University of Minnesota
School of Physics & Astronomy
Home > People >

Vlad Pribiag

PAN 214 (office), 612-301-1817
PAN 353 (lab)
vpribiag @ •


I am particularly interested in the basic physics and possible device applications of novel states of matter, such as 2D topological insulators, topological superconductors and their excitations (Majorana zero-modes), and emergent electronic properties in complex oxide interfaces.

Our interest lies in the design, nanofabrication and experimental study of nanoscale devices based on novel low-dimensional materials, such as quantum spin Hall insulators (2D topological insulators), complex oxide interfaces and semiconductor nanowires. Our current research explores three main directions: topological superconductivity in hybrid semiconductor-superconductor systems, magnetism and superconductivity in oxide interfaces, and spin manipulation in low-dimensional structures (quantum dots, spin-helical liquids and 2D topological insulators).

Topological superconductivity is a fascinating condensed matter phase that is predicted to host Majorana zero-modes. When attached to a local defect such as a domain wall, Majorana modes, unlike conventional fermions, are expected to show non-Abelian exchange statistics. Because of their exotic properties and their topological robustness, Majoranas have become very important in the nascent field of topological quantum computing, which aims to exploit topological protection for decoherence-free quantum information processing.

Low-dimensional semiconductors with strong spin-orbit coupling open up avenues for exploring novel spin physics. For example, the spin orientation can be coupled to the electron propagation direction by applying a magnetic field along the nanowire. We are interested in the intriguing possibility of using such spin-helical modes as spin filters or to couple single spins from separate quantum dots.

Selected Awards:
IUPAP Young Scientist Prize in Low Temperature Physics (2017)
Alfred P. Sloan Research Fellow (2017-2019)
NSF CAREER Award (2016-2021)
Innovational Research Incentives Scheme (VENI) Award - Netherlands Organization for Scientific Research (NWO) - (2011-2014)

Current Funding:
Office of Naval Research
National Science Foundation
Sloan Foundation

Summary of Interests
My research focuses on quantum electronic transport in low-dimensional semiconductor systems. [Research Web Page]

Advisees and Collaborators

Dr. Xinxin Cai

PhD students:
-Yilikal Ayino
-Gino Graziano
-Brett Heischmidt
-Zedong Yang

-Brendan King (co-advised with Rafael Fernandes)

Past undergraduate members:
-Mikhail Borisov
-Nathan Bosch
-Wenbo Ge
-Ryan Schmitz
-Calvin Zachman

The Pribiag group is currently looking for motivated postdocs.

Selected Publications

Peng Xu, Yilikal Ayino, Christopher Cheng, Vlad S. Pribiag, Ryan B. Comes, Peter V. Sushko, Scott A. Chambers, and Bharat Jalan, Predictive Control over Charge Density in the Two-Dimensional Electron Gas at the Polar-Nonpolar NdTiO3/SrTiO3 Interface, Phys. Rev. Lett. 117, 106803 (2016) [abstract]

Vlad S. Pribiag, Arjan J. A. Beukman, Fanming Qu, Maja C. Cassidy, Christophe Charpentier, Werner Wegscheider, and L. P. Kouwenhoven, Edge Mode Superconductivity in a Two Dimensional Topological Insulator, Nature Nanotechnology 10, 593-596 (2015) [abstract]

V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. van den Berg, I. van Weperen, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Electrical control of single hole spins in nanowire quantum dots, Nature Nanotechnology 8, 170-174 (2013) [abstract]

J. W. G. van den Berg, S. Nadj-Perge, V. S. Pribiag, S. R. Plissard, E. P. A. M. Bakkers, S. M. Frolov, and L. P. Kouwenhoven, Fast spin-orbit qubit in an indium antimonide nanowire, Phys. Rev. Lett. 110, 066806 (2013)

S. Nadj-Perge, V. S. Pribiag, J. W. G. van den Berg, K. Zuo, S. R. Plissard, E. P. A. M. Bakkers, S. M. Frolov, and L. P. Kouwenhoven, Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires, Phys. Rev. Lett. 108, 16680 (2012) [abstract]

V. S. Pribiag, G. Finocchio, B. J. Williams, D. C. Ralph, and R. A. Buhrman, Long-timescale fluctuations in zero-field magnetic vortex oscillations driven by dc spin-polarized current, Phys. Rev. B 80, 180411(R) (2009) [abstract]

V. S. Pribiag, I. N. Krivorotov, G. D. Fuchs, P. M. Braganca, O. Ozatay, J. C. Sankey, D. C. Ralph, R. A. Buhrman, Magnetic vortex oscillator driven by d.c. spin-polarized current, Nature Physics 3, 498-503 (2007)


Ph.D. Cornell University, 2010.
M.Sc. Cornell University, 2006.
B.Sc. University of Toronto, 2003.