provides a voltage up to around 1 V (the bandgap value), the user may set 0.5pF or/and 8pF injection capacitances in the chosen channels, to study the 0 – 0,5 pC range, the 0 – 8 pC range or, by setting the both capacitances, the 0 – 8,5 pC range. To correctly calibrate the ADC/TOT behavior, it is important to have an overlap between the available charge ranges.

The ctest node comes from an external pad and allows the user both to use an external pulser rather than
 the calibration DAC and also to calibrate the calibration 12b-DAC.

Page 47 of 58

706

714

715

716

717

718

719

720

721

⁷⁰⁷ In HGCROC-v2, the 11-bit DAC had a ~30 mV offset when setting 0. The offset is relatively stable with ⁷⁰⁸ temperature and irradiation. It was traced to a 1 Ω resistor in gnd_dac in which ~30 mA current is flowing ⁷⁰⁹ to feed all the reference buffers. This resistance is lowered by M6-M7 connection and the calibration DAC is ⁷¹⁰ referred to gnd_pa rather than gnd_dac.

The following figure shows the HGCROC-V2 grounding scheme of the calibration DAC.
 712

713 Finally, modifications to remove the calib_dac offset

- The calibration DAC is 12-bit R2R instead of 11 bits.
- The ground is connected to gnd_pa instead of gnd_dac.
- The strobe switch is connected to gnd_pa instead of vss.
 - The output switch is removed to reduce gate leakage.
 - The switch to the in_ctest pad is reduced as it is used only for monitoring; Ctest goes now to the probe_DC_V through an analog multiplexer together with the others DACs.
- All the LowRange switches are reduced by a factor 5 to reduce the gate leakage and so the offset.

⁷²² 1.5.3.1. Strobe pulse length

The calib fast command lasts 1 clock cycle but the strobe pulse lasts more than 10-12 clock cycles to not inject the opposite charge in BX+1. A counter (6 or 7 bits at 320MHz) is implemented to achieve this. The

- phase of the strobe pulse w.r.t. 40MHz clock will be adjustable by delay of 1.56 ns (640 MHz).
- 726 A CalExt fast command sends a strobe to a pin.

VALIDITY 2133542 1.5 DRAFT

Page 48 of 58

727 A Callnt fast command sends a strobe to the internal CalibDAC.

728

729 1.5.4. Monitoring

730

731 The internal DACs outputs (calibration, reference voltages and Current DAC) will be multiplexed as described 732 in the figure above. The signals will be sent to the ADC of the SCA chip.

VALIDITY 2133542 1.5 DRAFT

Page 49 of 58

734

2. Packaging, I/Os and powering scheme

735 The chip pinout has been defined by the hexaboard constraints [Tommaso et al.] and the BGA package that 736 will be used to house the chips, as shown in figure below.

737

738

740 The two figures below show the left view and the right view of the die. Can be noticed the common column 741 25 in both figures.

VALIDITY 2133542 1.5

Page 50 of 58

DRAFT

TO BE UPDATE FOR ROC3

742

743

744

745

The figure below shows the top view of the BGA map as can be seen on the board.

2133542 1.5 DRAFT

Page 51 of 58

747

									-					-	
	n	P2VS A	GND	GND	Viet_SK_L D	Vref_noirv_L E	Vret_Inv_L F	Vref_Toa_L G	Vref_Tot_L H	VBG_IV_L	Probe_PA_L K	IN_CONT_L	GND	GND	и
	55	5775	GND	<(E>NI	Notb	INcdSo	Store Store	N CS	ĸ	485M	an case	<23>NI	N-deo	GND	я
	ĸ	SNZ 4	GND	-see ni	INed3>		<12NI	CALIB<	AVD0_1	- Ness	1N-000-	N-665	- Nices	NC/00	я
	*	5VZ4	ß	®¥	CD>N	No46>	405>N	QWG	CM-3>	CS>N	<18>VII	N-665>	NetBo	CU>N	*
	n	SV24	GND	(IN CB)	Offor N	(14th)	Stor	4SNI	¥	SSNI	46SNI	<68>NI	<25×NI	GND	ส
	ñ	PZVS	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	R
	n	P2VS	ViefP_ADC_L	ViefN_ADC_L	1_DOVA	AVDD_L	AVDD_L	1_DOVA	AVDD_L	1-DOVA	AVDD_L	1-DOD_L	Vrefin_ADC_L	ViefP_ADC_L	я
	92	SIPM_Calib	Vcm_ADC_L	OUND	OCINO	DVED	00A0	800	ODAD	OCINO	OCINO	DVDD	DVDD	Vcm_ADC_L	8
	ei.	Strobe_ext	Abol_ II'	ADD-3>	QQAQ	QQAQ	VSS	NSS	VSS	VSS	887	v\$8	Probe_DCL_L	NGN	ต
	81	Q.EghT	Trig3_n	ADD<2>	DUDD	DUND	NS S	SSN	VSS	NSS	884	VSS	Probe_DC2_L	Probe_Toa_L	a
	л	ورگوامT	Trig2_n	11_ext	ни	00/0	VSS	VSS	VSS	ASS V	887	V\$S	ни	Probe_Tet_L	а
	36	d_1 ped	Daq1_n	وللا	QQAQ	DOVD	X8A	SSA	887	SSA	887	887	Trig1_L	ADCP_L	36
	15	CI4320_n	c liazo p	n,114	DVDD	DVDD	VSS	ssv	VSS	VSS	VSS	vss	Trig2_L	ADCN_L	s
TOP VIEW	2	NC	40 R	Error	Resynctoad	Sel_CK_ext	Sparect>	Spare-2>	Spared>	UN_ AU	nd oav	VDD_SC	NC	BEUSE	14
	n	fcmd_p	Fcmd_n	CK40_n	QQAD	0000	NSS	NSS	VSS	VSS	887	V55	Trig2_R	ADCN_R	n
	a	d_0ped	n_0ped	Cliet0_p	QQAQ	QQMQ	VSS	SSV	VSS	SSV	887	vss	Trig1_R	ADCP_R	a
	п	0.0ghT	Trig0_n	ReSync_ext	IHA	QQAQ	VSS	889	VSS	VSS	887	VSS	IHA	Probe_Tot_R	п
	01	q.19hT	Trig1_n	AD0<1>	DVDD	DVDD	887	80	V35	887	88A	XX	Probe_DC2_R	Probe_Toa_R	91
	6	8DA	20	ADD-0>	QQAQ	QQAQ	VSS	VSS	VSS	VSS	VSS	VSS	Probe_DC1_R	VGNR	6
	80	DC_rst	Vcm_ADC_R	OQAQ	QQAQ	OQAQ	QQAQ	OGVO	OQAQ	DUDD	QQAQ	00A0	QQAQ	Vcm_ADC_R	63
	7	5775	VielP_ADC_R	VrefN_ADC_R	AVD0_R	AVD0_R	AVD0_R	AVDO_R	AVDO_R	AVD0_R	AVDO_R	AVDO_R	VrefN_ADC_R	VrefP_ADC_R	2
	9	SN24	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	v
	~	PZVS	GND	40×Ni	INcdb	IN CB	<2DNI	NIG6	NC	46D-NI	IN-23>	IN-27>	(16-NI	GND	
	-	PZVS	GND	₩¢9	Ness	N<10>	IN<14>	CM 49	CMd>	<12>NI	N-C22	(C)N	IN-GB>	IN-35>	*
	n	SN24	GND	-E-NI	<cni< td=""><td>dibyl</td><td>INcis</td><td>CALIB-0></td><td>AVDD_0</td><td>IN<205</td><td>IN-245</td><td>IN-28></td><td>IN-GD-</td><td>IN<345</td><td></td></cni<>	dibyl	INcis	CALIB-0>	AVDD_0	IN<205	IN-245	IN-28>	IN-GD-	IN<345	
	2	SVZd	GND	INcb	N <s< td=""><td>N(3)</td><td>IN-US></td><td><12MI</td><td>NC</td><td>IN-CIB></td><td>IN-22></td><td>IN-26></td><td>1N-30></td><td>GND</td><td>2</td></s<>	N(3)	IN-US>	<12MI	NC	IN-CIB>	IN-22>	IN-26>	1N-30>	GND	2
	-		GND	GND	Vref_SK_R	Vref_noinv_R	Vietjinu_R	Vref_Toa_R	Vref_Tot_R	VBG_IV_R	Probe_PA_R	IN_Ctest_R	GND	GND	-
		<	63	v	٥	w	u	U	I	-	×	-	2	z	

748 2.1. I/Os list

Names	Comment	Туре	# ports	# signals	Level
Clk e-link	Fast commands @ 320M	Input	1	2	CLPS
FastCmd e-link	Fast commands @ 320M	Input	1	2	CLPS
Trigger e-link	Trigger @ 1,28G	Output	4	8	CLPS
DAQ e-link	DAQ @ 1,28G	Output	2	4	CLPS

VALIDITY

2133542 1.5 DRAFT

Page 52 of 58

I2C - SDA	I2C data	Bidir	1	1	CMOS
I2C - SCL	I2C clock	Input	1	1	CMOS
I2C - address	I2C address bonded on the board	Input	1	4	CMOS
Power-ON disable	Disable the POR	Input	1	1	CMOS
ReHb	Global reset, global to the hexaboard	Input	1	1	CMOS
ReSb	Slow Control reset	Input	1	1	CMOS
Error B **	Error Flag	Output	1	1	Open Drain
Efuse			1	1	
SiPM calibration***	Calibration enable (to strobe LEDs)	Output	1	1	CMOS
			Total	28	

749

(**) Error B. Error signal flagging a SEU event in the I2C register parameters. The implementation has to be
 defined.

752 (***) SiPM calibration. Only for the SiPM version of the chip.

753 The PLL locked signal will be accessible through a direct addressing I2C register.

754

Name	Comment	Туре	# ports	# signals
Probe_DC_V	To monitor/calibrate vDACs, bias	Output	-	1
Probe_DC_I	To monitor/calibrate iDACs	Output	-	1
			Total	2

755

756

2.2. Pin List

-		-		_
	Pin Name	Pin type	Comments	Defaul t value
Ρ	P2V5	POWER	analog pad ring power supply	1,2V
	AVDD_0	POWER	analog power supply	1,2V
0	AVDD_1	POWER	analog power supply	1,2V
W	GND	GROUND	analog ground	0V
ED	DVDD	POWER	digital power supply	1,2V
	VSS	GROUND	digital ground	0V
S/	VDD_PLL	POWER	PLL power supply	1,2V
GR	GND_PLL	GROUND	PLL ground	0V
0	VDD_SC	POWER	Slow Control power supply	1,2V

CMS-CE-ES-0004 2133542 1.5 DRAFT

Page 53 of 58

U					
N	VHI R	ANALOG		By default keep free ; for	1V
IN				monitoring.	
DS	VHI_L	ANALOG		By default keep free ; for	1V
				monitoring.	
	· · · · · · · · · · · · · · · · · · ·		1	Deference velteres of the	
				Sallen-Key amplifier value close	
	Vref SK R	ANALOG	Input/Output	to the preamp input voltage By	200mV
	vici_sit_it	ANALOG	input/output	default must be kept free. Can	200111
				be monitored/checked.	
				Reference voltage of the	
				non-inverted shaper. Value	
	Vrof point P			given by an internal 10b_DAC.	
	VIEI_HOHIV_K	ANALOG	Πραι/Οαιραι	Can be checked/monitored	
				externally. By default must be	
				kept free.	
				Reference voltage of the	
		ANALOG	Input/Output	inverted shaper. Value given by	
	Vref_inv_R			an internal 10b_DAC. Can be	
на				By default must be kept free	
lf				Beference voltage of the TOA	
-				threshold. Value given by an	
pa	Vref_Toa_R	ANALOG	Input/Output	internal 10b DAC. Can be	
rt				checked/monitored externally.	
10				By default must be kept free.	
lc				Reference voltage of the TOT	
h.		ANALOG	Input/Output	threshold. Value given by an	
36	Vref_Tot_R			internal 10b_DAC. Can be	
30				checked/monitored externally.	
to				By default must be kept free.	
71				BANDGAP Voltage. Value can be	1\/
	VDG_1V_K	ANALOG	mput/Output	value = 1V	TV
				preamplifier analog probe.	
	Probe_PA_R	ANALOG		Channel-wise	
				By default, external pin test, but	
	IN Ctoct P		Input	possibility to connect the	
	IN_CLEST_K	ANALOG	mput	calibration DAC output to this	
				pin by slow-control.	
	VrefP_ADC_R	ANALOG	Input/Output	Positive reference voltage of the ADC.	
	VrefN ADC R	ANALOG	Input/Output	Negative reference voltage of	
			input/output	the ADC.	
	Vcm_ADC_R	ANALOG	Input/Output	Common mode reference voltage of the ADC.	
	Probe_DC1_R	ANALOG	Input/Output	DC analog probe (bias, ref.)	
					I

Page 54 of 58

	Probe_DC2_R	ANALOG	Input/Output	DC analog probe (bias, ref.)	
	VGNR	ANALOG	Input/Output	VGN monitoring	
	Probe_Toa_R	CMOS	Output	TOA discri output probe. Channel-wise	
	Probe_Tot_R	CMOS	Output	TOT discri output probe. Channel-wise	
	Trig1_R	CMOS	Input	External trigger 1	
	Trig2_R	CMOS	Input	External trigger 2	
	ADCP_R	ANALOG	Input/Output	Analog non-inverted probe; positive ADC input	100mV
	ADCN_R	ANALOG	Input/Output	Analog inverted probe; negative ADC input	1,1V
	IN<35:0>	ANALOG	Channel input		200mV
	CALIB<0>	ANALOG	Channel input		200mV
	CM<1:0>	ANALOG	Channel input		200mV
	I2C_rstb	CMOS	Input	I2C reset; ACTIVE LOW	0V
	SDA	I2C signal		I2C data	
	SCL	I2C clk		I2C clock	
	Error	Open drain		Open collector; external resistor must be added. OR of all the slow-control cells' error signals	
	ADD<3:0>	I2C chip adress		I2C chip address	
	ReSync_ext	CMOS	Input	External ReSync selectable by Slow Control	
Со	L1_Ext	CMOS	Input	External L1 signal selectable by slow control	
m	Strobe_Ext	CMOS	Input	External calibration signal selectable by slow control	
m	SiPM_Calib	CMOS	Output	Calibration signal for SiPM	
on ·	ReSyncLoad	CMOS	Input	Serializers synchronization signal	0V
pı ns	Sel_CK_ext	CMOS	Input	External 40MHz clock selection (debug purpose); ACTIVE HIGH.	0V
115	Rstb	CMOS	Input	General reset; ACTIVE LOW	
	EFUSE	ANALOG		pin connected to an internal resistor. HGCROC2 => 100Ω . HGCROC2A => $1K\Omega$. H2GCROC2 => $10K\Omega$. H2GCROC2A => $100K\Omega$.	
	PLL_lock	CMOS	Output		
	Clk320_p	CLPS	Input	East command 220 MHz clock	
	Clk320 n	CLPS	Input		

CMS-CE-ES-0004 2133542 1.5 DRAFT

Page 55 of 58

	Fcmd_p	CLPS	Input	East command data	
	Fcmd_n	CLPS	Input		
	Clk40_p	CLPS	Input	40MHz clock for debug purpose	
	Clk40_n	CLPS	Input	4010112 Clock for debug purpose	
	PLL_p	CLPS	Output	PLL output probo	
	PLL_n	CLPS	Output	PLE odtput probe	
	Daq0_p	CLPS	Output	Data 0 link	
	Daq0_n	CLPS	Output	Data O IIIK	
	Daq1_p	CLPS	Output	Data 1 link	
	Daq1_n	CLPS	Output		
	Trig0_p	CLPS	Output	Trigger O link	
	Trig0_n	CLPS	Output	ingger o link	
	Trig1_p	CLPS	Output	Trigger 1 link	
	Trig1_n	CLPS	Output	ingger i link	
	Trig2_p	CLPS	Output	Trigger 2 link	
	Trig2_n	CLPS	Output	ingger z link	
	Trig3_p	CLPS	Output	Trianan 2 link	
	Trig3_n	CLPS	Output	ingger 5 link	
	Spare<3:1>	NC			
	Vref_SK_L	ANALOG	Input/Output	Reference voltage of the Sallen-Key amplifier, value close to the preamp input voltage. By default must be kept free. Can be monitored/checked.	200mV
Ha If pa rt	Vref_noinv_L	ANALOG	Input/Output	Reference voltage of the non-inverted shaper. Value given by an internal 10b_DAC. Can be checked/monitored externally. By default must be kept free.	
(c h. 0	Vref_inv_L	ANALOG	Input/Output	Reference voltage of the inverted shaper. Value given by an internal 10b_DAC. Can be checked/monitored externally. By default must be kept free.	
35)	Vref_Toa_L	ANALOG	Input/Output	Reference voltage of the TOA threshold. Value given by an internal 10b_DAC. Can be checked/monitored externally. By default must be kept free. Reference voltage of the TOT	
	vret_IOT_L	ANALUG	mput/Output	internal 10b_DAC. Can be	

VALIDITY 2133542 1.5 DRAFT

Page 56 of 58

			checked/monitored externally.	
			By default must be kept free.	
			BANDGAP voltage. Value can be	
VBG_1V_L	ANALOG	Input/Output	tuned by slow-control. Default	1V
			value = 1V	
Drobo DA I			preamplifier analog probe.	
Probe_PA_L	ANALOG		Channel-wise	
			By default, external pin test, but	
INL Chart I		Innut	possibility to connect the	
IN_Ctest_L	ANALOG	input	calibration DAC output to this	
			pin by slow-control.	
			Positive reference voltage of the	
VIEIP_ADC_L	ANALOG	input/Output	ADC.	
			Negative reference voltage of	
Vrefin_ADC_L	ANALOG	input/Output	the ADC.	
		In much (Outmout	Common mode reference	
VCM_ADC_L	ANALOG	πραι/Οατραι	voltage of the ADC.	
Probe_DC1_L	ANALOG	Input/Output	DC analog probe (bias, ref.)	
Probe_DC2_L	ANALOG	Input/Output	DC analog probe (bias, ref.)	
VGNL	ANALOG	Input/Output	VGN monitoring	
Drohe Tee I	CNACE	Outrout	TOA discri output probe.	
Prope_loa_L	CIVIUS	Output	Channel-wise	
Droho Tot I	CMOS	Quitaut	TOT discri output probe.	
Probe_lot_L	CIVIOS	Output	Channel-wise	
Trig1_L	CMOS	Input	External trigger 1	
Trig2_L	CMOS	Input	External trigger 2	
		In put Output	Analog non-inverted probe;	100m)/
ADCP_L	ANALOG	πραι/Οατραι	positive ADC input	TOOULA
		In put Output	Analog inverted probe; negative	1 11/
ADCN_L	ANALOG	πραι/Οατραι	ADC input	1,1V
IN 471-205		Channel		200>/
111 1.50	ANALOG	input		200111
		Channel		200m)/
CALIB<1>	ANALUG	input		ZUUMV
614.2.2	Channel	Channel		200
CM<3:2>	ANALOG	input		ZUUMV

758

759

760

I

3. ASIC parameters

As described in section **1.4.2 I2C**, the I2C circuit has 8 internal registers; the four first are dedicated to write/read the slow-control parameters. Registers 4, 5 and 6 are direct access registers and the register 7 is a status register in read-only mode.

764 In the tables below, the content of the direct access registers is described.

VALIDITY 2133542 1.5 DRAFT

Page 57 of 58

Bit	Name	Default	Description
0	AutoReload	"0"	Allows to rewrite the value after a SEU
1	EdgeSel	"0"	Selection of the clock edge of the 320MHz clock
2	NA	"0"	
3	NA	"0"	
4	NA	"0"	
5	NA	"0"	
6	NA	"0"	
7	NA	"0"	

765

I2C Register R5						
Bit	Name	Default	Description			
0	NA	"0"				
1	NA	"0"				
2	NA	"0"				
3	NA	"0"				
4	NA	"0"				
5	NA	"0"				
6	NA	"0"				
7	NA	"0"				

766

I2C Register R6						
Bit	Name	Default	Description			
0	NA	"0"				
1	NA	"0"				
2	NA	"0"				
3	NA	"0"				
4	NA	"0"				
5	NA	"0"				
6	NA	"0"				
7	NA	"0"				

767

I2C Register R7 (Status , read only)						
Bit	Name	Default	Description			
0	Error		OR of all the slow-control cells' error signals			
1	Parity		Parity of all the slow-control cells' values			
2	PII_Lock		Pll lock flag. "1" pll is locked			
3	NA					
4	NA					
5	NA					
6	NA					
7	NA					

768

⁷⁶⁹ 3.1. I2C Addressing

The four first I2C registers, R0-3, allow to define the address and the data to write or read into the internal 8
bits registers distributed into the chip sub-parts. R0 and R1 define the address of internal 8 bits registers. R2

validity 2133542 1.5 DRAFT

Page 58 of 58

- defines the data to write into the chosen internal 8 bits register. R3 allows the user to access successiveregister address.
- The chip, from I2C protocol point of view, is divided in sub-blocks containing maximum 32 registers each. In
 consequence, the address in 16 bits (given in R0 and R1) is composed of two sub-address:
- 776 The 11 MSB bits code the address of the sub-block
- 777 The 5 LSB bits code the address of the register of the sub-block
- The table below gives the address, the name and a short description of all the sub-blocks.
- 779 780

4. Measurements of v2 for inputs for HGCROCv3 specifications

781

4.1. Power consumption: RUN mode vs. SLEEP mode

- For the SLEEP mode, Preamplifier, shapers, discriminators are switched off, StartUp_Ok = 0 (no writing in
 RAM1)
- For the RUN mode, all the chip is ON.
- The power consumption decreases by 60%.
- 786 787

4.2. Power consumption: HD vs. LD

- For the LD hexaboard, we would like to turn off channels 8, 17, 26, 35, 44, 53, 62, 71.
- If we use channel_off enabled (preamp input tied to ground) and ADC, TDC and AlignBuffer masked, the
 power consumption decreases by 3%.