University of Minnesota
School of Physics & Astronomy

Condensed Matter Sack Lunch Seminar

Friday, September 29th 2017
12:20 pm:
Speaker: Mahendra DC, University of Minnesota
Subject: Giant spin-orbit torque from sputtered bismuth selenide films

The spin-orbit torque (SOT) arising from materials with large spin-orbit coupling promises a path for ultra-low power and fast magnetic-based storage and computational devices. We investigated the SOT from magnetron-sputtered BixSe(1-x) thin films in BixSe(1-x)/CoFeB heterostructures by using dc planar Hall and spin-torque ferromagnetic resonance (ST-FMR) methods. Remarkably, the spin Hall angle (SHA) was determined to be as large as 18.62 ± 0.13 and 8.67 ± 1.08, using the dc planar Hall and ST-FMR methods, respectively. Moreover, switching of perpendicular CoFeB multilayers using SOT from the BixSe(1-x)has been observed at room temperature (RT) with critical switching current density 4.3 × 105 A/cm2, which is the lowest-ever critical switching current density reported in a bilayer system. The transmission electron micrographs (TEM) show that the sputtered BixSe(1-x) films have a polycrystalline structure, whose grain size decreases with the film thickness. Quantum transport simulations using realistic sp3 tight binding model suggests that the giant SOT in sputtered BixSe(1-x)is due to a quantum confinement effect, whose spin-accumulation enhances with reduced size and dimensionality. The demonstrated giant SHA, ease of growth of the films on a silicon substrate, and successful growth and switching of perpendicular CoFeB multilayers on BixSe(1-x) film provide an avenue for the use of the topological insulator (TI) BixSe(1-x) as a spin-current generator in SOT-based memory and logic devices.

The weekly calendar is also available via subscription to the physics-announce mailing list, and by RSS feed.